Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epidemiology of cardiovascular disease in young individuals

Key Points

  • Young adults (aged 18–45 years) have developed increasingly unhealthy risk factors over the past 2 decades, including obesity, poor diet, and physical inactivity

  • In contrast to older adults, growing evidence in young adults shows that trends in incident cardiovascular disease (especially heart failure) have been increasing or stagnating over the past few decades

  • Current observations forecast a new epidemic of cardiovascular disease in this young segment of the population as they age

  • Data on incident cardiovascular disease in young adults are scarce, and estimates are associated with wide confidence intervals owing to the low absolute number of individuals in this population with cardiovascular disease

  • More data are therefore needed (especially harmonized data between various studies) to establish the epidemiology and trends in overt cardiovascular diseases in young adults


In the past 2 decades, a high prevalence of risk factors for cardiovascular disease, such as obesity, physical inactivity, and poor diet, has been observed among young individuals living in developed countries. The rate of substance abuse (opioids, cocaine, electronic cigarettes, and anabolic steroids) is also increasing among young adults, whereas cigarette smoking might be declining. Among younger individuals (aged 18–50 years), the incidence of cardiovascular diseases over the same time period has either been steady or has increased, in contrast to the trend towards a lower incidence of cardiovascular disease in adults aged >50 years. Current observations might, therefore, be used to forecast a potential epidemic of cardiovascular disease in the near future as the younger segment of the population ages. In this Review, we discuss the burden of risk factors for ischaemic heart disease, heart failure, atrial fibrillation, and sudden cardiac death among young adults aged 18–45 years. Furthermore, we discuss the prevalence, incidence, and temporal trends of various cardiovascular diseases among this young segment of the population.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Levels of various risk factors stratified by age groups (20–49 years and ≥50 years) in the NHANES6.
Figure 2: Incidence of sudden cardiac death in young adults in the US Department of Defense Cardiovascular Death Registry.


  1. 1

    Xanthakis, V. et al. Ideal cardiovascular health: associations with biomarkers and subclinical disease and impact on incidence of cardiovascular disease in the Framingham Offspring Study. Circulation 130, 1676–1683 (2014).

    CAS  PubMed  Google Scholar 

  2. 2

    Spring, B. et al. Healthy lifestyle change and subclinical atherosclerosis in young adults: Coronary Artery Risk Development in Young Adults (CARDIA) study. Circulation 130, 10–17 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. 3

    Yang, Q. et al. Trends in cardiovascular health metrics and associations with all-cause and CVD mortality among US adults. JAMA 307, 1273–1283 (2012).

    CAS  PubMed  Google Scholar 

  4. 4

    Fang, N., Jiang, M. & Fan, Y. Ideal cardiovascular health metrics and risk of cardiovascular disease or mortality: a meta-analysis. Int. J. Cardiol. 214, 279–283 (2016).

    PubMed  Google Scholar 

  5. 5

    Nayor, M., Enserro, D. M., Vasan, R. S. & Xanthakis, V. Cardiovascular health status and incidence of heart failure in the Framingham Offspring Study. Circ. Heart Fail. 9, e002416 (2016).

    PubMed  Google Scholar 

  6. 6

    Benjamin, E. J. et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135, e146–e603 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. 7

    NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387, 1377–1396 (2016).

  8. 8

    Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–781 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. 9

    Ogden, C. L., Carroll, M. D., Kit, B. K. & Flegal, K. M. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311, 806–814 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Rokholm, B., Baker, J. L. & Sorensen, T. I. The levelling off of the obesity epidemic since the year 1999 — a review of evidence and perspectives. Obes. Rev. 11, 835–846 (2010).

    CAS  PubMed  Google Scholar 

  11. 11

    Huffman, M. D. et al. Cardiovascular health behavior and health factor changes and projections to 2020: results from the National Health and Nutrition Examination Surveys. Circulation 125, 2595–2602 (2012).

    PubMed  PubMed Central  Google Scholar 

  12. 12

    Hallal, P. C. et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 380, 247–257 (2012).

    PubMed  Google Scholar 

  13. 13

    Ng, M. et al. Smoking prevalence and cigarette consumption in 187 countries, 1980–2012. JAMA 311, 183–192 (2014).

    CAS  PubMed  Google Scholar 

  14. 14

    Page, R. M. & Danielson, M. Multi-country, cross-national comparison of youth tobacco use: findings from global school-based health surveys. Addict. Behav. 36, 470–478 (2011).

    PubMed  Google Scholar 

  15. 15

    World Lung Foundation. Smoking among youth. The Tobacco Atlas (2015).

  16. 16

    World Health Organization. Tobacco: data and statistics. WHO

  17. 17

    Filippidis, F. T., Laverty, A. A., Gerovasili, V. & Vardavas, C. I. Two-year trends and predictors of e-cigarette use in 27 European Union member states. Tob. Control 26, 98–104 (2017).

    PubMed  Google Scholar 

  18. 18

    Benowitz, N. L. & Fraiman, J. B. Cardiovascular effects of electronic cigarettes. Nat. Rev. Cardiol. 14, 447–456 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Ray, W. A., Chung, C. P., Murray, K. T., Hall, K. & Stein, C. M. Prescription of long-acting opioids and mortality in patients with chronic noncancer pain. JAMA 315, 2415–2423 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Centers for Disease Control and Prevention. Today's heroin epidemic. CDC (2015).

  21. 21

    Thiblin, I. et al. Anabolic steroids and cardiovascular risk: a national population-based cohort study. Drug Alcohol Depend. 152, 87–92 (2015).

    CAS  PubMed  Google Scholar 

  22. 22

    Lucena, J. et al. Cocaine-related sudden death: a prospective investigation in south-west Spain. Eur. Heart J. 31, 318–329 (2010).

    CAS  PubMed  Google Scholar 

  23. 23

    Nilsson, S., Baigi, A., Marklund, B. & Fridlund, B. The prevalence of the use of androgenic anabolic steroids by adolescents in a county of Sweden. Eur. J. Publ. Health 11, 195–197 (2001).

    CAS  Google Scholar 

  24. 24

    McCabe, S. E., Brower, K. J., West, B. T., Nelson, T. F. & Wechsler, H. Trends in non-medical use of anabolic steroids by U.S. college students: results from four national surveys. Drug Alcohol Depend. 90, 243–251 (2007).

    PubMed  PubMed Central  Google Scholar 

  25. 25

    NCD Risk Factor Collaboration. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 389, 37–55 (2017).

  26. 26

    Din-Dzietham, R., Liu, Y., Bielo, M. V. & Shamsa, F. High blood pressure trends in children and adolescents in national surveys, 1963 to 2002. Circulation 116, 1488–1496 (2007).

    PubMed  Google Scholar 

  27. 27

    McCarron, P., Smith, G. D. & Okasha, M. Secular changes in blood pressure in childhood, adolescence and young adulthood: systematic review of trends from 1948 to 1998. J. Hum. Hypertens. 16, 677–689 (2002).

    CAS  PubMed  Google Scholar 

  28. 28

    Roulet, C. et al. Secular trends in blood pressure in children: a systematic review. J. Clin. Hypertens. (Greenwich) 19, 488–497 (2017).

    Google Scholar 

  29. 29

    Niiranen, T. J. et al. Heritability and risks associated with early onset hypertension: multigenerational, prospective analysis in the Framingham Heart Study. BMJ 357, j1949 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. 30

    Andersson, C. et al. Association of parental hypertension with arterial stiffness in nonhypertensive offspring: the Framingham Heart Study. Hypertension 68, 584–589 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).

  32. 32

    You, W. P. & Henneberg, M. Type 1 diabetes prevalence increasing globally and regionally: the role of natural selection and life expectancy at birth. BMJ Open Diabetes Res. Care 4, e000161 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. 33

    Imperatore, G. et al. Projections of type 1 and type 2 diabetes burden in the U.S. population aged <20 years through 2050: dynamic modeling of incidence, mortality, and population growth. Diabetes Care 35, 2515–2520 (2012).

    PubMed  PubMed Central  Google Scholar 

  34. 34

    Dabelea, D. et al. Association of type 1 diabetes versus type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA 317, 825–835 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. 35

    Lavery, J. A., Friedman, A. M., Keyes, K. M., Wright, J. D. & Ananth, C. V. Gestational diabetes in the United States: temporal changes in prevalence rates between 1979 and 2010. BJOG 124, 804–813 (2017).

    CAS  PubMed  Google Scholar 

  36. 36

    Cho, G. J. et al. Secular trends of gestational diabetes mellitus and changes in its risk factors. PLoS ONE 10, e0136017 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. 37

    Zhang, F. et al. Increasing prevalence of gestational diabetes mellitus in Chinese women from 1999 to 2008. Diabet Med. 28, 652–657 (2011).

    CAS  PubMed  Google Scholar 

  38. 38

    Fadl, H. E. & Simmons, D. Trends in diabetes in pregnancy in Sweden 1998–2012. BMJ Open Diabetes Res. Care 4, e000221 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. 39

    Ananth, C. V., Keyes, K. M. & Wapner, R. J. Pre-eclampsia rates in the United States, 1980–2010: age-period-cohort analysis. BMJ 347, f6564 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. 40

    Auger, N. et al. Secular trends in preeclampsia incidence and outcomes in a large canada database: a longitudinal study over 24 years. Can. J. Cardiol. 32, 987.e15–987.e23 (2016).

    Google Scholar 

  41. 41

    Breathett, K., Muhlestein, D., Foraker, R. & Gulati, M. Differences in preeclampsia rates between African American and caucasian women: trends from the National Hospital Discharge Survey. J. Womens Health (Larchmt) 23, 886–893 (2014).

    Google Scholar 

  42. 42

    Wallis, A. B., Saftlas, A. F., Hsia, J. & Atrash, H. K. Secular trends in the rates of preeclampsia, eclampsia, and gestational hypertension, United States, 1987–2004. Am. J. Hypertens. 21, 521–526 (2008).

    PubMed  Google Scholar 

  43. 43

    Roberts, C. L. et al. Population-based trends in pregnancy hypertension and pre-eclampsia: an international comparative study. BMJ Open 1, e000101 (2011).

    PubMed  PubMed Central  Google Scholar 

  44. 44

    Roberts, C. L., Algert, C. S., Morris, J. M. & Ford, J. B. Increased planned delivery contributes to declining rates of pregnancy hypertension in Australia: a population-based record linkage study. BMJ Open 5, e009313 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. 45

    Hwu, L. J. et al. Risk of subsequent hypertension and diabetes in women with hypertension during pregnancy and gestational diabetes. Mayo Clin. Proc. 91, 1158–1165 (2016).

    PubMed  Google Scholar 

  46. 46

    Savitz, D. A., Danilack, V. A., Elston, B. & Lipkind, H. S. Pregnancy-induced hypertension and diabetes and the risk of cardiovascular disease, stroke, and diabetes hospitalization in the year following delivery. Am. J. Epidemiol. 180, 41–44 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. 47

    Farzadfar, F. et al. National, regional, and global trends in serum total cholesterol since 1980: systematic analysis of health examination surveys and epidemiological studies with 321 country-years and 3.0 million participants. Lancet 377, 578–586 (2011).

    PubMed  PubMed Central  Google Scholar 

  48. 48

    Ingelsson, E. et al. Contemporary trends in dyslipidemia in the Framingham Heart Study. Arch. Intern. Med. 169, 279–286 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Carroll, M. D., Kit, B. K., Lacher, D. A., Shero, S. T. & Mussolino, M. E. Trends in lipids and lipoproteins in US adults, 1988–2010. JAMA 308, 1545–1554 (2012).

    CAS  Google Scholar 

  50. 50

    de Ferranti, S. D. et al. Prevalence of familial hypercholesterolemia in the 1999 to 2012 United States National Health and Nutrition Examination Surveys (NHANES). Circulation 133, 1067–1072 (2016).

    CAS  PubMed  Google Scholar 

  51. 51

    Benn, M., Watts, G. F., Tybjaerg-Hansen, A. & Nordestgaard, B. G. Familial hypercholesterolemia in the danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication. J. Clin. Endocrinol. Metab. 97, 3956–3964 (2012).

    CAS  PubMed  Google Scholar 

  52. 52

    Nordestgaard, B. G. et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur. Heart J. 34, 3478–3490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Shafiq, N., Singh, M., Kaur, S., Khosla, P. & Malhotra, S. Dietary treatment for familial hypercholesterolaemia. Cochrane Database Syst. Rev. 1, CD001918 (2010).

    Google Scholar 

  54. 54

    Honors, M. A., Harnack, L. J., Zhou, X. & Steffen, L. M. Trends in fatty acid intake of adults in the Minneapolis-St Paul, MN metropolitan area, 1980–1982 through 2007–2009. J. Am. Heart Assoc. 3, e001023 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. 55

    Kit, B. K. et al. Trends in serum lipids among US youths aged 6 to 19 years, 1988–2010. JAMA 308, 591–600 (2012).

    CAS  PubMed  Google Scholar 

  56. 56

    Micha, R. et al. Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. JAMA 317, 912–924 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. 57

    Rehm, C. D., Penalvo, J. L., Afshin, A. & Mozaffarian, D. Dietary intake among US adults, 1999–2012. JAMA 315, 2542–2553 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Gidding, S. S. et al. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) risk score in young adults predicts coronary artery and abdominal aorta calcium in middle age: the CARDIA study. Circulation 133, 139–146 (2016).

    PubMed  Google Scholar 

  59. 59

    Andersson, C., Enserro, D., Larson, M. G., Xanthakis, V. & Vasan, R. S. Implications of the US cholesterol guidelines on eligibility for statin therapy in the community: comparison of observed and predicted risks in the Framingham Heart Study Offspring Cohort. J. Am. Heart Assoc. 4, e001888 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. 60

    D'Agostino, R. B. Sr. et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117, 743–753 (2008).

    Google Scholar 

  61. 61

    Goff, D. C. Jr. et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation 129, S49–S73 (2014).

    PubMed  Google Scholar 

  62. 62

    Gidding, S. S. et al. Prediction of coronary artery calcium in young adults using the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) risk score: the CARDIA study. Arch. Intern. Med. 166, 2341–2347 (2006).

    CAS  PubMed  Google Scholar 

  63. 63

    Navas-Nacher, E. L., Colangelo, L., Beam, C. & Greenland, P. Risk factors for coronary heart disease in men 18 to 39 years of age. Ann. Intern. Med. 134, 433–439 (2001).

    CAS  PubMed  Google Scholar 

  64. 64

    Cole, J. H., Miller, J. I., 3 rd, Sperling, L. S. & Weintraub, W. S. Long-term follow-up of coronary artery disease presenting in young adults. J. Am. Coll. Cardiol. 41, 521–528 (2003).

    PubMed  Google Scholar 

  65. 65

    Yusuf, S. et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364, 937–952 (2004).

    PubMed  Google Scholar 

  66. 66

    Oliveira, A., Barros, H., Azevedo, A., Bastos, J. & Lopes, C. Impact of risk factors for non-fatal acute myocardial infarction. Eur. J. Epidemiol. 24, 425–432 (2009).

    PubMed  Google Scholar 

  67. 67

    Schoenenberger, A. W. et al. Acute coronary syndromes in young patients: presentation, treatment and outcome. Int. J. Cardiol. 148, 300–304 (2011).

    PubMed  Google Scholar 

  68. 68

    Sharma, M. & Ganguly, N. K. Premature coronary artery disease in Indians and its associated risk factors. Vasc. Health Risk Manag. 1, 217–225 (2005).

    PubMed  PubMed Central  Google Scholar 

  69. 69

    Rubin, J. B. & Borden, W. B. Coronary heart disease in young adults. Curr. Atheroscler. Rep. 14, 140–149 (2012).

    PubMed  Google Scholar 

  70. 70

    Khader, Y. S., Rice, J., John, L. & Abueita, O. Oral contraceptives use and the risk of myocardial infarction: a meta-analysis. Contraception 68, 11–17 (2003).

    CAS  PubMed  Google Scholar 

  71. 71

    Afshar, M. et al. Estimating the population impact of Lp(a) lowering on the incidence of myocardial infarction and aortic stenosis-brief report. Arterioscler. Thromb. Vasc. Biol. 36, 2421–2423 (2016).

    CAS  PubMed  Google Scholar 

  72. 72

    Nielsen, M. et al. Familial clustering of myocardial infarction in first-degree relatives: a nationwide study. Eur. Heart J. 34, 1198–1203 (2013).

    PubMed  Google Scholar 

  73. 73

    Thanassoulis, G. et al. A genetic risk score is associated with incident cardiovascular disease and coronary artery calcium: the Framingham Heart Study. Circ. Cardiovasc. Genet. 5, 113–121 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Kessler, T., Vilne, B. & Schunkert, H. The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Mol. Med. 8, 688–701 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Friis-Moller, N. et al. Combination antiretroviral therapy and the risk of myocardial infarction. N. Engl. J. Med. 349, 1993–2003 (2003).

    PubMed  Google Scholar 

  76. 76

    Aggarwal, A., Srivastava, S. & Velmurugan, M. Newer perspectives of coronary artery disease in young. World J. Cardiol. 8, 728–734 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. 77

    Incalcaterra, E., Caruso, M., Lo Presti, R. & Caimi, G. Myocardial infarction in young adults: risk factors, clinical characteristics and prognosis according to our experience. Clin. Ter. 164, e77–e82 (2013).

    CAS  PubMed  Google Scholar 

  78. 78

    Konishi, H. et al. Long-term prognosis and clinical characteristics of young adults (≤40 years old) who underwent percutaneous coronary intervention. J. Cardiol. 64, 171–174 (2014).

    PubMed  Google Scholar 

  79. 79

    Khera, A. V. et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N. Engl. J. Med. 375, 2349–2358 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Krarup, N. T. et al. A genetic risk score of 45 coronary artery disease risk variants associates with increased risk of myocardial infarction in 6041 Danish individuals. Atherosclerosis 240, 305–310 (2015).

    CAS  PubMed  Google Scholar 

  81. 81

    Christiansen, M. K. et al. A 45-SNP genetic risk score is increased in early-onset coronary artery disease but independent of familial disease clustering. Atherosclerosis 257, 172–178 (2017).

    CAS  PubMed  Google Scholar 

  82. 82

    Hindieh, W. et al. Association between family history, a genetic risk score, and severity of coronary artery disease in patients with premature acute coronary syndromes. Arterioscler. Thromb. Vasc. Biol. 36, 1286–1292 (2016).

    CAS  PubMed  Google Scholar 

  83. 83

    Carr, J. J. et al. Association of coronary artery calcium in adults aged 32 to 46 years with incident coronary heart disease and death. JAMA Cardiol. 2, 391–399 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. 84

    Allen, N. B. et al. Blood pressure trajectories in early adulthood and subclinical atherosclerosis in middle age. JAMA 311, 490–497 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Okwuosa, T. M., Greenland, P., Ning, H., Liu, K. & Lloyd-Jones, D. M. Yield of screening for coronary artery calcium in early middle-age adults based on the 10-year Framingham risk score: the CARDIA study. JACC Cardiovasc. Imag. 5, 923–930 (2012).

    Google Scholar 

  86. 86

    Yan, L. L. et al. Education, 15-year risk factor progression, and coronary artery calcium in young adulthood and early middle age: the Coronary Artery Risk Development in Young Adults study. JAMA 295, 1793–1800 (2006).

    CAS  PubMed  Google Scholar 

  87. 87

    Reis, J. P. et al. Association between duration of overall and abdominal obesity beginning in young adulthood and coronary artery calcification in middle age. JAMA 310, 280–288 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Lee, C. D. et al. Cardiorespiratory fitness and coronary artery calcification in young adults: The CARDIA Study. Atherosclerosis 203, 263–268 (2009).

    CAS  PubMed  Google Scholar 

  89. 89

    Hartiala, O. et al. Adolescence risk factors are predictive of coronary artery calcification at middle age: the cardiovascular risk in young Finns study. J. Am. Coll. Cardiol. 60, 1364–1370 (2012).

    PubMed  Google Scholar 

  90. 90

    Schmiegelow, M. D. et al. Prepregnancy obesity and associations with stroke and myocardial infarction in women in the years after childbirth: a nationwide cohort study. Circulation 129, 330–337 (2014).

    PubMed  Google Scholar 

  91. 91

    Andersen, S. S. et al. Impact of metabolic disorders on the relation between overweight/obesity and incident myocardial infarction and ischaemic stroke in fertile women: a nationwide cohort study. Clin. Obes. 5, 127–135 (2015).

    CAS  PubMed  Google Scholar 

  92. 92

    Schmidt, M. et al. Obesity in young men, and individual and combined risks of type 2 diabetes, cardiovascular morbidity and death before 55 years of age: a Danish 33-year follow-up study. BMJ Open 3, e002698 (2013).

    PubMed  PubMed Central  Google Scholar 

  93. 93

    Crump, C., Sundquist, J., Winkleby, M. A. & Sundquist, K. Interactive effects of physical fitness and body mass index on the risk of hypertension. JAMA Intern. Med. 176, 210–216 (2016).

    PubMed  PubMed Central  Google Scholar 

  94. 94

    Crump, C., Sundquist, J., Winkleby, M. A. & Sundquist, K. Interactive effects of physical fitness and body mass index on risk of stroke: a national cohort study. Int. J. Stroke 11, 683–694 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. 95

    Crump, C., Sundquist, J., Winkleby, M. A. & Sundquist, K. Interactive effects of obesity and physical fitness on risk of ischemic heart disease. Int. J. Obes. (Lond.) 41, 255–261 (2017).

    CAS  Google Scholar 

  96. 96

    Jin, K. N. et al. Subclinical coronary atherosclerosis in young adults: prevalence, characteristics, predictors with coronary computed tomography angiography. Int. J. Cardiovasc. Imag. 28 (Suppl. 2), 93–100 (2012).

    Google Scholar 

  97. 97

    Berenson, G. S. et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N. Engl. J. Med. 338, 1650–1656 (1998).

    CAS  PubMed  Google Scholar 

  98. 98

    McManus, D. D. et al. Thirty-year trends in the incidence rates, clinical features, treatment practices, and short-term outcomes of patients <55 years of age hospitalized with an initial acute myocardial infarction. Am. J. Cardiol. 108, 477–482 (2011).

    PubMed  PubMed Central  Google Scholar 

  99. 99

    Centers for Disease Control and Prevention. Prevalence of coronary heart disease — United States, 2006–2010. MMWR Morb. Mortal. Wkly Rep. 60, 1377–1381 (2011).

  100. 100

    Degano, I. R. et al. Twenty-five-year trends in myocardial infarction attack and mortality rates, and case-fatality, in six European populations. Heart 101, 1413–1421 (2015).

    CAS  PubMed  Google Scholar 

  101. 101

    Schmidt, M., Jacobsen, J. B., Lash, T. L., Botker, H. E. & Sorensen, H. T. 25 year trends in first time hospitalisation for acute myocardial infarction, subsequent short and long term mortality, and the prognostic impact of sex and comorbidity: a Danish nationwide cohort study. BMJ 344, e356 (2012).

    PubMed  PubMed Central  Google Scholar 

  102. 102

    Sulo, G. et al. Favourable trends in incidence of AMI in Norway during 2001–2009 do not include younger adults: a CVDNOR project. Eur. J. Prev. Cardiol. 21, 1358–1364 (2014).

    PubMed  Google Scholar 

  103. 103

    Randall, S. M., Zilkens, R., Duke, J. M. & Boyd, J. H. Western Australia population trends in the incidence of acute myocardial infarction between 1993 and 2012. Int. J. Cardiol. 222, 678–682 (2016).

    PubMed  Google Scholar 

  104. 104

    Gabet, A., Danchin, N., Juilliere, Y. & Olie, V. Acute coronary syndrome in women: rising hospitalizations in middle-aged French women, 2004–2014. Eur. Heart J. 38, 1060–1065 (2017).

    PubMed  Google Scholar 

  105. 105

    Wang, X. et al. Trend in young coronary artery disease in China from 2010 to 2014: a retrospective study of young patients ≤45. BMC Cardiovasc. Disord. 17, 18 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. 106

    Kasper, E. K. et al. The causes of dilated cardiomyopathy: a clinicopathologic review of 673 consecutive patients. J. Am. Coll. Cardiol. 23, 586–590 (1994).

    CAS  PubMed  Google Scholar 

  107. 107

    Towbin, J. A. et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 296, 1867–1876 (2006).

    CAS  PubMed  Google Scholar 

  108. 108

    Wong, C. M. et al. Heart failure in younger patients: the Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC). Eur. Heart J. 35, 2714–2721 (2014).

    PubMed  Google Scholar 

  109. 109

    Wong, C. M. et al. Clinical characteristics and outcomes of young and very young adults with heart failure: The CHARM programme (Candesartan in Heart Failure Assessment of Reduction in Mortality and Morbidity). J. Am. Coll. Cardiol. 62, 1845–1854 (2013).

    PubMed  Google Scholar 

  110. 110

    Barasa, A. et al. Heart failure in young adults: 20-year trends in hospitalization, aetiology, and case fatality in Sweden. Eur. Heart J. 35, 25–32 (2014).

    PubMed  Google Scholar 

  111. 111

    Christiansen, M. N. et al. Age-specific trends in incidence, mortality and comorbidities of heart failure in Denmark 1995–2012. Circulation 135, 1214–1223 (2017).

    PubMed  Google Scholar 

  112. 112

    Bibbins-Domingo, K. et al. Racial differences in incident heart failure among young adults. N. Engl. J. Med. 360, 1179–1190 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Damasceno, A. et al. The causes, treatment, and outcome of acute heart failure in 1006 Africans from 9 countries. Arch. Intern. Med. 172, 1386–1394 (2012).

    CAS  PubMed  Google Scholar 

  114. 114

    Lindgren, M. et al. Cardiorespiratory fitness and muscle strength in late adolescence and long-term risk of early heart failure in Swedish men. Eur. J. Prev. Cardiol. 24 876–884 (2017).

    PubMed  Google Scholar 

  115. 115

    Shah, R. V. et al. Association of fitness in young adulthood with survival and cardiovascular risk: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. JAMA Intern. Med. 176, 87–95 (2016).

    PubMed  PubMed Central  Google Scholar 

  116. 116

    Pandey, A. et al. Fitness in young adulthood and long-term cardiac structure and function: the CARDIA Study. JACC Heart Fail. 5, 347–355 (2017).

    PubMed  Google Scholar 

  117. 117

    Schwartz, B. G., Rezkalla, S. & Kloner, R. A. Cardiovascular effects of cocaine. Circulation 122, 2558–2569 (2010).

    PubMed  Google Scholar 

  118. 118

    Baggish, A. L. et al. Cardiovascular toxicity of illicit anabolic-androgenic steroid use. Circulation 135, 1991–2002 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Behrens, I. et al. Association between hypertensive disorders of pregnancy and later risk of cardiomyopathy. JAMA 315, 1026–1033 (2016).

    CAS  PubMed  Google Scholar 

  120. 120

    Dhesi, S., Savu, A., Ezekowitz, J. A. & Kaul, P. Association between diabetes during pregnancy and peripartum cardiomyopathy: a population-level analysis of 309,825 women. Can. J. Cardiol. 33, 911–917 (2017).

    PubMed  Google Scholar 

  121. 121

    Barasa, A., Rosengren, A., Sandstrom, T. Z., Ladfors, L. & Schaufelberger, M. Heart failure in late pregnancy and postpartum: incidence and long-term mortality in Sweden from 1997 to 2010. J. Card. Fail 23, 370–378 (2017).

    PubMed  Google Scholar 

  122. 122

    Gunderson, E. P. et al. Epidemiology of peripartum cardiomyopathy: incidence, predictors, and outcomes. Obstet. Gynecol. 118, 583–591 (2011).

    PubMed  Google Scholar 

  123. 123

    Sliwa, K. et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Working Group on peripartum cardiomyopathy. Eur. J. Heart Fail 12, 767–778 (2010).

    PubMed  Google Scholar 

  124. 124

    Chen, J., Dharmarajan, K., Wang, Y. & Krumholz, H. M. National trends in heart failure hospital stay rates, 2001 to 2009. J. Am. Coll. Cardiol. 61, 1078–1088 (2013).

    PubMed  PubMed Central  Google Scholar 

  125. 125

    Teng, T. H., Finn, J., Hobbs, M. & Hung, J. Heart failure: incidence, case fatality, and hospitalization rates in Western Australia between 1990 and 2005. Circ. Heart Fail 3, 236–243 (2010).

    PubMed  Google Scholar 

  126. 126

    Omersa, D., Farkas, J., Erzen, I. & Lainscak, M. National trends in heart failure hospitalization rates in Slovenia 2004–2012. Eur. J. Heart Fail. 18, 1321–1328 (2016).

    PubMed  Google Scholar 

  127. 127

    Kolte, D. et al. Temporal trends in incidence and outcomes of peripartum cardiomyopathy in the United States: a nationwide population-based study. J. Am. Heart Assoc. 3, e001056 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. 128

    Agarwal, S., Sud, K. & Menon, V. Nationwide hospitalization trends in adult congenital heart disease across 2003–2012. J. Am. Heart Assoc. 5, e002330 (2016).

    PubMed  PubMed Central  Google Scholar 

  129. 129

    Christiansen, M. N. et al. Age-specific trends in incidence, mortality, and comorbidities of heart failure in Denmark, 1995 to 2012. Circulation 135, 1214–1223 (2017).

    PubMed  Google Scholar 

  130. 130

    Benjamin, E. J. et al. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham heart study. JAMA 271, 840–844 (1994).

    CAS  PubMed  Google Scholar 

  131. 131

    Bouchardy, J. et al. Atrial arrhythmias in adults with congenital heart disease. Circulation 120, 1679–1686 (2009).

    PubMed  Google Scholar 

  132. 132

    Pallisgaard, J. L. et al. Risk of atrial fibrillation in diabetes mellitus: a nationwide cohort study. Eur. J. Prev. Cardiol. 23, 621–627 (2016).

    PubMed  Google Scholar 

  133. 133

    Oyen, N. et al. Familial aggregation of lone atrial fibrillation in young persons. J. Am. Coll. Cardiol. 60, 917–921 (2012).

    PubMed  PubMed Central  Google Scholar 

  134. 134

    Lubitz, S. A. et al. Genetic risk prediction of atrial fibrillation. Circulation 135, 1311–1320 (2016).

    PubMed  PubMed Central  Google Scholar 

  135. 135

    Larsson, S. C., Drca, N. & Wolk, A. Alcohol consumption and risk of atrial fibrillation: a prospective study and dose-response meta-analysis. J. Am. Coll. Cardiol. 64, 281–289 (2014).

    CAS  PubMed  Google Scholar 

  136. 136

    Calvo, N., Brugada, J., Sitges, M. & Mont, L. Atrial fibrillation and atrial flutter in athletes. Br. J. Sports Med. 46 (Suppl. 1), i37–i43 (2012).

    PubMed  Google Scholar 

  137. 137

    Chatterjee, N. A. et al. Genetic obesity and the risk of atrial fibrillation: causal estimates from mendelian randomization. Circulation 135, 741–754 (2016).

    PubMed  PubMed Central  Google Scholar 

  138. 138

    Karasoy, D. et al. Obesity is a risk factor for atrial fibrillation among fertile young women: a nationwide cohort study. Europace 15, 781–786 (2013).

    PubMed  Google Scholar 

  139. 139

    Schmidt, M., Botker, H. E., Pedersen, L. & Sorensen, H. T. Comparison of the frequency of atrial fibrillation in young obese versus young nonobese men undergoing examination for fitness for military service. Am. J. Cardiol. 113, 822–826 (2014).

    PubMed  Google Scholar 

  140. 140

    Dewland, T. A. et al. Racial differences in left atrial size: results from the coronary artery risk development in young adults (CARDIA) study. PLoS ONE 11, e0151559 (2016).

    PubMed  PubMed Central  Google Scholar 

  141. 141

    Dewland, T. A., Olgin, J. E., Vittinghoff, E. & Marcus, G. M. Incident atrial fibrillation among Asians, Hispanics, blacks, and whites. Circulation 128, 2470–2477 (2013).

    PubMed  Google Scholar 

  142. 142

    Marcus, G. M. et al. European ancestry as a risk factor for atrial fibrillation in African Americans. Circulation 122, 2009–2015 (2010).

    PubMed  PubMed Central  Google Scholar 

  143. 143

    Deshmukh, A. et al. Trends in hospitalizations of young patients with atrial fibrillation: a cause for concern? Int. J. Cardiol. 203, 164–165 (2016).

    PubMed  Google Scholar 

  144. 144

    Briffa, T. et al. Trends in incidence and prevalence of hospitalization for atrial fibrillation and associated mortality in Western Australia, 1995–2010. Int. J. Cardiol. 208, 19–25 (2016).

    PubMed  Google Scholar 

  145. 145

    Bagnall, R. D. et al. A prospective study of sudden cardiac death among children and young adults. N. Engl. J. Med. 374, 2441–2452 (2016).

    PubMed  Google Scholar 

  146. 146

    Eckart, R. E. et al. Sudden death in young adults: an autopsy-based series of a population undergoing active surveillance. J. Am. Coll. Cardiol. 58, 1254–1261 (2011).

    PubMed  Google Scholar 

  147. 147

    Arzamendi, D. et al. Increase in sudden death from coronary artery disease in young adults. Am. Heart J. 161, 574–580 (2011).

    PubMed  Google Scholar 

  148. 148

    Christiansen, S. L. et al. Genetic investigation of 100 heart genes in sudden unexplained death victims in a forensic setting. Eur. J. Hum. Genet. 24, 1797–1802 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Corrado, D., Basso, C., Rizzoli, G., Schiavon, M. & Thiene, G. Does sports activity enhance the risk of sudden death in adolescents and young adults? J. Am. Coll. Cardiol. 42, 1959–1963 (2003).

    PubMed  Google Scholar 

  150. 150

    Feng, J. L. et al. Temporal trends in sudden cardiac death from 1997 to 2010: a data linkage study. Heart Lung Circ. 26, 808–816 (2017).

    PubMed  Google Scholar 

  151. 151

    Moore, M. J. et al. Demographic and temporal trends in out of hospital sudden cardiac death in Belfast. Heart 92, 311–315 (2006).

    CAS  PubMed  Google Scholar 

  152. 152

    Ramirez, L. et al. Trends in acute ischemic stroke hospitalizations in the United States. J. Am. Heart Assoc. 5, e003233 (2016).

    PubMed  PubMed Central  Google Scholar 

  153. 153

    Demant, M. N. et al. Temporal trends in stroke admissions in Denmark 1997–2009. BMC Neurol. 13, 156 (2013).

    PubMed  PubMed Central  Google Scholar 

  154. 154

    Medin, J., Nordlund, A., Ekberg, K. & Swedish Hospital Discharge, R. Increasing stroke incidence in Sweden between 1989 and 2000 among persons aged 30 to 65 years: evidence from the Swedish Hospital Discharge Register. Stroke 35, 1047–1051 (2004).

    CAS  PubMed  Google Scholar 

  155. 155

    Bejot, Y. et al. Trends in the incidence of ischaemic stroke in young adults between 1985 and 2011: the Dijon Stroke Registry. J. Neurol. Neurosurg. Psychiatry 85, 509–513 (2014).

    PubMed  Google Scholar 

  156. 156

    George, M. G., Tong, X. & Bowman, B. A. Prevalence of cardiovascular risk factors and strokes in younger adults. JAMA Neurol. 74, 695–703 (2017).

    PubMed  PubMed Central  Google Scholar 

  157. 157

    Ford, E. S., Li, C., Zhao, G., Pearson, W. S. & Capewell, S. Trends in the prevalence of low risk factor burden for cardiovascular disease among United States adults. Circulation 120, 1181–1188 (2009).

    PubMed  Google Scholar 

  158. 158

    van Dam, R. M. & Willett, W. C. Unmet potential for cardiovascular disease prevention in the United States. Circulation 120, 1171–1173 (2009).

    PubMed  Google Scholar 

  159. 159

    Koch, M. B., Davidsen, M., Andersen, L. V., Juel, K. & Jensen, G. B. Increasing prevalence despite decreasing incidence of ischaemic heart disease and myocardial infarction. A national register based perspective in Denmark, 1980–2009. Eur. J. Prev. Cardiol. 22, 189–195 (2015).

    PubMed  Google Scholar 

  160. 160

    Egred, M., Viswanathan, G. & Davis, G. K. Myocardial infarction in young adults. Postgrad. Med. J. 81, 741–745 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Cowie, M. R. et al. Incidence and aetiology of heart failure; a population-based study. Eur. Heart J. 20, 421–428 (1999).

    CAS  PubMed  Google Scholar 

  162. 162

    Goyal, A. et al. Predictors of incident heart failure in a large insured population: a one million person-year follow-up study. Circ. Heart Fail. 3, 698–705 (2010).

    PubMed  PubMed Central  Google Scholar 

  163. 163

    Zarrinkoub, R. et al. The epidemiology of heart failure, based on data for 2.1 million inhabitants in Sweden. Eur. J. Heart Fail 15, 995–1002 (2013).

    PubMed  Google Scholar 

  164. 164

    Carmona, M. et al. Heart failure in the family practice: a study of the prevalence and co-morbidity. Fam. Pract. 28, 128–133 (2011).

    PubMed  Google Scholar 

  165. 165

    Bongers, F. J., Schellevis, F. G., Bakx, C., van den Bosch, W. J. & van der Zee, J. Treatment of heart failure in Dutch general practice. BMC Fam. Pract. 7, 40 (2006).

    PubMed  PubMed Central  Google Scholar 

  166. 166

    Eckart, R. E. et al. Sudden death in young adults: a 25-year review of autopsies in military recruits. Ann. Intern. Med. 141, 829–834 (2004).

    PubMed  Google Scholar 

Download references


This work was supported in part by the Evans Medical Foundation and Jay and Louise Coffman Foundation at the Boston University School of Medicine.

Author information




Both authors researched data for the article, discussed its content, wrote the manuscript, and reviewed and edited it before submission.

Corresponding author

Correspondence to Charlotte Andersson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andersson, C., Vasan, R. Epidemiology of cardiovascular disease in young individuals. Nat Rev Cardiol 15, 230–240 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing