Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Heart in space: effect of the extraterrestrial environment on the cardiovascular system

Key Points

  • Spaceflight removes the normal loading effects of gravity on the cardiovascular system and initiates 'ageing-like' deconditioning, including loss of physical fitness, arterial stiffening, and development of insulin resistance

  • Exposure to cosmic radiation during space travel might induce late cardiovascular disease

  • Whether a threshold radiation dose exists for adverse cardiovascular effects is still uncertain

  • Countermeasures to reduce the risk of spaceflight-associated, radiation-induced cardiovascular disease include maintenance of physical fitness, dietary and nutraceutical interventions, and radiation shielding

Abstract

National space agencies and private corporations aim at an extended presence of humans in space in the medium to long term. Together with currently suboptimal technology, microgravity and cosmic rays raise health concerns about deep-space exploration missions. Both of these physical factors affect the cardiovascular system, whose gravity-dependence is pronounced. Heart and vascular function are, therefore, susceptible to substantial changes in weightlessness. The altered cardiovascular function in space causes physiological problems in the postflight period. A compromised cardiovascular system can be excessively vulnerable to space radiation, synergistically resulting in increased damage. The space radiation dose is significantly lower than in patients undergoing radiotherapy, in whom cardiac damage is well-documented following cancer therapy in the thoracic region. Nevertheless, epidemiological findings suggest an increased risk of late cardiovascular disease even with low doses of radiation. Moreover, the peculiar biological effectiveness of heavy ions in cosmic rays might increase this risk substantially. However, whether radiation-induced cardiovascular effects have a threshold at low doses is still unclear. The main countermeasures to mitigate the effect of the space environment on cardiac function are physical exercise, antioxidants, nutraceuticals, and radiation shielding.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Carotid artery before and after spaceflight.
Figure 2: Flow-mediated dilatation in the brachial artery.
Figure 3: Excess relative risk of cardiovascular disease after radiation exposure.
Figure 4: Pathophysiological mechanisms potentially involved in radiation-induced cardiovascular disease.

References

  1. International Space Exploration Coordination Group (ISECG). The global exploration roadmap. (ISECG, 2013).

  2. Cucinotta, F. A. & Durante, M. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol. 7, 431–435 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Hughson, R. L. Recent findings in cardiovascular physiology with space travel. Respir. Physiol. Neurobiol. 169, S38–S41 (2009).

    Article  PubMed  Google Scholar 

  4. Benjamin, E. J. et al. Heart disease and stroke statistics — 2017 update: a report from the American heart association. Circulation 135, e146–e603 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Darby, S. C. et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N. Engl. J. Med. 368, 987–998 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Tapio, S. Pathology and biology of radiation-induced cardiac disease. J. Radiat. Res. 57, 439–448 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Després, J. P. Physical activity, sedentary behaviours, and cardiovascular health: when will cardiorespiratory fitness become a vital sign? Can. J. Cardiol. 32, 505–513 (2016).

    Article  PubMed  Google Scholar 

  8. Kozlovskaya, I. B. et al. Russian countermeasure systems for adverse effects of microgravity on long-duration ISS flights. Aerosp. Med. Hum. Perform. 86, A24–A31 (2015).

    Article  PubMed  Google Scholar 

  9. Petersen, N. et al. Exercise in space: the European Space Agency approach to in-flight exercise countermeasures for long-duration missions on ISS. Extrem. Physiol. Med. 5, 9 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fraser, K. S., Greaves, D. K., Shoemaker, J. K., Blaber, A. P. & Hughson, R. L. Heart rate and daily physical activity with long-duration habitation of the International Space Station. Aviat. Space Environ. Med. 83, 577–584 (2012).

    Article  PubMed  Google Scholar 

  11. Owen, N., Healy, G. N., Matthews, C. E. & Dunstan, D. W. Too much sitting: the population health science of sedentary behavior. Exerc. Sport Sci. Rev. 38, 105–113 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Eckel, R. H. et al. 2013 AHA/ACC Guideline on lifestyle management to reduce cardiovascular risk. Circulation 129, S76–S99 (2014).

    Article  PubMed  Google Scholar 

  13. Stein, T. P. Weight, muscle and bone loss during space flight: another perspective. Eur. J. Appl. Physiol. 113, 2171–2181 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Smith, S. M., Zwart, S. R., Block, G., Rice, B. L. & Davis-Street, J. E. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J. Nutr. 135, 437–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Hughson, R. L. et al. Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. Am. J. Physiol. Heart Circ. Physiol. 310, H628–H638 (2016).

    Article  PubMed  Google Scholar 

  16. Hargens, A. R. & Richardson, S. Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respir. Physiol. Neurobiol. 169, S30–S33 (2009).

    Article  PubMed  Google Scholar 

  17. Eckberg, D. L. et al. Human vagal baroreflex mechanisms in space. J. Physiol. 588, 1129–1138 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hughson, R. L. et al. Cardiovascular regulation during long-duration spaceflights to the International Space Station. J. Appl. Physiol. 112, 719–727 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Norsk, P. et al. Vasorelaxation in Space. Hypertension 47, 69–73 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Blomqvist, C. G. & Stone, H. L. in Handbook of Physiology. The Cardiovascular System. Peripheral Circulation and Organ Blood Flow (eds Shepherd, J. T., Abboud, F. M. & Geiger, S. R.) 1025–1063 (American Physiological Society, 1983).

    Google Scholar 

  21. Lavie, C. J. et al. Exercise and the cardiovascular system: clinical science and cardiovascular outcomes. Circ. Res. 117, 207–219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ade, C. J. et al. Prediction of Lunar- and Martian-based intra- and site-to-site task performance. Aerosp. Med. Hum. Perform. 87, 367–374 (2016).

    Article  PubMed  Google Scholar 

  23. Durante, M. & Cucinotta, F. A. Physical basis of radiation protection in space travel. Rev. Mod. Phys. 83, 1245–1281 (2011).

    Article  CAS  Google Scholar 

  24. Zeitlin, C. et al. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science 340, 1080–1084 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Kirsch, K. A., Baartz, F. J., Gunga, H. C. & Röcker, L. Fluid shifts into and out of superficial tissues under microgravity and terrestrial conditions. Clin. Investig. 71, 687–689 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Buckey, J. C. Jr et al. Central venous pressure in space. J. Appl. Physiol. 81, 19–25 (1996).

    Article  PubMed  Google Scholar 

  27. Leach, C. S. et al. Regulation of body fluid compartments during short-term spaceflight. J. Appl. Physiol. 81, 105–116 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Stein, T. P. & Gaprindashvili, T. Spaceflight and protein metabolism, with special reference to humans. Am. J. Clin. Nutr. 60, 806S–819S (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Gharib, C. & Hughson, R. L. in Advances in Space Biology and Medicine Vol. 2 (ed. Bonting, S. L. ) 113–130 (JAI Press Inc., 1991).

    Google Scholar 

  30. Drummer, C., Gerzer, R., Baisch, F. & Heer, M. Body fluid regulation in μ-gravity differs from that on Earth: an overview. Pflugers Arch. 441, R66–R72 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Norsk, P. et al. Renal and endocrine responses in humans to isotonic saline infusion during microgravity. J. Appl. Physiol. 78, 2253–2259 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Alfrey, C. P., Udden, M. M., Leach-Huntoon, C., Driscoll, T. & Pickett, M. H. Control of red blood cell mass in spaceflight. J. Appl. Physiol. 81, 98–104 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Alfrey, C. P., Udden, M. M., Huntoon, C. L. & Driscoll, T. Destruction of newly released red blood cells in space flight. Med. Sci. Sports Exerc. 28, S42–S44 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Rizzo, A. M. et al. Effects of long-term space flight on erythrocytes and oxidative stress of rodents. PLoS ONE 7, e32361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Norsk, P., Asmar, A., Damgaard, M. & Christensen, N. J. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J. Physiol. 593, 573–584 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shaldon, S. & Vienken, J. Beyond the current paradigm: recent advances in the understanding of sodium handling. Semin. Dial. 22, 253–255 (2009).

    Article  Google Scholar 

  37. Rodan, A. R., Cheng, C. J. & Huang, C. L. Recent advances in distal tubular potassium handling. Am. J. Physiol. Renal Physiol. 300, F821–F827 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fritsch-Yelle, J. M., Charles, J. B., Jones, M. M., Beightol, L. A. & Eckberg, D. L. Spaceflight alters autonomic regulation of arterial pressure in humans. J. Appl. Physiol. 77, 1776–1783 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Ertl, A. C. et al. Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space. J. Physiol. 538, 321–329 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arbeille, P. et al. Adaptation of the left heart, cerebral and femoral arteries, and jugular and femoral veins during short- and long-term head-down tilt and spaceflights. Eur. J. Appl. Physiol. 86, 157–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Gaffney, F. A. et al. Cardiovascular deconditioning produced by 20 hours of bedrest with head-down tilt (−5°) in middle-aged healthy men. Am. J. Cardiol. 56, 634–638 (1985).

    Article  CAS  PubMed  Google Scholar 

  42. Meck, J. V. et al. Mechanisms of postspaceflight orthostatic hypotension: low β1-adrenergic receptor responses before flight and central autonomic dysregulation postflight. Am. J. Physiol. Heart Circ. Physiol. 286, H1486–H1495 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Meck, J. V., Reyes, C. J., Perez, S., Goldberger, A. L. & Ziegler, M. G. Marked exacerbation of orthostatic intolerance after long-versus short-duration spaceflight in veteran astronauts. Psychosom. Med. 63, 865–873 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Zuj, K. A. et al. Impaired cerebrovascular autoregulation and reduced CO2 reactivity after long duration spaceflight. Am. J. Physiol. Heart Circ. Physiol. 302, H2592–H2598 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Prisk, G. K. et al. Pulmonary diffusing capacity, capillary blood volume, and cardiac output during sustained microgravity. J. Appl. Physiol. 75, 15–26 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Norsk, P. & Christensen, N. J. The paradox of systemic vasodilatation and sympathetic nervous stimulation in space. Respir. Physiol. Neurobiol. 169, S26–S29 (2009).

    Article  PubMed  Google Scholar 

  47. Dorfman, T. A. et al. Cardiac atrophy in women following bed rest. J. Appl. Physiol. 103, 8–16 (2007).

    Article  PubMed  Google Scholar 

  48. Perhonen, M. A. et al. Cardiac atrophy after bed rest and spaceflight. J. Appl. Physiol. 91, 645–653 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Carrick-Ranson, G., Hastings, J. L., Bhella, P. S., Shibata, S. & Levine, B. D. The effect of exercise training on left ventricular relaxation and diastolic suction at rest and during orthostatic stress after bed rest. Exp. Physiol. 98, 501–513 (2013).

    Article  PubMed  Google Scholar 

  50. Dorfman, T. A. et al. Diastolic suction is impaired by bed rest: MRI tagging studies of diastolic untwisting. J. Appl. Physiol. 104, 1037–1044 (2008).

    Article  PubMed  Google Scholar 

  51. Martin, D. S., South, D. A., Wood, M. L., Bungo, M. W. & Meck, J. V. Comparison of echocardiographic changes after short- and long-duration spaceflight. Aviat. Space Environ. Med. 73, 532–536 (2002).

    PubMed  Google Scholar 

  52. Abdullah, S. M. et al. Effects of prolonged space flight on cardiac structure and function [abstract]. Circulation 128, A18672 (2013).

    Google Scholar 

  53. Watenpaugh, D. E. & Hargens, A. R. in Handbook of Physiology. Environmental Physiology (eds Fregley, M. J. & Blatteis, C M.) 631–674 (Oxford Univ. Press, 1996).

    Google Scholar 

  54. Levine, B. D. et al. Maximal exercise performance after adaptation to microgravity. J. Appl. Physiol. 81, 686–694 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Rummel, J. A., Sawin, C. F. & Michel, E. L. in Biomedical Results of Apollo (eds Johnston, R. S., Dietlein, L. F. & Berry, C. A.) 265–275 (National Aeronautics and Space Administration, 1975).

    Google Scholar 

  56. Trappe, T. et al. Cardiorespiratory responses to physical work during and following 17 days of bed rest and spaceflight. J. Appl. Physiol. 100, 951–957 (2006).

    Article  PubMed  Google Scholar 

  57. Fitts, R. H. et al. Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres. J. Physiol. 588, 3567–3592 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Trappe, S. et al. Exercise in space: human skeletal muscle after 6 months aboard the International Space Station. J. Appl. Physiol. 106, 1159–1168 (2009).

    Article  PubMed  Google Scholar 

  59. Moore, A. D., Lynn, P. A. & Feiveson, A. H. The first 10 years of aerobic exercise responses to long-duration ISS flights. Aerosp. Med. Hum. Perform. 86, A78–A86 (2015).

    Article  PubMed  Google Scholar 

  60. Moore, A. D. et al. Peak exercise oxygen uptake during and following long-duration spaceflight. J. Appl. Physiol. 117, 231–238 (2014).

    Article  PubMed  Google Scholar 

  61. Lorenz, M. W., Markus, H. S., Bots, M. L., Rosvall, M. & Sitzer, M. Prediction of clinical cardiovascular events with carotid intima-media thickness. Circulation 115, 459 (2007).

    Article  PubMed  Google Scholar 

  62. Arbeille, P., Achaibou, F., Fomina, G., Pottier, J. M. & Porcher, M. Regional blood flow in microgravity: adaptation and deconditioning. Med. Sci. Sports Exerc. 28, S70–S79 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Herault, S. et al. Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets). EJAP 81, 384–390 (2000).

    CAS  Google Scholar 

  64. Wilkerson, M. K., Muller-Delp, J., Colleran, P. N. & Delp, M. D. Effects of hindlimb unloading on rat cerebral, splenic, and mesenteric resistance artery morphology. J. Appl. Physiol. 87, 2115–2121 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, L.-F. Vascular adaptation to microgravity: what have we learned? J. Appl. Physiol. 91, 2415–2430 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Arbeille, P., Provost, R. & Zuj, K. Carotid and femoral artery intima-media thickness during 6 months of spaceflight. Aerosp. Med. Hum. Perform. 87, 449–453 (2016).

    Article  PubMed  Google Scholar 

  67. Baevsky, R. M. et al. Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station. J. Appl. Physiol. 103, 156–161 (2007).

    Article  PubMed  Google Scholar 

  68. Arbeille, P., Provost, R., Vincent, N. & Aubert, A. Adaptation of the main peripheral artery and vein to long term confinement (MARS 500). PLoS ONE 9, e83063 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Wang, G., Jacquet, L., Karamariti, E. & Xu, Q. Origin and differentiation of vascular smooth muscle cells. J. Physiol. 593, 3013–3030 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Avolio, A. et al. Regulation of arterial stiffness: cellular, molecular and neurogenic mechanisms. Artery Res. 5, 122–127 (2011).

    Article  Google Scholar 

  71. Leach, C. S., Johnson, P. C. & Cintron, N. M. The endocrine system in space flight. Acta Astronaut. 17, 161–166 (1988).

    Article  CAS  PubMed  Google Scholar 

  72. Zieman, S. J., Melenovsky, V. & Kass, D. A. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler. Thromb. Vasc. Biol. 25, 932–943 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Tuday, E. C., Nyhan, D., Shoukas, A. A. & Berkowitz, D. E. Simulated microgravity-induced aortic remodeling. J. Appl. Physiol. 106, 2002–2008 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang, R. et al. Blockade of AT1 receptor partially restores vasoreactivity, NOS expression, and superoxide levels in cerebral and carotid arteries of hindlimb unweighting rats. J. Appl. Physiol. 106, 251–258 (2009).

    Article  PubMed  Google Scholar 

  75. Taylor, C. R. et al. Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure. FASEB J. 27, 2282–2292 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sofronova, S. I. et al. Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice. J. Appl. Physiol. 118, 830–838 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Seals, D. R. Edward, F. Adolph Distinguished Lecture: the remarkable anti-aging effects of aerobic exercise on systemic arteries. J. Appl. Physiol. 117, 425–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shi, Y. & Vanhoutte, P. M. Macro- and microvascular endothelial dysfunction in diabetes. J. Diabetes. 9, 434–449 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Bonnin, P. et al. Enhanced flow-dependent vasodilatation after bed rest, a possible mechanism for orthostatic intolerance in humans. Eur. J. Appl. Physiol. 85, 420–426 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Bleeker, M. W. P. et al. Vascular adaptation to deconditioning and the effect of an exercise countermeasure: results of the Berlin Bed Rest study. J. Appl. Physiol. 99, 1293–1300 (2005).

    Article  PubMed  Google Scholar 

  81. Platts, S. H. et al. Cardiovascular adaptations to long-duration head-down bed rest. Aviat. Space Environ. Med. 80, A29–A36 (2009).

    Article  PubMed  Google Scholar 

  82. van Duijnhoven, N. T. L. et al. Impact of bed rest on conduit artery remodeling: effect of exercise countermeasures. Hypertension 56, 240–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. van Duijnhoven, N. T. L. et al. Resistive exercise versus resistive vibration exercise to counteract vascular adaptations to bed rest. J. Appl. Physiol. 108, 28–33 (2010).

    Article  PubMed  Google Scholar 

  84. Demiot, C. et al. WISE 2005: chronic bed rest impairs microcirculatory endothelium in women. Am. J. Physiol. Heart Circ. Physiol. 293, H3159–H3164 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, R. et al. Increased vascular cell adhesion molecule-1 was associated with impaired endothelium-dependent relaxation of cerebral and carotid arteries in simulated microgravity rats. J. Physiol. Sci. 58, 67–73 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Soucy, K. et al. Single exposure to radiation produces early anti-angiogenic effects in mouse aorta. Radiat. Environ. Biophys. 49, 397–404 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Ghosh, P. et al. Effects of high-LET radiation exposure and hindlimb unloading on skeletal muscle resistance artery vasomotor properties and cancellous bone microarchitecture in mice. Radiat. Res. 185, 257–266 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Soucy, K. G. et al. Dietary inhibition of xanthine oxidase attenuates radiation-induced endothelial dysfunction in rat aorta. J. Appl. Physiol. 108, 1250–1258 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Delp, M. D., Charvat, J. M., Limoli, C. L., Globus, R. K. & Ghosh, P. Apollo lunar astronauts show higher cardiovascular disease mortality: possible deep space radiation effects on the vascular endothelium. Sci. Rep. 6, 29901 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Darby, S. C. et al. Radiation-related heart disease: current knowledge and future prospects. Int. J. Radiat. Oncol. Biol. Phys. 76, 656–665 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cutter, D. J. et al. Risk for valvular heart disease after treatment for Hodgkin lymphoma. J. Natl Cancer Inst. 107, 1–9 (2015).

    Article  CAS  Google Scholar 

  92. Aleman, B. M. P. et al. Cardiovascular disease after cancer therapy. Eur. J. Cancer Suppl. 12, 18–28 (2014).

    Article  Google Scholar 

  93. Cuomo, J. R., Sharma, G. K., Conger, P. D. & Weintraub, N. L. Novel concepts in radiation-induced cardiovascular disease. World J. Cardiol. 8, 504–519 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Boerma, M. et al. Space radiation and cardiovascular disease risk. World J. Cardiol. 7, 882–888 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Little, M. P. Radiation and circulatory disease. Mutat. Res. 770, 299–318 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  96. Preston, D. L., Shimizu, Y., Pierce, D. A., Suyama, A. & Mabuchi, K. Studies of mortality of atomic bomb survivors. Report 13: solid cancer and noncancer disease mortality: 1950–1997. Radiat. Res. 160, 381–407 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Shimizu, Y. et al. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003. BMJ 340, b5349 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Azizova, T. V. et al. Cardiovascular diseases in the cohort of workers first employed at Mayak PA in 1948–1958. Radiat. Res. 174, 155–168 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Azizova, T. V., Grigorieva, E. S., Hunter, N., Pikulina, M. V. & Moseeva, M. B. Risk of mortality from circulatory diseases in Mayak workers cohort following occupational radiation exposure. J. Radiol. Prot. 35, 517–538 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Tran, V., Zablotska, L. B., Brenner, A. V. & Little, M. P. Radiation-associated circulatory disease mortality in a pooled analysis of 77,275 patients from the Massachusetts and Canadian tuberculosis fluoroscopy cohorts. Sci. Rep. 7, 44147 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Little, M. P. A review of non-cancer effects, especially circulatory and ocular diseases. Radiat. Environ. Biophys. 52, 435–449 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kashcheev, V. V. et al. Radiation risk of cardiovascular diseases in the cohort of Russian emergency workers of the Chernobyl accident. Health Phys. 113, 23–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Cucinotta, F. A., Kim, M.-H. Y., Chappell, L. J. & Huff, J. L. How safe is safe enough? Radiation risk for a human mission to Mars. PLoS ONE 8, e74988 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Durante, M. & Cucinotta, F. A. Heavy ion carcinogenesis and human space exploration. Nat. Rev. Cancer. 8, 465–472 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Cucinotta, F. A., Hamada, N. & Little, M. P. No evidence for an increase in circulatory disease mortality in astronauts following space radiation exposures. Life Sci. Space Res. 10, 53–56 (2016).

    Article  Google Scholar 

  106. Ade, C. J., Broxterman, R. V., Charvat, J. M. & Barstow, T. J. Incidence rate of cardiovascular disease end points in the National Aeronautics and Space Administration astronaut corps. J. Am. Heart. Assoc. 6, e005564 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yang, V. V., Stearner, S. P. & Tyler, S. A. Radiation-induced changes in the fine structure of the heart: comparison of fission neutrons and 60Co gamma rays in the mouse. Radiat. Res. 67, 344–360 (1976).

    Article  CAS  PubMed  Google Scholar 

  108. Yang, V. V., Stearner, S. P. & Ainsworth, E. J. Late ultrastructural changes in the mouse coronary arteries and aorta after fission neutron or 60Co gamma irradiation. Radiat. Res. 74, 436–456 (1978).

    Article  CAS  PubMed  Google Scholar 

  109. Stearner, S. P., Yang, V. V. & Devine, R. L. Cardiac injury in the aged mouse: comparative ultrastructural effects of fission spectrum neutrons and gamma rays. Radiat. Res. 78, 429–447 (1979).

    Article  CAS  PubMed  Google Scholar 

  110. Grabham, P., Hu, B., Sharma, P. & Geard, C. Effects of ionizing radiation on three-dimensional human vessel models: differential effects according to radiation quality and cellular development. Radiat. Res. 175, 21–28 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Grabham, P., Bigelow, A. & Geard, C. DNA damage foci formation and decline in two-dimensional monolayers and in three-dimensional human vessel models: differential effects according to radiation quality. Int. J. Radiat. Biol. 88, 493–500 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Grabham, P., Sharma, P., Bigelow, A. & Geard, C. Two distinct types of the inhibition of vasculogenesis by different species of charged particles. Vasc. Cell 5, 16 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Sanzari, J. K. et al. Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model. Life Sci. Space Res. 6, 21–28 (2015).

    Article  Google Scholar 

  114. Yan, X. et al. Cardiovascular risks associated with low dose ionizing particle radiation. PLoS ONE 9, e110269 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  115. Coleman, M. A. et al. Low-dose radiation affects cardiac physiology: gene networks and molecular signaling in cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 309, H1947–H1963 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Koturbash, I. et al. Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart. Mutat. Res. 787, 43–53 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Impey, S. et al. Proton irradiation induces persistent and tissue-specific DNA methylation changes in the left ventricle and hippocampus. BMC Genomics. 17, 273 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  118. Kundel, H. L. The effect of high-energy proton irradiation on the cardiovascular system of the rhesus monkey. Radiat. Res. 28, 529–537 (1966).

    Article  CAS  PubMed  Google Scholar 

  119. Helm, A., Lee, R., Durante, M. & Ritter, S. The influence of C-ions and X-rays on human umbilical vein endothelial cells. Front. Oncol. 6, 5 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Beck, M. et al. Modulation of gene expression in endothelial cells in response to high LET nickel ion irradiation. Int. J. Mol. Med. 34, 1124–1132 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Takahashi, Y. et al. Heavy ion irradiation inhibits in vitro angiogenesis even at sublethal dose. Cancer Res. 63, 4253–4257 (2003).

    CAS  PubMed  Google Scholar 

  122. Gridley, D. S., Obenaus, A., Bateman, T. A. & Pecaut, M. J. Long-term changes in rat hematopoietic and other physiological systems after high-energy iron ion irradiation. Int. J. Radiat. Biol. 84, 549–559 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Soucy, K. G. et al. HZE 56Fe-ion irradiation induces endothelial dysfunction in rat aorta: role of xanthine oxidase. 176, 474–485 (2011).

  124. Yang, V. V. & Ainsworth, E. J. Late effects of heavy charged particles on the fine structure of the mouse coronary artery. Radiat. Res. 91, 135–144 (1982).

    Article  CAS  PubMed  Google Scholar 

  125. Yu, T. et al. Iron-ion radiation accelerates atherosclerosis in apolipoprotein E-deficient mice. Radiat. Res. 175, 766–773 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Kiyohara, H. et al. Radiation-induced ICAM-1 expression via TGF-β1 pathway on human umbilical vein endothelial cells; comparison between X-ray and carbon-ion beam irradiation. J. Radiat. Res. 52, 287–292 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Tungjai, M., Whorton, E. B. & Rithidech, K. N. Persistence of apoptosis and inflammatory responses in the heart and bone marrow of mice following whole-body exposure to 28Silicon (28Si) ions. Radiat. Environ. Biophys. 52, 339–350 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Jeon, Y.-H., Kraus, S. G., Jowsey, T. & Glasgow, N. J. The experience of living with chronic heart failure: a narrative review of qualitative studies. BMC Health Serv. Res. 10, 1–9 (2010).

    Article  Google Scholar 

  129. Baselet, B., Rombouts, C., Benotmane, A., Baatout, S. & Aerts, A. Cardiovascular diseases related to ionizing radiation: the risk of low-dose exposure (Review). Int. J. Mol. Med. 38, 1623–1641 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Libby, P. & Theroux, P. Pathophysiology of coronary artery disease. Circulation 111, 3481–3488 (2005).

    Article  PubMed  Google Scholar 

  131. Wong, N. D. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat. Rev. Cardiol. 11, 276–289 (2014).

    Article  PubMed  Google Scholar 

  132. Libby, P., Ridker, P. M. & Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Tabas, I., García-Cardeña, G. & Owens, G. K. Recent insights into the cellular biology of atherosclerosis. J. Cell Biol. 209, 13–22 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bhattacharya, S. & Asaithamby, A. Ionizing radiation and heart risks. Semin. Cell Dev. Biol. 58, 14–25 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Hendry, J. H. et al. Radiation-induced cardiovascular injury. Radiat. Environ. Biophys. 47, 189–193 (2008).

    Article  PubMed  Google Scholar 

  136. Little, M. P. et al. Review and meta-analysis of epidemiological associations between low/moderate doses of ionizing radiation and circulatory disease risks, and their possible mechanisms. Radiat. Environ. Biophys. 49, 139–153 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Mancuso, M. et al. Acceleration of atherogenesis in ApoE−/− mice exposed to acute or low-dose-rate ionizing radiation. Oncotarget 6, 31263–31271 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Tribble, D. L., Barcellos-Hoff, M. H., Chu, B. M. & Gong, E. L. Ionizing radiation accelerates aortic lesion formation in fat-fed mice via SOD-inhibitable processes. Vasc. Biol. 19, 1387–1392 (1999).

    Article  CAS  Google Scholar 

  139. Mitchel, R. E. J. et al. Low-dose radiation exposure and atherosclerosis in ApoE−/− mice. Radiat. Res. 175, 665–676 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mitchel, R. E. J. et al. Low-dose radiation exposure and protection against atherosclerosis in ApoE−/− mice: the influence of P53 heterozygosity. Radiat. Res. 179, 190–199 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Boerma, M. & Hauer-Jensen, M. Preclinical research into basic mechanisms of radiation-induced heart disease. Cardiol. Res. Pract. 2011, 858262 (2011).

    Article  Google Scholar 

  142. Warrington, J. P. et al. Whole brain radiation-induced vascular cognitive impairment: mechanisms and implications. J. Vasc. Res. 50, 445–457 (2013).

    Article  PubMed  Google Scholar 

  143. Azimzadeh, O. et al. Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation. Proteomics 11, 3299–3311 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Kim, J. H., Jenrow, K. A. & Brown, S. L. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat. Oncol. J. 32, 103–115 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Davidson, S. M. & Duchen, M. R. Endothelial mitochondria: contributing to vascular function and disease. Circ. Res. 100, 1128–1141 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Donato, A. J. et al. Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-κB. Circ. Res. 100, 1659–1666 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Barjaktarovic, Z. et al. Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays. PLoS ONE 6, e27811 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lundberg, J. O., Gladwin, M. T. & Weitzberg, E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat. Rev. Drug Discov. 14, 623–641 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Azimzadeh, O. et al. PPAR alpha: a novel radiation target in locally exposed Mus musculus heart revealed by quantitative proteomics. J. Proteome Res. 12, 2700–2714 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Azimzadeh, O. et al. A dose-dependent perturbation in cardiac energy metabolism is linked to radiation-induced ischemic heart disease in Mayak nuclear workers. Oncotarget 8, 9067–9078 (2017).

    Article  PubMed  Google Scholar 

  151. Azimzadeh, O. et al. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J. Proteome Res. 14, 1203–1219 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Rousseau, M. et al. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration. Biochem. Biophys. Res. Commun. 414, 750–755 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Jelonek, K. et al. Cardiac endothelial cells isolated from mouse heart — a novel model for radiobiology. Acta Biochim. Pol. 58, 397–404 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Grossi, G. et al. Late cellular effects of 12C ions. Nuovo Cimento C 31, 39–47 (2008).

    Google Scholar 

  155. Zahnreich, S. et al. Radiation-induced premature senescence is associated with specific cytogenetic changes. Mutat. Res. 701, 60–66 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Vavrova, J. & Rezacova, M. The importance of senescence in ionizing radiation-induced tumour suppression. Folia Biol. 57, 41–46 (2011).

    CAS  Google Scholar 

  157. Shah, D. J., Sachs, R. K. & Wilson, D. J. Radiation-induced cancer: a modern view. Br. J. Radiol. 85, 1166–1173 (2012).

    Article  Google Scholar 

  158. Yentrapalli, R. et al. The PI3K/Akt/mTOR pathway is implicated in the premature senescence of primary human endothelial cells exposed to chronic radiation. PLoS ONE 8, e70024 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Favero, G., Paganelli, C., Buffoli, B., Rodella, L. F. & Rezzani, R. Endothelium and its alterations in cardiovascular diseases: life style intervention. Biomed. Res. Int. 2014, 801896 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  160. Wang, Y., Boerma, M. & Zhou, D. Ionizing radiation-induced endothelial cell senescence and cardiovascular diseases. Radiat. Res. 186, 135–161 (2016).

    Google Scholar 

  161. Lowe, D. & Raj, K. Premature aging induced by radiation exhibits pro-atherosclerotic effects mediated by epigenetic activation of CD44 expression. Aging Cell. 13, 900–910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yarnold, J. & Vozenin Brotons, M.-C. Pathogenetic mechanisms in radiation fibrosis. Radiother. Oncol. 97, 149–161 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Libby, P. Inflammation in atherosclerosis: transition from theory to practice. Circ. J. 420, 866–884 (2002).

    Google Scholar 

  164. Hansson, G. K., Libby, P. & Tabas, I. Inflammation and plaque vulnerability. J. Intern. Med. 278, 483–493 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lehmann, H. I. et al. Feasibility study on cardiac arrhythmia ablation using high-energy heavy ion beams. Sci. Rep. 6, 38895 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lavi, S., Gaitini, D., Milloul, V. & Jacob, G. Impaired cerebral CO2 vasoreactivity: association with endothelial dysfunction. Am. J. Physiol. Heart Circ. Physiol. 291, H1856–H1861 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Wilkerson, M. K. et al. Simulated microgravity enhances cerebral artery vasoconstriction and vascular resistance through endothelial nitric oxide mechanism. Am. J. Physiol. Heart Circ. Physiol. 288, H1652–H1661 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. LaRocca, T. J., Martens, C. R. & Seals, D. R. Nutrition and other lifestyle influences on arterial aging. Ageing Res. Rev. 39, 106–119 (2017).

    Article  PubMed  Google Scholar 

  169. Lakatta, E. G. & Levy, D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a “set up” for vascular disease. Circulation 107, 139–146 (2003).

    Article  PubMed  Google Scholar 

  170. Hall, S. et al. Protection against radiotherapy-induced toxicity. Antioxid. 5, 22 (2016).

    Article  CAS  Google Scholar 

  171. Healy, G. N. et al. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care. 31, 661–666 (2008).

    Article  PubMed  Google Scholar 

  172. Lane, H. W., Bourland, C., Barrett, A., Heer, M. & Smith, S. M. The role of nutritional research in the success of human space flight. Adv. Nutr. 4, 521–523 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Zabel, P., Bamsey, M., Schubert, D. & Tajmar, M. Review and analysis of over 40 years of space plant growth systems. Life Sci. Space Res. 10, 1–16 (2016).

    Article  CAS  Google Scholar 

  174. Boehm, F., Edge, R., Truscott, T. G. & Witt, C. A dramatic effect of oxygen on protection of human cells against γ-radiation by lycopene. FEBS Lett. 590, 1086–1093 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Martens, C. R. & Seals, D. R. Practical alternatives to chronic caloric restriction for optimizing vascular function with ageing. J. Physiol. 594, 7177–7195 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Pietrofesa, R. et al. Novel double-hit model of radiation and hyperoxia-induced oxidative cell damage relevant to space travel. Int. J. Mol. Sci. 17, 953 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  177. NASA Exploration Atmospheres Working Group. Recommendations for exploration spacecraft internal atmospheres: the final report of the NASA exploration atmospheres working group (National Aeronautics and Space Administration, 2010).

  178. Tinganelli, W. et al. Kill-painting of hypoxic tumours in charged particle therapy. Sci. Rep. 5, 17016 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Durante, M. Space radiation protection: destination Mars. Life Sci. Space Res. 1, 2–9 (2014).

    Article  Google Scholar 

  180. Slaba, T. C. et al. Optimal shielding thickness for galactic cosmic ray environments. Life Sci. Space Res. 12, 1–15 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

Work in the R.L.H. laboratory is supported by the Canadian Space Agency Contracts 9F007-020213/001/ST, 9F007-046025/001/ST, 9F007-052819/001/ST, 9F053-111259, and 9F053-120610. Work on space radiation protection by M.D. has been supported by the European Space Agency (ESA) under grants IBER and ROSSINI. Work on radiation-induced cardiovascular disease has been supported by the Euratom 7th FP under grant agreement no. 295823 (PROCARDIO). The authors thank Emanuele Scifoni (TIFPA-INFN, Trento, Italy) for his assistance with Figures.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, contributed to discussions of content, wrote the manuscript, and reviewed/edited it before submission.

Corresponding author

Correspondence to Marco Durante.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Gy

Grays are units of absorbed radiation dose; 1 Gy = 1 J/kg.

Sv

Sieverts are derived units of ionizing radiation dose and are a measure of the health effect of low levels of ionizing radiation on the human body.

HZE particles

High-energy and high-charge particles; they are conventionally identified as the ions heavier than helium that can cross a shield of 5 g/cm2 of aluminium.

Van Allen belts

Giant swathes of magnetically trapped, highly energetic charged particles originating from solar wind and galactic cosmic rays that surround the Earth at an altitude of 500–58,000 km.

Solar particle events

Strong emissions of charged particles from the Sun that are associated with solar flares or coronal mass ejections.

High-energy protons

Protons in galactic cosmic rays peak around 1 GeV, whereas those trapped in the Van Allen belts have energy in the range 10–500 MeV.

Fission-spectrum neutrons

Neutrons produced in nuclear reactors; typically the energy peaks around 1 MeV and has a tail reaching 5–6 MeV.

Fast neutrons

High-energy neutrons that are produced by the interaction of high-energy protons with shielding materials.

Linear energy transfer

Charged particle energy loss per unit track length; in radioprotection, linear energy transfer is generally expressed in keV/μm in water.

Relative biological effectiveness

The ratio of the reference radiation dose and the test radiation dose producing the same effect

Dietary Approaches to Stop Hypertension diet

An eating plan that encourages reduction in sodium intake with increases in foods rich in potassium, calcium, and magnesium.

Nuclear fragmentation

The fragmentation of the projectile and/or target nuclei as a result of nuclear interactions between energetic heavy ions and target atoms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hughson, R., Helm, A. & Durante, M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat Rev Cardiol 15, 167–180 (2018). https://doi.org/10.1038/nrcardio.2017.157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing