Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antithrombotic therapy for patients with STEMI undergoing primary PCI

Key Points

  • Antithrombotic therapy is the cornerstone of pharmacological treatment to optimize clinical outcomes in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI)

  • Anticoagulant therapy is mandatory in PPCI and includes heparins and bivalirudin, which have different pharmacological and clinical profiles; the choice between these agents is mainly on the basis of bleeding risk profile

  • Intravenous antiplatelet drugs mainly include glycoprotein IIb/IIIa inhibitors and the P2Y12-receptor inhibitor cangrelor, which can provide immediate platelet inhibition until the full antiplatelet effect of oral agents is achieved

  • Dual antiplatelet therapy with a combination of aspirin and one of the new-generation P2Y12-receptor inhibitors prasugrel or ticagrelor is the recommended first-line treatment in patients undergoing PPCI

  • In the absence of data supporting superiority of one agent over the other, the choice between prasugrel and ticagrelor should take into consideration contraindications and patient characteristics; clopidogrel should be used when both prasugrel and ticagrelor are contraindicated or not available

  • Agents targeting thrombin-mediated effects on platelet activation, namely vorapaxar and rivaroxaban, have been developed and can be used in selected patients with STEMI to reduce long-term atherothrombotic events

Abstract

Antithrombotic therapy, including antiplatelet and anticoagulant agents, is the cornerstone of pharmacological treatment to optimize clinical outcomes in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). Intravenous anticoagulant drugs available for PPCI include the indirect thrombin inhibitors unfractionated heparin and low-molecular-weight heparin, and the direct thrombin inhibitor bivalirudin. Intravenous antiplatelet drugs mainly include glycoprotein IIb/IIIa inhibitors and the P2Y12-receptor inhibitor cangrelor. Dual antiplatelet therapy with aspirin and an oral P2Y12-receptor inhibitor is pivotal for the acute and long-term treatment of patients with STEMI undergoing PPCI. Prasugrel and ticagrelor provide a more prompt, potent, and predictable antiplatelet effect compared with clopidogrel, which translates into better clinical outcomes. Therefore, these agents are the first-line treatment in PPCI. However, patients can still experience adverse ischaemic events, which might be in part attributed to alternative pathways triggering thrombosis. Thrombin has an important role, suggesting the need for strategies directly targeting circulating thrombin or other factors of the coagulation cascade, such as oral anticoagulants (rivaroxaban), and the thrombin receptor on the platelet membrane (vorapaxar). In this Review, we provide an overview of currently available antithrombotic therapies used in patients with STEMI undergoing PPCI, results from pivotal clinical trials and their implications for guidelines, as well as recommendations for clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of thrombus formation during ST-segment elevation myocardial infarction, and targets of currently available antithrombotic agents.
Figure 2: Ischaemic and bleeding outcomes in the major clinical trials comparing bivalirudin versus heparin in ST-segment elevation myocardial infarction (STEMI).
Figure 3: Ischaemic outcomes in the ST-segment elevation myocardial infarction (STEMI) subgroups of major clinical trials on novel oral antithrombotic agents.
Figure 4: Pharmacodynamic comparison of crushed versus integral tablets of P2Y12-receptor inhibitors in ST-segment elevation myocardial infarction.
Figure 5: Proposed algorithm for the choice of antithrombotic therapy in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI).

Similar content being viewed by others

References

  1. O'Gara, P. T. et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 61, e78–e140 (2013).

    Google Scholar 

  2. Levine, G. N. et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J. Am. Coll. Cardiol. 58, e44–e122 (2011).

    PubMed  Google Scholar 

  3. Steg, P. G. et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur. Heart J. 33, 2569–2619 (2012).

    CAS  PubMed  Google Scholar 

  4. Windecker, S. et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. 35, 2541–2619 (2014).

    Article  PubMed  Google Scholar 

  5. Falk, E., Nakano, M., Bentzon, J. F., Finn, A. V. & Virmani, R. Update on acute coronary syndromes: the pathologists' view. Eur. Heart J. 34, 719–728 (2013).

    CAS  PubMed  Google Scholar 

  6. Libby, P. Mechanisms of acute coronary syndromes and their implications for therapy. N. Engl. J. Med. 368, 2004–2013 (2013).

    CAS  PubMed  Google Scholar 

  7. Davì, G. & Patrono, C. Platelet activation and atherothrombosis. N. Engl. J. Med. 357, 2482–2494 (2007).

    PubMed  Google Scholar 

  8. Angiolillo, D. J., Ueno, M. & Goto, S. Basic principles of platelet biology and clinical implications. Circ. J. 74, 597–607 (2010).

    CAS  PubMed  Google Scholar 

  9. Franchi, F. & Angiolillo, D. J. Novel antiplatelet agents in acute coronary syndrome. Nat. Rev. Cardiol. 12, 30–47 (2015).

    CAS  PubMed  Google Scholar 

  10. Brass, L. F. Thrombin and platelet activation. Chest 124, 18S–25S (2003).

    CAS  PubMed  Google Scholar 

  11. Brummel, K. E., Paradis, S. G., Butenas, S. & Mann, K. G. Thrombin functions during tissue factor-induced blood coagulation. Blood 100, 148–152 (2002).

    CAS  PubMed  Google Scholar 

  12. Coughlin, S. R. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J. Thromb. Haemost. 3, 1800–1814 (2005).

    CAS  PubMed  Google Scholar 

  13. Angiolillo, D. J., Capodanno, D. & Goto, S. Platelet thrombin receptor antagonism and atherothrombosis. Eur. Heart J. 31, 17–28 (2010).

    CAS  PubMed  Google Scholar 

  14. Yusuf, S. et al. Effects of fondaparinux on mortality and reinfarction in patients with acute ST-segment elevation myocardial infarction: the OASIS-6 randomized trial. JAMA 295, 1519–1530 (2006).

    CAS  PubMed  Google Scholar 

  15. Garcia, D. A., Baglin, T. P., Weitz, J. I. & Samama, M. M. Parenteral anticoagulants: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141, e24S–e43S (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Salter, B. S. et al. Heparin-induced thrombocytopenia: a comprehensive clinical review. J. Am. Coll. Cardiol. 67, 2519–2532 (2016).

    CAS  PubMed  Google Scholar 

  17. Boneu, B. et al. Pharmacokinetic studies of standard unfractionated heparin, and low molecular weight heparins in the rabbit. Semin. Thromb. Hemost 14, 18–27 (1988).

    CAS  PubMed  Google Scholar 

  18. Palm, M. & Mattsson, C. Pharmacokinetics of heparin and low molecular weight heparin fragment (Fragmin) in rabbits with impaired renal or metabolic clearance. Thromb. Res. 40, 129–133 (1985).

    Google Scholar 

  19. Montalescot, G. et al. Intravenous enoxaparin or unfractionated heparin in primary percutaneous coronary intervention for ST-elevation myocardial infarction: the international randomised open-label ATOLL trial. Lancet 378, 693–703 (2011).

    CAS  PubMed  Google Scholar 

  20. Arsenault, K. A. et al. Direct thrombin inhibitors in cardiovascular disease. Nat. Rev. Cardiol. 9, 402–414 (2012).

    CAS  PubMed  Google Scholar 

  21. Kastrati, A. et al. Abciximab and heparin versus bivalirudin for non-ST-elevation myocardial infarction. N. Engl. J. Med. 365, 1980–1989 (2011).

    PubMed  Google Scholar 

  22. Stone, G. W. et al. Bivalirudin for patients with acute coronary syndromes. N. Engl. J. Med. 355, 2203–2216 (2006).

    CAS  PubMed  Google Scholar 

  23. Stone, G. W. et al. Bivalirudin during primary PCI in acute myocardial infarction. N. Engl. J. Med. 358, 2218–2230 (2008).

    CAS  PubMed  Google Scholar 

  24. Mehran, R. et al. Bivalirudin in patients undergoing primary angioplasty for acute myocardial infarction (HORIZONS-AMI): 1-year results of a randomised controlled trial. Lancet 374, 1149–1159 (2009).

    PubMed  Google Scholar 

  25. Stone, G. W. et al. Heparin plus a glycoprotein IIb/IIIa inhibitor versus bivalirudin monotherapy and paclitaxel-eluting stents versus bare-metal stents in acute myocardial infarction (HORIZONS-AMI): final 3-year results from a multicentre, randomised controlled trial. Lancet 377, 2193–2204 (2011).

    CAS  PubMed  Google Scholar 

  26. Dangas, G. D. et al. Effect of switching antithrombin agents for primary angioplasty in acute myocardial infarction: the HORIZONS-SWITCH analysis. J. Am. Coll. Cardiol. 57, 2309–2316 (2011).

    CAS  PubMed  Google Scholar 

  27. Dangas, G. D. et al. Frequency and predictors of stent thrombosis after percutaneous coronary intervention in acute myocardial infarction. Circulation 123, 1745–1756 (2011).

    PubMed  Google Scholar 

  28. Koutouzis, M. et al. Unfractionated heparin administration in patients treated with bivalirudin during primary percutaneous coronary intervention is associated lower mortality and target lesion thrombosis: a report from the Swedish Coronary Angiography and Angioplasty Registry (SCAAR). Heart 97, 1484–1488 (2011).

    CAS  PubMed  Google Scholar 

  29. Steg, P. G. et al. Bivalirudin started during emergency transport for primary PCI. N. Engl. J. Med. 369, 2207–2217 (2013).

    CAS  PubMed  Google Scholar 

  30. Clemmensen, P. et al. Acute stent thrombosis after primary percutaneous coronary intervention: insights from the EUROMAX trial (European Ambulance Acute Coronary Syndrome Angiography). JACC Cardiovasc. Interv. 8, 214–220 (2015).

    PubMed  Google Scholar 

  31. Zeymer, U. et al. Bivalirudin is superior to heparins alone with bailout GP IIb/IIIa inhibitors in patients with ST-segment elevation myocardial infarction transported emergently for primary percutaneous coronary intervention: a pre-specified analysis from the EUROMAX trial. Eur. Heart J. 35, 2460–2467 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stone, G. W. et al. Bivalirudin versus heparin with or without glycoprotein IIb/IIIa inhibitors in patients with STEMI undergoing primary percutaneous coronary intervention: pooled patient-level analysis from the HORIZONS-AMI and EUROMAX trials. J. Am. Coll. Cardiol. 65, 27–38 (2015).

    CAS  PubMed  Google Scholar 

  33. Shahzad, A. et al. Unfractionated heparin versus bivalirudin in primary percutaneous coronary intervention (HEAT-PPCI): an open-label, single centre, randomised controlled trial. Lancet 384, 1849–1858 (2014).

    CAS  PubMed  Google Scholar 

  34. Han, Y. et al. Bivalirudin versus heparin with or without tirofiban during primary percutaneous coronary intervention in acute myocardial infarction: the BRIGHT randomized clinical trial. JAMA 313, 1336–1346 (2015).

    CAS  PubMed  Google Scholar 

  35. Schulz, S. et al. Prasugrel plus bivalirudin versus clopidogrel plus heparin in patients with ST-segment elevation myocardial infarction. Eur. Heart J. 35, 2285–2294 (2014).

    CAS  PubMed  Google Scholar 

  36. Valgimigli, M. et al. Bivalirudin or unfractionated heparin in acute coronary syndromes. N. Engl. J. Med. 373, 997–1009 (2015).

    CAS  PubMed  Google Scholar 

  37. Leonardi, S. et al. Bivalirudin or unfractionated heparin in patients with acute coronary syndromes managed invasively with and without ST elevation (MATRIX): randomised controlled trial. BMJ 354, i4935 (2016).

    PubMed  Google Scholar 

  38. Capodanno, D. et al. Bivalirudin versus heparin with or without glycoprotein IIb/IIIa inhibitors in patients with STEMI undergoing primary PCI: An updated meta-analysis of 10,350 patients from five randomized clinical trials. Eur. Heart J. Acute Cardiovasc. Care 5, 253–262 (2016).

    PubMed  Google Scholar 

  39. Shah, R., Rogers, K. C., Matin, K., Askari, R. & Rao, S. V. An updated comprehensive meta-analysis of bivalirudin versus heparin use in primary percutaneous coronary intervention. Am. Heart J. 171, 14–24 (2016).

    CAS  PubMed  Google Scholar 

  40. Muñiz-Lozano, A., Rollini, F., Franchi, F. & Angiolillo, D. J. Update on platelet glycoprotein IIb/IIIa inhibitors: recommendations for clinical practice. Ther. Adv. Cardiovasc. Dis. 7, 197–213 (2013).

    PubMed  Google Scholar 

  41. Stone, G. W. et al. Comparison of angioplasty with stenting, with or without abciximab, in acute myocardial infarction. N. Engl. J. Med. 346, 957–966 (2002).

    CAS  PubMed  Google Scholar 

  42. Mehilli, J. et al. Abciximab in patients with acute ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention after clopidogrel loading: a randomized double-blind trial. Circulation 119, 1933–1940 (2009).

    CAS  PubMed  Google Scholar 

  43. Antoniucci, D. et al. A randomized trial comparing primary infarct artery stenting with or without abciximab in acute myocardial infarction. J. Am. Coll. Cardiol. 42, 1879–1885 (2003).

    CAS  PubMed  Google Scholar 

  44. Van't Hof, A. W. et al. Prehospital initiation of tirofiban in patients with ST-elevation myocardial infarction undergoing primary angioplasty (On-TIME 2): a multicentre, double-blind, randomised controlled trial. Lancet 372, 537–546 (2008).

    CAS  PubMed  Google Scholar 

  45. Zeymer, U. et al. Randomized comparison of eptifibatide versus abciximab in primary percutaneous coronary intervention in patients with acute ST-segment elevation myocardial infarction: results of the EVA-AMI Trial. J. Am. Coll. Cardiol. 56, 463–469 (2010).

    CAS  PubMed  Google Scholar 

  46. Thiele, H. et al. Intracoronary compared with intravenous bolus abciximab application in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention: the randomized Leipzig immediate percutaneous coronary intervention abciximab IV versus IC in ST-elevation myocardial infarction trial. Circulation 118, 49–57 (2008).

    CAS  PubMed  Google Scholar 

  47. Stone, G. W. et al. Intracoronary abciximab and aspiration thrombectomy in patients with large anterior myocardial infarction: the INFUSE-AMI randomized trial. JAMA 307, 1817–1826 (2012).

    CAS  PubMed  Google Scholar 

  48. Valgimigli, M. et al. Prasugrel versus tirofiban bolus with or without short post-bolus infusion with or without concomitant prasugrel administration in patients with myocardial infarction undergoing coronary stenting: the FABOLUS PRO (Facilitation through Aggrastat By drOpping or shortening Infusion Line in patients with ST-segment elevation myocardial infarction compared to or on top of PRasugrel given at loading dOse) trial. JACC Cardiovasc. Interv. 5, 268–277 (2012).

    PubMed  Google Scholar 

  49. Thiele, H. et al. Intracoronary versus intravenous bolus abciximab during primary percutaneous coronary intervention in patients with acute ST-elevation myocardial infarction: a randomised trial. Lancet 379, 923–931 (2012).

    CAS  PubMed  Google Scholar 

  50. De Luca, G. et al. Early glycoprotein IIb-IIIa inhibitors in primary angioplasty-abciximab long-term results (EGYPT-ALT) cooperation: individual patient's data meta-analysis. J. Thromb. Haemost. 9, 2361–2370 (2011).

    CAS  PubMed  Google Scholar 

  51. Gershlick, A. H., Banning, A. P., Myat, A., Verheugt, F. W. & Gersh, B. J. Reperfusion therapy for STEMI: is there still a role for thrombolysis in the era of primary percutaneous coronary intervention? Lancet 382, 624–632 (2013).

    PubMed  Google Scholar 

  52. Herrmann, H. C. et al. Benefit of facilitated percutaneous coronary intervention in high-risk ST-segment elevation myocardial infarction patients presenting to nonpercutaneous coronary intervention hospitals. JACC Cardiovasc. Interv. 2, 917–924 (2009).

    PubMed  Google Scholar 

  53. Franchi, F., Rollini, F., Muñiz-Lozano, A., Cho, J. R. & Angiolillo, D. J. Cangrelor: a review on pharmacology and clinical trial development. Expert Rev. Cardiovasc. Ther. 11, 1279–1291 (2013).

    CAS  PubMed  Google Scholar 

  54. Franchi, F., Rollini, F., Park, Y. & Angiolillo, D. J. A safety evaluation of cangrelor in patients undergoing PCI. Expert. Opin. Drug Saf. 15, 275–285 (2016).

    PubMed  Google Scholar 

  55. Bhatt, D. L. et al. Effect of platelet inhibition with cangrelor during PCI on ischemic events. N. Engl. J. Med. 368, 1303–1313 (2013).

    CAS  PubMed  Google Scholar 

  56. Généreux, P. et al. Impact of intraprocedural stent thrombosis during percutaneous coronary intervention: insights from the CHAMPION PHOENIX Trial (Clinical Trial Comparing Cangrelor to Clopidogrel Standard of Care Therapy in Subjects Who Require Percutaneous Coronary Intervention). J. Am. Coll. Cardiol. 63, 619–629 (2014).

    PubMed  Google Scholar 

  57. White, H. D. et al. Outcomes with cangrelor versus clopidogrel on a background of bivalirudin: insights from the CHAMPION PHOENIX (a clinical trial comparing cangrelor to clopidogrel standard therapy in subjects who require percutaneous coronary intervention [PCI]). JACC Cardiovasc. Interv. 8, 424–433 (2015).

    PubMed  Google Scholar 

  58. Vaduganathan, M. et al. Evaluation of ischemic and bleeding risks associated with 2 parenteral antiplatelet strategies comparing cangrelor with glycoprotein IIb/IIIa inhibitors: an exploratory analysis from the CHAMPION trials. JAMA Cardiol. http://dx.doi.org/10.1001/jamacardio.2016.4556 (2016).

  59. US Food and Drug Administration. Highlights of prescribing information (cangrelor). FDA www.accessdata.fda.gov/drugsatfda_docs/label/2015/204958lbl.pdf (2016).

  60. European Medicines Agency. Summary of product characteristics (cangrelor). EMA www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003773/WC500188098.pdf (2016).

  61. Roffi, M. et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 37, 267–315 (2016).

    CAS  PubMed  Google Scholar 

  62. Angiolillo, D. J. et al. Pharmacodynamic effects of cangrelor and clopidogrel: the platelet function substudy from the cangrelor versus standard therapy to achieve optimal management of platelet inhibition (CHAMPION) trials. J. Thromb. Thrombolysis 34, 44–55 (2012).

    CAS  PubMed  Google Scholar 

  63. Rollini, F., Franchi, F. & Angiolillo, D. J. Switching P2Y12-receptor inhibitors in patients with coronary artery disease. Nat. Rev. Cardiol. 13, 11–27 (2016).

    CAS  PubMed  Google Scholar 

  64. Steinhubl, S. R. et al. Transitioning patients from cangrelor to clopidogrel: pharmacodynamic evidence of a competitive effect. Thromb. Res. 121, 527–534 (2008).

    CAS  PubMed  Google Scholar 

  65. Dovlatova, N. L., Jakubowski, J. A., Sugidachi, A. & Heptinstall, S. The reversible P2Y antagonist cangrelor influences the ability of the active metabolites of clopidogrel and prasugrel to produce irreversible inhibition of platelet function. J. Thromb. Haemost. 6, 1153–1159 (2008).

    CAS  PubMed  Google Scholar 

  66. Rollini, F. et al. Pharmacodynamic effects of cangrelor on platelet P2Y12 receptor-mediated signaling in prasugrel-treated patients. JACC Cardiovasc. Interv. 7, 426–434 (2014).

    PubMed  Google Scholar 

  67. Schneider, D. J., Agarwal, Z., Seecheran, N. & Gogo, P. Pharmacodynamic effects when clopidogrel is given before cangrelor discontinuation. J. Interv. Cardiol. 28, 415–419 (2015).

    PubMed  Google Scholar 

  68. Schneider, D. J., Seecheran, N., Raza, S. S., Keating, F. K. & Gogo, P. Pharmacodynamic effects during the transition between cangrelor and prasugrel. Coron. Artery Dis. 26, 42–48 (2015).

    PubMed  Google Scholar 

  69. Schneider, D. J., Agarwal, Z., Seecheran, N., Keating, F. K. & Gogo, P. Pharmacodynamic effects during the transition between cangrelor and ticagrelor. JACC Cardiovasc. Interv. 7, 435–442 (2014).

    PubMed  Google Scholar 

  70. Patrono, C., García Rodríguez, L. A., Landolfi, R. & Baigent, C. Low-dose aspirin for the prevention of atherothrombosis. N. Engl. J. Med. 353, 2373–2383 (2005).

    CAS  PubMed  Google Scholar 

  71. Capodanno, D. & Angiolillo, D. J. Aspirin for primary cardiovascular risk prevention and beyond in diabetes mellitus. Circulation 134, 1579–1594 (2016).

    CAS  PubMed  Google Scholar 

  72. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 2, 349–360 (1988).

  73. Campbell, C. L., Smyth, S., Montalescot, G. & Steinhubl, S. R. Aspirin dose for the prevention of cardiovascular disease: a systematic review. JAMA 297, 2018–2024 (2007).

    CAS  PubMed  Google Scholar 

  74. Mehta, S. R. et al. Dose comparisons of clopidogrel and aspirin in acute coronary syndromes. N. Engl. J. Med. 363, 930–942 (2010).

    PubMed  Google Scholar 

  75. Storey, R. F., Newby, L. J. & Heptinstall, S. Effects of P2Y 1 and P2Y 12 receptor antagonists on platelet aggregation induced by different agonists in human whole blood. Platelets 12, 443–447 (2001).

    CAS  PubMed  Google Scholar 

  76. Altman, R., Scazziota, A., Rouvier, J. & Gonzalez, C. Effects of ticlopidine or ticlopidine plus aspirin on platelet aggregation and ATP release in normal volunteers: why aspirin improves ticlopidine antiplatelet activity. Clin. Appl. Thromb. Hemost. 5, 243–246 (1999).

    CAS  PubMed  Google Scholar 

  77. Schömig, A. et al. A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary-artery stents. N. Engl. J. Med. 334, 1084–1089 (1996).

    PubMed  Google Scholar 

  78. Bertrand, M. E. et al. Randomized multicenter comparison of conventional anticoagulation versus antiplatelet therapy in unplanned and elective coronary stenting. The full anticoagulation versus aspirin and ticlopidine (FANTASTIC) study. Circulation 98, 1597–1603 (1998).

    CAS  PubMed  Google Scholar 

  79. Leon, M. B. et al. A clinical trial comparing three antithrombotic-drug regimens after coronary-artery stenting. Stent Anticoagulation Restenosis Study Investigators. N. Engl. J. Med. 339, 1665–1671 (1998).

    CAS  PubMed  Google Scholar 

  80. Urban, P. et al. Randomized evaluation of anticoagulation versus antiplatelet therapy after coronary stent implantation in high-risk patients: the multicenter aspirin and ticlopidine trial after intracoronary stenting (MATTIS). Circulation 98, 2126–2132 (1998).

    CAS  PubMed  Google Scholar 

  81. Yusuf, S. et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N. Engl. J. Med. 345, 494–502 (2001).

    CAS  PubMed  Google Scholar 

  82. Steinhubl, S. R. et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA 288, 2411–2420 (2002).

    CAS  PubMed  Google Scholar 

  83. Sabatine, M. S. et al. Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. N. Engl. J. Med. 352, 1179–1189 (2005).

    CAS  PubMed  Google Scholar 

  84. Chen, Z. M. et al. Addition of clopidogrel to aspirin in 45 852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet 366, 1607–1621 (2005).

    CAS  PubMed  Google Scholar 

  85. Wiviott, S. D. et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 357, 2001–2015 (2007).

    CAS  PubMed  Google Scholar 

  86. Wallentin, L. et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 361, 1045–1057 (2009).

    CAS  PubMed  Google Scholar 

  87. Love, B., Biller, J. & Gent, M. Adverse haematological effects of ticlopidine: prevention, recognition and management. Drug Saf. 19, 89–98 (1998).

    CAS  PubMed  Google Scholar 

  88. Bhatt, D. L. et al. Meta-analysis of randomized and registry comparisons of ticlopidine with clopidogrel after stenting. J. Am. Coll. Cardiol. 39, 9–14 (2002).

    CAS  PubMed  Google Scholar 

  89. Fan, W., Plent, S., Prats, J. & Deliargyris, E. N. Trends in P2Y12 inhibitor use in patients referred for invasive evaluation of coronary artery disease in contemporary US practice. Am. J. Cardiol. 117, 1439–1443 (2016).

    CAS  PubMed  Google Scholar 

  90. Sherwood, M. W. et al. Early clopidogrel versus prasugrel use among contemporary STEMI and NSTEMI patients in the US: insights from the National Cardiovascular Data Registry. J. Am. Heart Assoc. 3, e000849 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Bueno, H. et al. Opportunities for improvement in anti-thrombotic therapy and other strategies for the management of acute coronary syndromes: Insights from EPICOR, an international study of current practice patterns. Eur. Heart J. Acute Cardiovasc. Care 5, 3–12 (2016).

    PubMed  Google Scholar 

  92. Angiolillo, D. J. et al. Variability in individual responsiveness to clopidogrel: clinical implications, management, and future perspectives. J. Am. Coll. Cardiol. 49, 1505–1516 (2007).

    CAS  PubMed  Google Scholar 

  93. Tantry, U. S. et al. Consensus and update on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding. J. Am. Coll. Cardiol. 62, 2261–2273 (2013).

    CAS  PubMed  Google Scholar 

  94. Sugidachi, A. et al. The greater in vivo antiplatelet effects of prasugrel as compared to clopidogrel reflect more efficient generation of its active metabolite with similar antiplatelet activity to that of clopidogrel's active metabolite. J. Thromb. Haemost. 5, 1545–1551 (2007).

    CAS  PubMed  Google Scholar 

  95. Wiviott, S. D. et al. Prasugrel compared with high loading- and maintenance-dose clopidogrel in patients with planned percutaneous coronary intervention: the prasugrel in comparison to clopidogrel for inhibition of platelet activation and aggregation thrombolysis in myocardial infarction 44 trial. Circulation 116, 2923–2932 (2007).

    CAS  PubMed  Google Scholar 

  96. Montalescot, G. et al. Prasugrel compared with clopidogrel in patients undergoing percutaneous coronary intervention for ST-elevation myocardial infarction (TRITON-TIMI 38): double-blind, randomised controlled trial. Lancet 373, 723–731 (2009).

    CAS  PubMed  Google Scholar 

  97. Udell, J. A. et al. Prasugrel versus clopidogrel in patients with ST-segment elevation myocardial infarction according to timing of percutaneous coronary intervention: a TRITON-TIMI 38 subgroup analysis (Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel-Thrombolysis In Myocardial Infarction 38). JACC Cardiovasc. Interv. 7, 604–612 (2014).

    PubMed  Google Scholar 

  98. Gurbel, P. A. et al. Randomized double-blind assessment of the ONSET and OFFSET of the antiplatelet effects of ticagrelor versus clopidogrel in patients with stable coronary artery disease: the ONSET/OFFSET study. Circulation 120, 2577–2585 (2009).

    CAS  PubMed  Google Scholar 

  99. Cattaneo, M., Schulz, R. & Nylander, S. Adenosine-mediated effects of ticagrelor: evidence and potential clinical relevance. J. Am. Coll. Cardiol. 63, 2503–2509 (2014).

    CAS  PubMed  Google Scholar 

  100. Bonaca, M. P. et al. Long-term use of ticagrelor in patients with prior myocardial infarction. N. Engl. J. Med. 372, 1791–1800 (2015).

    PubMed  Google Scholar 

  101. Bonaca, M. P. et al. Long-term tolerability of ticagrelor for the secondary prevention of major adverse cardiovascular events: a secondary analysis of the PEGASUS-TIMI 54 trial. JAMA Cardiol. 1, 425–432 (2016).

    PubMed  Google Scholar 

  102. Steg, P. G. et al. Ticagrelor versus clopidogrel in patients with ST-elevation acute coronary syndromes intended for reperfusion with primary percutaneous coronary intervention: a Platelet Inhibition and Patient Outcomes (PLATO) trial subgroup analysis. Circulation 122, 2131–2141 (2010).

    PubMed  Google Scholar 

  103. Velders, M. A. et al. Safety and efficacy of ticagrelor and clopidogrel in primary percutaneous coronary intervention. Heart 102, 617–625 (2016).

    CAS  PubMed  Google Scholar 

  104. Wisler, J. W. & Becker, R. C. Oral factor Xa inhibitors for the long-term management of ACS. Nat. Rev. Cardiol. 9, 392–401 (2012).

    CAS  PubMed  Google Scholar 

  105. Brummel-Ziedins, K. et al. Thrombin generation in acute coronary syndrome and stable coronary artery disease: dependence on plasma factor composition. J. Thromb. Haemost. 6, 104–110 (2008).

    CAS  PubMed  Google Scholar 

  106. Franchi, F., Rollini, F., Park, Y. & Angiolillo, D. J. Platelet thrombin receptor antagonism with vorapaxar: pharmacology and clinical trial development. Future Cardiol. 11, 547–564 (2015).

    CAS  PubMed  Google Scholar 

  107. Tricoci, P. et al. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. N. Engl. J. Med. 366, 20–33 (2012).

    CAS  PubMed  Google Scholar 

  108. Morrow, D. A. et al. Vorapaxar in the secondary prevention of atherothrombotic events. N. Engl. J. Med. 366, 1404–1413 (2012).

    CAS  PubMed  Google Scholar 

  109. Morrow, D. A. et al. Efficacy and safety of vorapaxar in patients with prior ischemic stroke. Stroke 44, 691–698 (2013).

    CAS  PubMed  Google Scholar 

  110. Scirica, B. M. et al. Vorapaxar for secondary prevention of thrombotic events for patients with previous myocardial infarction: a prespecified subgroup analysis of the TRA 2°P-TIMI 50 trial. Lancet 380, 1317–1324 (2012).

    CAS  PubMed  Google Scholar 

  111. US Food and Drug Administration. Highlights of prescribing information (vorapaxar). FDA www.accessdata.fda.gov/drugsatfda_docs/label/2014/204886s000lbl.pdf (2016).

  112. European Medicines Agency. Summary of product characteristics (vorapaxar). EMA www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002814/WC500183329.pdf (2016).

  113. Oldgren, J. et al. New oral anticoagulants in addition to single or dual antiplatelet therapy after an acute coronary syndrome: a systematic review and meta-analysis. Eur. Heart J. 34, 1670–1680 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Mega, J. L. et al. Rivaroxaban in patients with a recent acute coronary syndrome. N. Engl. J. Med. 366, 9–19 (2012).

    CAS  PubMed  Google Scholar 

  115. Mega, J. L. et al. Rivaroxaban in patients stabilized after a ST-segment elevation myocardial infarction: results from the ATLAS ACS-2-TIMI-51 trial (Anti-Xa therapy to lower cardiovascular events in addition to standard therapy in subjects with acute coronary syndrome-thrombolysis in myocardial infarction-51). J. Am. Coll. Cardiol. 61, 1853–1859 (2013).

    CAS  PubMed  Google Scholar 

  116. Povsic, T. J. et al. A randomized trial to compare the safety of rivaroxaban versus aspirin in addition to either clopidogrel or ticagrelor in acute coronary syndrome: the design of the GEMINI-ACS-1 phase II study. Am. Heart J. 174, 120–128 (2016).

    CAS  PubMed  Google Scholar 

  117. European Medicines Agency. Summary of product characteristics (rivaroxaban). EMA www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000944/WC500057108.pdf (2016).

  118. Gibson, C. M. et al. Prevention of bleeding in patients with atrial fibrillation undergoing PCI. N. Engl. J. Med. 375, 1131–1141 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Angiolillo, D. J. et al. Antithrombotic therapy in patients with atrial fibrillation undergoing percutaneous coronary intervention: a North American perspective — 2016 update. Circ. Cardiovasc. Interv. 9, e004395 (2016).

    CAS  PubMed  Google Scholar 

  120. Rollini, F. & Franchi, F. The conundrum of platelet P2Y12 inhibition in ST-segment elevation myocardial infarction. Circ. J. 80, 2429–2431 (2016).

    CAS  PubMed  Google Scholar 

  121. Alexopoulos, D. et al. Randomized assessment of ticagrelor versus prasugrel antiplatelet effects in patients with ST-segment-elevation myocardial infarction. Circ. Cardiovasc. Interv. 5, 797–804 (2012).

    CAS  PubMed  Google Scholar 

  122. Parodi, G. et al. Comparison of prasugrel and ticagrelor loading doses in ST-segment elevation myocardial infarction patients: RAPID (Rapid Activity of Platelet Inhibitor Drugs) primary PCI study. J. Am. Coll. Cardiol. 61, 1601–1606 (2013).

    CAS  PubMed  Google Scholar 

  123. Franchi, F. et al. Impact of escalating loading dose regimens of ticagrelor in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of a prospective randomized pharmacokinetic and pharmacodynamic investigation. JACC Cardiovasc. Interv. 8, 1457–1467 (2015).

    PubMed  Google Scholar 

  124. Alexopoulos, D. et al. Double versus standard loading dose of ticagrelor: onset of antiplatelet action in patients with STEMI undergoing primary PCI. J. Am. Coll. Cardiol. 62, 940–941 (2013).

    PubMed  Google Scholar 

  125. Alexopoulos, D. et al. Onset of antiplatelet action with high (100 mg) versus standard (60 mg) loading dose of prasugrel in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: pharmacodynamic study. Circ. Cardiovasc. Interv. 7, 233–239 (2014).

    CAS  PubMed  Google Scholar 

  126. Parodi, G. et al. Comparison of double (360 mg) ticagrelor loading dose with standard (60 mg) prasugrel loading dose in ST-elevation myocardial infarction patients: the Rapid Activity of Platelet Inhibitor Drugs (RAPID) primary PCI 2 study. Am. Heart J. 167, 909–914 (2014).

    CAS  PubMed  Google Scholar 

  127. Rollini, F. et al. Crushed prasugrel tablets in patients with STEMI undergoing primary percutaneous coronary intervention: the CRUSH study. J. Am. Coll. Cardiol. 67, 1994–2004 (2016).

    CAS  PubMed  Google Scholar 

  128. Parodi, G. et al. Ticagrelor crushed tablets administration in STEMI patients: the MOJITO study. J. Am. Coll. Cardiol. 65, 511–512 (2015).

    PubMed  Google Scholar 

  129. Stone, G. W. et al. Platelet reactivity and clinical outcomes after coronary artery implantation of drug-eluting stents (ADAPT-DES): a prospective multicenter registry study. Lancet 382, 614–623 (2013).

    PubMed  Google Scholar 

  130. Capodanno, D. & Angiolillo, D. J. Pretreatment with antiplatelet drugs in invasively managed patients with coronary artery disease in the contemporary era: review of the evidence and practice guidelines. Circ. Cardiovasc. Interv. 8, e002301 (2015).

    PubMed  Google Scholar 

  131. Bellemain-Appaix, A. et al. Association of clopidogrel pretreatment with mortality, cardiovascular events, and major bleeding among patients undergoing percutaneous coronary intervention: a systematic review and meta-analysis. JAMA 308, 2507–2516 (2012).

    CAS  PubMed  Google Scholar 

  132. Montalescot, G. et al. Prehospital ticagrelor in ST-segment elevation myocardial infarction. N. Engl. J. Med. 371, 1016–1027 (2014).

    PubMed  Google Scholar 

  133. Silvain, J. et al. P2Y12 receptor inhibition and effect of morphine in patients undergoing primary PCI for ST-segment elevation myocardial infarction. The PRIVATE-ATLANTIC study. Thromb. Haemost. 116, 369–378 (2016).

    PubMed  Google Scholar 

  134. Montalescot, G. et al. Effect of pre-hospital ticagrelor during the first 24 h after primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction: the ATLANTIC-H24 analysis. JACC Cardiovasc. Interv. 9, 646–656 (2016).

    PubMed  Google Scholar 

  135. Parodi, G. et al. Morphine is associated with a delayed activity of oral antiplatelet agents in patients with ST-elevation acute myocardial infarction undergoing primary percutaneous coronary intervention. Circ. Cardiovasc. Interv. 8, e001593 (2014).

    PubMed  Google Scholar 

  136. Silvain, J. et al. Efficacy and safety of enoxaparin versus unfractionated heparin during percutaneous coronary intervention: systematic review and meta-analysis. BMJ 344, e553 (2012).

    PubMed  PubMed Central  Google Scholar 

  137. Alexander, K. P. et al. Excess dosing of antiplatelet and antithrombin agents in the treatment of non-ST-segment elevation acute coronary syndromes. JAMA 294, 3108–3116 (2005).

    CAS  PubMed  Google Scholar 

  138. Angiolillo, D. J. et al. Impact of cangrelor overdosing on bleeding complications in patients undergoing percutaneous coronary intervention: insights from the CHAMPION trials. J. Thromb. Thrombolysis 40, 317–322 (2015).

    CAS  PubMed  Google Scholar 

  139. Rollini, F. et al. A head-to-head pharmacodynamic comparison of prasugrel versus ticagrelor after switching from clopidogrel in patients with coronary artery disease: results of a prospective randomized study. Eur. Heart J. 37, 2722–2730 (2016).

    CAS  PubMed  Google Scholar 

  140. Franchi, F. et al. Pharmacodynamic comparison of prasugrel versus ticagrelor in patients with type 2 diabetes mellitus and coronary artery disease: the OPTIMUS (Optimizing Antiplatelet Therapy in Diabetes Mellitus)-4 study. Circulation 134, 780–792 (2016).

    CAS  PubMed  Google Scholar 

  141. Rafique, A. M. et al. Optimal P2Y12 inhibitor in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a network meta-analysis. JACC Cardiovasc. Interv. 9, 1036–1046 (2016).

    PubMed  Google Scholar 

  142. Cuisset, T., Capodanno, D. & Wijns, W. Optimal P2Y12 inhibitor for primary percutaneous coronary intervention in ST-segment elevation myocardial infarction: network meta-analysis in the data-free zone: do you believe in magic? JACC Cardiovasc. Interv. 9, 1047–1050 (2016).

    PubMed  Google Scholar 

  143. Motovska, Z. et al. Prasugrel versus ticagrelor in patients with acute myocardial infarction treated with primary percutaneous coronary intervention: multicenter randomized PRAGUE-18 study. Circulation 134, 1603–1612 (2016).

    CAS  PubMed  Google Scholar 

  144. Schulz, S. et al. Randomized comparison of ticagrelor versus prasugrel in patients with acute coronary syndrome and planned invasive strategy — design and rationale of the iNtracoronary Stenting and Antithrombotic Regimen: Rapid Early Action for Coronary Treatment (ISAR-REACT) 5 trial. J. Cardiovasc. Transl. Res. 7, 91–100 (2014).

    PubMed  Google Scholar 

  145. Gross, L. & Sibbing, D. Current role of platelet function testing in percutaneous coronary intervention and coronary artery bypass grafting. Interv. Cardiol. Clin. 6, 151–166 (2017).

    PubMed  Google Scholar 

  146. Franchi, F. et al. Platelet function testing in contemporary clinical and interventional practice. Curr. Treat. Options Cardiovasc. Med. 16, 300 (2014).

    PubMed  Google Scholar 

  147. Bergmeijer, T. O. et al. CYP2C19 genotype-guided antiplatelet therapy in ST-segment elevation myocardial infarction patients — rationale and design of the patient outcome after primary PCI (POPular) genetics study. Am. Heart J. 168, 16–22.e1 (2014).

    CAS  PubMed  Google Scholar 

  148. Mixon, T. A. et al. Retrospective description and analysis of consecutive catheterization laboratory ST-segment elevation myocardial infarction activations with proposal, rationale, and use of a new classification scheme. Circ. Cardiovasc. Qual. Outcomes 5, 62–69 (2012).

    PubMed  Google Scholar 

  149. McDaniel, M. Pre-hospital ticagrelor in ST-segment elevation myocardial infarction? Probably not. JACC Cardiovasc. Interv. 9, 657–659 (2016).

    PubMed  Google Scholar 

  150. Park, Y., Franchi, F., Rollini, F. & Angiolillo, D. J. Dual antiplatelet therapy after coronary stenting. Expert Opin. Pharmacother. 17, 1775–1787 (2016).

    CAS  PubMed  Google Scholar 

  151. Levine, G. N. et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 68, 1082–1115 (2016).

    PubMed  Google Scholar 

  152. Sardella, G., Calcagno, S. & Mancone, M. Different prasugrel administration in STEMI patients: go faster and no fear to crush! J. Am. Coll. Cardiol. 67, 2005–2007 (2016).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.F. and D.J.A. researched data for the article, discussed its content, and wrote the manuscript. F.R. discussed the content of the manuscript and reviewed/edited it before submission.

Corresponding author

Correspondence to Dominick J. Angiolillo.

Ethics declarations

Competing interests

D.J.A. has received payment as an individual for consulting fees or honoraria from Abbott Vascular, Amgen, AstraZeneca, Bayer, Daiichi-Sankyo, Eli Lilly, Merck, Pfizer, PLx Pharma, Sanofi, and The Medicines Company; and for participation in review activities from CeloNova, Johnson & Johnson, and St. Jude Medical. Institutional payments for grants have been received from AstraZeneca, CSL Behring, Daiichi-Sankyo, Eli Lilly, GlaxoSmithKline, Janssen Pharmaceuticals, Gilead, Novartis, Osprey Medical, and The Medicines Company. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franchi, F., Rollini, F. & Angiolillo, D. Antithrombotic therapy for patients with STEMI undergoing primary PCI. Nat Rev Cardiol 14, 361–379 (2017). https://doi.org/10.1038/nrcardio.2017.18

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing