Beyond gut feelings: how the gut microbiota regulates blood pressure

Key Points

  • High dietary intake of fruit, vegetables, and fibre is associated with lower blood pressure levels

  • Short-chain fatty acids, such as acetate and propionate, released by the fermentation of fibre by the gut microbiota are linked to lower blood-pressure levels in experimental models of hypertension

  • A growing body of literature supports a role for the gut microbiota in the development and maintenance of high blood-pressure levels

  • Limited evidence suggests that the manipulation of the gut microbiota (such as through faecal transplants, or the use of antibiotics or probiotics) might be a novel therapeutic approach for the treatment of hypertension

  • The composition of human gut microbiota in the setting of high blood-pressure levels should be assessed to determine the complex nature of essential hypertension, given that gut microbiota can interact with the the host's environment and genome

Abstract

Hypertension is the leading risk factor for heart disease and stroke, and is estimated to cause 9.4 million deaths globally every year. The pathogenesis of hypertension is complex, but lifestyle factors such as diet are important contributors to the disease. High dietary intake of fruit and vegetables is associated with reduced blood pressure and lower cardiovascular mortality. A critical relationship between dietary intake and the composition of the gut microbiota has been described in the literature, and a growing body of evidence supports the role of the gut microbiota in the regulation of blood pressure. In this Review, we describe the mechanisms by which the gut microbiota and its metabolites, including short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides, act on downstream cellular targets to prevent or contribute to the pathogenesis of hypertension. These effects have a direct influence on tissues such as the kidney, the endothelium, and the heart. Finally, we consider the role of the gut microbiota in resistant hypertension, the possible intergenerational effect of the gut microbiota on blood pressure regulation, and the promising therapeutic potential of gut microbiota modification to improve health and prevent disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Influence of diet on gut microbiota and blood pressure.
Figure 2: Mechanisms of the gut–autonomic nervous system–cardiorenal axis that regulate blood pressure.
Figure 3: Hypertension as a multifactorial disease.

References

  1. 1

    Surendran, P. et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat. Genet. 48, 1151–1161 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  2. 2

    Liu, C. et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat. Genet. 48, 1162–1170 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  3. 3

    Ehret, G. B. et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat. Genet. 48, 1171–1184 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  4. 4

    Ezzati, M. & Riboli, E. Behavioral and dietary risk factors for noncommunicable diseases. N. Engl. J. Med. 369, 954–964 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Hu, G. et al. Relationship of physical activity and body mass index to the risk of hypertension: a prospective study in Finland. Hypertension 43, 25–30 (2004).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Tang, W. H. & Hazen, S. L. The contributory role of gut microbiota in cardiovascular disease. J. Clin. Invest. 124, 4204–4211 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  7. 7

    Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  8. 8

    Marques, F. Z. et al. High fibre diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in DOCA-salt hypertensive mice. Circulation http://dx.doi.org/10.1161/CIRCULATIONAHA.116.024545 (2017).

  9. 9

    Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  10. 10

    Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Foster, J. A. & McVey Neufeld, K. A. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36, 305–312 (2013).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Dinan, T. G., Borre, Y. E. & Cryan, J. F. Genomics of schizophrenia: time to consider the gut microbiome? Mol. Psychiatry 19, 1252–1257 (2014).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Thorburn, A. N. et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6, 7320 (2015).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Thorburn, A. N., Macia, L. & Mackay, C. R. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 40, 833–842 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  15. 15

    Kamada, N., Seo, S. U., Chen, G. Y. & Nunez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13, 321–335 (2013).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  17. 17

    Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18

    Yang, X., Xie, L., Li, Y. & Wei, C. More than 9,000,000 unique genes in human gut bacterial community: estimating gene numbers inside a human body. PLoS ONE 4, e6074 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19

    Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  21. 21

    Tringe, S. G. et al. Comparative metagenomics of microbial communities. Science 308, 554–557 (2005).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Maslowski, K. M. & Mackay, C. R. Diet, gut microbiota and immune responses. Nat. Immunol. 12, 5–9 (2011).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  24. 24

    De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    Article  PubMed  Google Scholar 

  25. 25

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Sze, M. A. & Schloss, P. D. Looking for a signal in the noise: revisiting obesity and the microbiome. mBio 7, e01018-16 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. & Macfarlane, G. T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 1221–1227 (1987).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  29. 29

    Tan, J. et al. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121, 91–119 (2014).

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Clausen, M. R. & Mortensen, P. B. Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis. Gut 37, 684–689 (1995).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  31. 31

    Xu, Z. & Knight, R. Dietary effects on human gut microbiome diversity. Br. J. Nutr. 113 (Suppl.), S1–S5 (2015).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  33. 33

    Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–186 (2014).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Article  PubMed  Google Scholar 

  35. 35

    Smith, D. L., Harris, A. D., Johnson, J. A., Silbergeld, E. K. & Morris, J. G. Jr. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc. Natl Acad. Sci. USA 99, 6434–6439 (2002).

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Clarke, S. F. et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63, 1913–1920 (2014).

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  39. 39

    Xie, H. et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst. 3, 572–584.e3 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  40. 40

    Zhang, C. et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 4, 232–241 (2010).

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Wenzel, U. et al. Immune mechanisms in arterial hypertension. J. Am. Soc. Nephrol. 27, 677–686 (2016).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Schiffrin, E. L. T lymphocytes: a role in hypertension? Curr. Opin. Nephrol. Hypertens. 19, 181–186 (2010).

    CAS  Article  PubMed  Google Scholar 

  43. 43

    Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  44. 44

    Strauch, U. G. et al. Influence of intestinal bacteria on induction of regulatory T cells: lessons from a transfer model of colitis. Gut 54, 1546–1552 (2005).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  45. 45

    Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Wang, X. et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 349, g4490 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Miura, K. et al. Relation of vegetable, fruit, and meat intake to 7-year blood pressure change in middle-aged men: the Chicago Western Electric Study. Am. J. Epidemiol. 159, 572–580 (2004).

    Article  PubMed  Google Scholar 

  49. 49

    Ascherio, A. et al. Prospective study of nutritional factors, blood pressure, and hypertension among US women. Hypertension 27, 1065–1072 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Appel, L. J. et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 336, 1117–1124 (1997).

    CAS  Article  PubMed  Google Scholar 

  51. 51

    Nissensohn, M., Roman-Vinas, B., Sanchez-Villegas, A., Piscopo, S. & Serra-Majem, L. The effect of the Mediterranean diet on hypertension: a systematic review and meta-analysis. J. Nutr. Educ. Behav. 48, 42–53.e1 (2016).

    Article  PubMed  Google Scholar 

  52. 52

    Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 368, 1279–1290 (2013).

    CAS  Google Scholar 

  53. 53

    Alonso, A. et al. Fruit and vegetable consumption is inversely associated with blood pressure in a Mediterranean population with a high vegetable-fat intake: the Seguimiento Universidad de Navarra (SUN) Study. Br. J. Nutr. 92, 311–319 (2004).

    CAS  Article  PubMed  Google Scholar 

  54. 54

    Threapleton, D. E. et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 347, f6879 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Australian Bureau of Statistics. 4364.0.55.007 – Australian Health Survey: Nutrition First Results – Food and Nutrients, 2011–12. http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4364.0.55.007main+features12011-12 (2014).

  56. 56

    King, D. E., Mainous, A. G. III & Lambourne, C. A. Trends in dietary fiber intake in the United States, 1999–2008. J. Acad. Nutr. Diet. 112, 642–648 (2012).

    Article  PubMed  Google Scholar 

  57. 57

    Park, Y., Subar, A. F., Hollenbeck, A. & Schatzkin, A. Dietary fiber intake and mortality in the NIH-AARP diet and health study. Arch. Intern. Med. 171, 1061–1068 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Whelton, S. P. et al. Effect of dietary fiber intake on blood pressure: a meta-analysis of randomized, controlled clinical trials. J. Hypertens. 23, 475–481 (2005).

    CAS  Article  PubMed  Google Scholar 

  59. 59

    Streppel, M. T., Arends, L. R., van 't Veer, P., Grobbee, D. E. & Geleijnse, J. M. Dietary fiber and blood pressure: a meta-analysis of randomized placebo-controlled trials. Arch. Intern. Med. 165, 150–156 (2005).

    Article  PubMed  Google Scholar 

  60. 60

    Aljuraiban, G. S. et al. Total, insoluble and soluble dietary fibre intake in relation to blood pressure: the INTERMAP Study. Br. J. Nutr. 114, 1480–1486 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  61. 61

    Lattimer, J. M. & Haub, M. D. Effects of dietary fiber and its components on metabolic health. Nutrients 2, 1266–1289 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  62. 62

    Erkkila, A. T. & Lichtenstein, A. H. Fiber and cardiovascular disease risk: how strong is the evidence? J. Cardiovasc. Nurs. 21, 3–8 (2006).

    Article  PubMed  Google Scholar 

  63. 63

    Baez, S. & Gordon, H. A. Tone and reactivity of vascular smooth muscle in germfree rat mesentery. J. Exp. Med. 134, 846–856 (1971).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  64. 64

    Gordon, H. A., Wostmann, B. S. & Bruckner-Kardoss, E. Effects of microbial flora on cardiac output and other elements of blood circulation. Proc. Soc. Exp. Biol. Med. 114, 301–304 (1963).

    CAS  Article  PubMed  Google Scholar 

  65. 65

    Heneghan, J. B. Response of germfree animals to shock. J. Med. 21, 51–66 (1990).

    CAS  PubMed  Google Scholar 

  66. 66

    Mell, B. et al. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol. Genomics 47, 187–197 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  67. 67

    Adnan, S. et al. Alterations in the gut microbiota can elicit hypertension in rats. Physiol. Genomics 49, 96–104 (2017).

    CAS  Article  PubMed  Google Scholar 

  68. 68

    Yang, T. et al. Gut dysbiosis is linked to hypertension. Hypertension 65, 1331–1340 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  69. 69

    Durgan, D. J. et al. Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension 67, 469–474 (2016).

    CAS  Article  PubMed  Google Scholar 

  70. 70

    Petriz, B. A. et al. Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics 15, 511 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Zhang-James, Y., Middleton, F. A. & Faraone, S. V. Genetic architecture of Wistar-Kyoto rat and spontaneously hypertensive rat substrains from different sources. Physiol. Genomics 45, 528–538 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  72. 72

    Yang, J. Y. et al. Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol. 10, 104–116 (2017).

    CAS  Article  PubMed  Google Scholar 

  73. 73

    Shi, P. et al. Brain microglial cytokines in neurogenic hypertension. Hypertension 56, 297–303 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  74. 74

    Karbach, S. H. et al. Gut microbiota promote angiotensin II-induced arterial hypertension and vascular dysfunction. J. Am. Heart Assoc. 5, e003698 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. 75

    Santisteban, M. M. et al. Hypertension-linked pathophysiological alterations in the gut. Circ. Res. 120, 312–323 (2017).

    CAS  Article  PubMed  Google Scholar 

  76. 76

    Stewart, D. C. et al. Hypertension-linked mechanical changes of rat gut. Acta Biomater. 45, 296–302 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Grassi, G., Mark, A. & Esler, M. The sympathetic nervous system alterations in human hypertension. Circ. Res. 116, 976–990 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  78. 78

    Carabotti, M., Scirocco, A., Maselli, M. A. & Severi, C. The gut–brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 28, 203–209 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. 79

    He, F. J. & MacGregor, G. A. A comprehensive review on salt and health and current experience of worldwide salt reduction programmes. J. Hum. Hypertens. 23, 363–384 (2009).

    CAS  Article  PubMed  Google Scholar 

  80. 80

    Sandle, G. I. Salt and water absorption in the human colon: a modern appraisal. Gut 43, 294–299 (1998).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  81. 81

    Linz, D. et al. Antihypertensive and laxative effects by pharmacological inhibition of sodium-proton-exchanger subtype 3-mediated sodium absorption in the gut. Hypertension 60, 1560–1567 (2012).

    CAS  Article  PubMed  Google Scholar 

  82. 82

    Afsar, B., Vaziri, N. D., Aslan, G., Tarim, K. & Kanbay, M. Gut hormones and gut microbiota: implications for kidney function and hypertension. J. Am. Soc. Hypertens. 10, 954–961 (2016).

    CAS  Article  PubMed  Google Scholar 

  83. 83

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02133872 (2016).

  84. 84

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02133885 (2017).

  85. 85

    Li, J. et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5, 14 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    How, K. Y., Song, K. P. & Chan, K. G. Porphyromonas gingivalis: an overview of periodontopathic pathogen below the gum line. Front. Microbiol. 7, 53 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Valour, F. et al. Actinomycosis: etiology, clinical features, diagnosis, treatment, and management. Infect. Drug Resist. 7, 183–197 (2014).

    PubMed  PubMed Central  Google Scholar 

  88. 88

    Munoz-Price, L. S. et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 13, 785–796 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Hao, Y. et al. A nested case-control study of association between metabolome and hypertension risk. Biomed Res. Int. 2016, 7646979 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. 90

    Daugirdas, J. T. & Nawab, Z. M. Acetate relaxation of isolated vascular smooth muscle. Kidney Int. 32, 39–46 (1987).

    CAS  Article  PubMed  Google Scholar 

  91. 91

    Nutting, C. W., Islam, S. & Daugirdas, J. T. Vasorelaxant effects of short chain fatty acid salts in rat caudal artery. Am. J. Physiol. 261, H561–H567 (1991).

    CAS  PubMed  Google Scholar 

  92. 92

    Mortensen, F. V., Nielsen, H., Mulvany, M. J. & Hessov, I. Short chain fatty acids dilate isolated human colonic resistance arteries. Gut 31, 1391–1394 (1990).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  93. 93

    Pluznick, J. L. et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).

    CAS  Article  PubMed  Google Scholar 

  94. 94

    Andrade-Oliveira, V. et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion. J. Am. Soc. Nephrol. 26, 1877–1888 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  95. 95

    Tan, J. K., McKenzie, C., Marino, E., Macia, L. & Mackay, C. R. Metabolite-sensing G protein-coupled receptors-facilitators of diet-related immune regulation. Annu. Rev. Immunol. 35, 371–402 (2017).

    CAS  Article  PubMed  Google Scholar 

  96. 96

    Macia, L. et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  97. 97

    Natarajan, N. et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G-protein coupled receptor 41. Physiol. Genomics 48, 826–834 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  98. 98

    Marino, E. et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat. Immunol. 18, 552–562 (2017).

    CAS  Article  PubMed  Google Scholar 

  99. 99

    Chai, J. T., Digby, J. E. & Choudhury, R. P. GPR109A and vascular inflammation. Curr. Atheroscler. Rep. 15, 325 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100

    Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  101. 101

    Nakagawa, K. et al. Salt-sensitive hypertension is associated with dysfunctional Cyp4a10 gene and kidney epithelial sodium channel. J. Clin. Invest. 116, 1696–1702 (2006).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  102. 102

    Miyamoto, S. et al. Cholecystokinin plays a novel protective role in diabetic kidney through anti-inflammatory actions on macrophage: anti-inflammatory effect of cholecystokinin. Diabetes 61, 897–907 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  103. 103

    Knoll, R. et al. Telethonin deficiency is associated with maladaptation to biomechanical stress in the mammalian heart. Circ. Res. 109, 758–769 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  104. 104

    Koskivirta, I. et al. Mice with tissue inhibitor of metalloproteinases 4 (Timp4) deletion succumb to induced myocardial infarction but not to cardiac pressure overload. J. Biol. Chem. 285, 24487–24493 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  105. 105

    Khachigian, L. M. Early growth response-1 in cardiovascular pathobiology. Circ. Res. 98, 186–191 (2006).

    CAS  Article  PubMed  Google Scholar 

  106. 106

    Ho, L. C. et al. Egr-1 deficiency protects from renal inflammation and fibrosis. J. Mol. Med. (Berl.) 94, 933–942 (2016).

    CAS  Article  Google Scholar 

  107. 107

    Wang, N. P. et al. Attenuation of inflammatory response and reduction in infarct size by postconditioning are associated with downregulation of early growth response 1 during reperfusion in rat heart. Shock 41, 346–354 (2014).

    CAS  Article  PubMed  Google Scholar 

  108. 108

    Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  109. 109

    Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  110. 110

    Li, X. S. et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur. Heart J. 38, 814–824 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  111. 111

    Ufnal, M. et al. Trimethylamine-N-oxide: a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin II in rats. Can. J. Cardiol. 30, 1700–1705 (2014).

    Article  PubMed  Google Scholar 

  112. 112

    Caroff, M. & Karibian, D. Structure of bacterial lipopolysaccharides. Carbohydr. Res. 338, 2431–2447 (2003).

    CAS  Article  PubMed  Google Scholar 

  113. 113

    Lu, Y. C., Yeh, W. C. & Ohashi, P. S. LPS/TLR4 signal transduction pathway. Cytokine 42, 145–151 (2008).

    CAS  Article  PubMed  Google Scholar 

  114. 114

    Jaw, J. E. et al. Lung exposure to lipopolysaccharide causes atherosclerotic plaque destabilisation. Eur. Respir. J. 48, 205–215 (2016).

    CAS  Article  PubMed  Google Scholar 

  115. 115

    Serrano, M. et al. Serum lipopolysaccharide-binding protein as a marker of atherosclerosis. Atherosclerosis 230, 223–227 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. 116

    Pastori, D. et al. Gut-derived serum lipopolysaccharide is associated with enhanced risk of major adverse cardiovascular events in atrial fibrillation: effect of adherence to Mediterranean diet. J. Am. Heart Assoc. 6, e005784 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  117. 117

    Downey, J. S. & Han, J. Cellular activation mechanisms in septic shock. Front. Biosci. 3, d468–d476 (1998).

    CAS  Article  PubMed  Google Scholar 

  118. 118

    Tanida, M. et al. Effects of intraduodenal injection of Lactobacillus johnsonii La1 on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Neurosci. Lett. 389, 109–114 (2005).

    CAS  Article  PubMed  Google Scholar 

  119. 119

    Gomez-Guzman, M. et al. Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats. Mol. Nutr. Food Res. 59, 2326–2336 (2015).

    CAS  Article  PubMed  Google Scholar 

  120. 120

    Sipola, M. et al. Long-term intake of milk peptides attenuates development of hypertension in spontaneously hypertensive rats. J. Physiol. Pharmacol. 52, 745–754 (2001).

    CAS  PubMed  Google Scholar 

  121. 121

    Nakamura, Y., Yamamoto, N., Sakai, K. & Takano, T. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J. Dairy Sci. 78, 1253–1257 (1995).

    CAS  Article  PubMed  Google Scholar 

  122. 122

    Nakamura, Y. et al. Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. J. Dairy Sci. 78, 777–783 (1995).

    CAS  Article  PubMed  Google Scholar 

  123. 123

    Yamamoto, N., Akino, A. & Takano, T. Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 77, 917–922 (1994).

    CAS  Article  PubMed  Google Scholar 

  124. 124

    Dong, J. Y. et al. Effect of probiotic fermented milk on blood pressure: a meta-analysis of randomised controlled trials. Br. J. Nutr. 110, 1188–1194 (2013).

    CAS  Article  PubMed  Google Scholar 

  125. 125

    Khalesi, S., Sun, J., Buys, N. & Jayasinghe, R. Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension 64, 897–903 (2014).

    CAS  Article  PubMed  Google Scholar 

  126. 126

    Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 831–835 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  127. 127

    Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295–298 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  128. 128

    Achelrod, D., Wenzel, U. & Frey, S. Systematic review and meta-analysis of the prevalence of resistant hypertension in treated hypertensive populations. Am. J. Hypertens. 28, 355–361 (2015).

    Article  PubMed  Google Scholar 

  129. 129

    Qi, Y., Aranda, J. M., Rodriguez, V., Raizada, M. K. & Pepine, C. J. Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension — a case report. Int. J. Cardiol. 201, 157–158 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  130. 130

    Dominguez-Bello, M. G. et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22, 250–253 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  131. 131

    Hill, C. J. et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome 5, 4 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  132. 132

    Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  133. 133

    Blackmore, H. L. & Ozanne, S. E. Maternal diet-induced obesity and offspring cardiovascular health. J. Dev. Orig. Health Dis. 4, 338–347 (2013).

    CAS  Article  PubMed  Google Scholar 

  134. 134

    Langley-Evans, S. C. Critical differences between two low protein diet protocols in the programming of hypertension in the rat. Int. J. Food Sci. Nutr. 51, 11–17 (2000).

    CAS  Article  PubMed  Google Scholar 

  135. 135

    Bogdarina, I., Welham, S., King, P. J., Burns, S. P. & Clark, A. J. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ. Res. 100, 520–526 (2007).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  136. 136

    Harrison, M. & Langley-Evans, S. C. Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy. Br. J. Nutr. 101, 1020–1030 (2009).

    CAS  Article  PubMed  Google Scholar 

  137. 137

    Geurts, A. M. et al. Maternal diet during gestation and lactation modifies the severity of salt-induced hypertension and renal injury in Dahl salt-sensitive rats. Hypertension 65, 447–455 (2015).

    CAS  Article  PubMed  Google Scholar 

  138. 138

    Blumfield, M. L. et al. Lower protein-to-carbohydrate ratio in maternal diet is associated with higher childhood systolic blood pressure up to age four years. Nutrients 7, 3078–3093 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  139. 139

    Aaltonen, J. et al. Evidence of infant blood pressure programming by maternal nutrition during pregnancy: a prospective randomized controlled intervention study. J. Pediatr. 152, 79–84.e2 (2008).

    Article  PubMed  Google Scholar 

  140. 140

    Golubeva, A. V. et al. Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology 60, 58–74 (2015).

    Article  PubMed  Google Scholar 

  141. 141

    Gomez-Arango, L. F. et al. Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension 68, 974–981 (2016).

    CAS  Article  PubMed  Google Scholar 

  142. 142

    Brantsaeter, A. L. et al. Intake of probiotic food and risk of preeclampsia in primiparous women: the Norwegian Mother and Child Cohort Study. Am. J. Epidemiol. 174, 807–815 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  143. 143

    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  144. 144

    Li, Y. T., Cai, H. F., Wang, Z. H., Xu, J. & Fang, J. Y. Systematic review with meta-analysis: long-term outcomes of faecal microbiota transplantation for Clostridium difficile infection. Aliment. Pharmacol. Ther. 43, 445–457 (2016).

    Article  PubMed  Google Scholar 

  145. 145

    Alang, N. & Kelly, C. R. Weight gain after fecal microbiota transplantation. Open Forum Infect. Dis. 2, ofv004 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  146. 146

    US Food & Drug Administration. Draft guidance for industry: enforcement policy regarding investigational new drug requirements for use of fecal microbiota for transplantation to treat Clostridium difficile infection not responsive to standard therapies. https://www.fda.gov/biologicsbloodvaccines/guidancecomplianceregulatoryinformation/guidances/vaccines/ucm387023.htm (2016).

  147. 147

    Bryan, N. S., Tribble, G. & Angelov, N. Oral microbiome and nitric oxide: the missing link in the management of blood pressure. Curr. Hypertens. Rep. 19, 33 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. 148

    Kelly, T. N. et al. Gut microbiome associates with lifetime cardiovascular disease risk profile among Bogalusa Heart Study participants. Circ. Res. 119, 956–964 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  149. 149

    Amar, J. et al. Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the D.E.S.I.R. study. PLoS ONE 8, e54461 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

Download references

Acknowledgements

F.Z.M. is supported by a National Heart Foundation Future Leader Fellowship, and D.K. is supported by a National Health & Medical Research Council of Australia Fellowship.

Author information

Affiliations

Authors

Contributions

F.Z.M. and C.R.K. researched data for the article and wrote the article. All authors provided substantial contribution to discussion of the content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Francine Z. Marques.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marques, F., Mackay, C. & Kaye, D. Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol 15, 20–32 (2018). https://doi.org/10.1038/nrcardio.2017.120

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing