Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New and revisited approaches to preserving the reperfused myocardium

Key Points

  • Mortality after acute ST-segment elevation myocardial infarction (STEMI) has plateaued in the past decade, after a period of continual decline

  • Beyond early reperfusion, a variety of adjunctive agents to reduce myocardial infarction after reperfusion have been tested in clinical settings, and have yielded largely disappointing results

  • Before clinical testing, candidate cardioprotective agents should be tested in animal models with comorbidities similar to that in patients, and in combination with P2Y12 inhibitors

  • Approaches for improving cardiac function following STEMI that have been promising in preclinical studies include those that target mitochondrial bioenergetics, pyroptosis, autophagy, and no-reflow and anaesthetic preconditioning

Abstract

Early coronary artery reperfusion improves outcomes for patients with ST-segment elevation myocardial infarction (STEMI), but morbidity and mortality after STEMI remain unacceptably high. The primary deficits seen in these patients include inadequate pump function, owing to rapid infarction of muscle in the first few hours of treatment, and adverse remodelling of the heart in the months that follow. Given that attempts to further reduce myocardial infarct size beyond early reperfusion in clinical trials have so far been disappointing, effective therapies are still needed to protect the reperfused myocardium. In this Review, we discuss several approaches to preserving the reperfused heart, such as therapies that target the mechanisms involved in mitochondrial bioenergetics, pyroptosis, and autophagy, as well as treatments that harness the cardioprotective properties of inhaled anaesthetic agents. We also discuss potential therapies focused on correcting the no-reflow phenomenon and its effect on healing and adverse left ventricular remodelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: New and updated approaches to treat the reperfused myocardium.
Figure 2: Sites of reactive oxygen species (ROS) production within the mitochondria.
Figure 3: The interplay between Toll-like receptor 9 (TLR9) and the NLRP3 inflammasome.

Similar content being viewed by others

References

  1. Gerczuk, P. Z. & Kloner, R. A. An update on cardioprotection: a review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. J. Am. Coll. Cardiol. 59, 969–978 (2012).

    Article  PubMed  Google Scholar 

  2. Hausenloy, D. J. et al. Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur. Heart J. 38, 935–941 (2016).

    PubMed Central  Google Scholar 

  3. Menees, D. S. et al. Door-to-balloon time and mortality among patients undergoing primary PCI. N. Engl. J. Med. 369, 901–909 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Mozaffarian, D. et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131, e29–322 (2015).

    PubMed  Google Scholar 

  5. Iliodromitis, E. K. et al. What is wrong with cardiac conditioning? We may shoot moving targets. J. Cardiovasc. Pharmacol. Ther. 20, 357–369 (2015).

    Article  PubMed  Google Scholar 

  6. Yang, X. M. et al. Platelet P2Y12 blockers confer direct postconditioning-like protection in reperfused rabbit hearts. J. Cardiovasc. Pharmacol. Ther. 18, 251–262 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, X. M. et al. Two classes of anti-platelet drugs reduce anatomical infarct size in monkey hearts. Cardiovasc. Drugs Ther. 27, 109–115 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Yang, X. M., Cui, L., Alhammouri, A., Downey, J. M. & Cohen, M. V. Triple therapy greatly increases myocardial salvage during ischemia/reperfusion in the in situ rat heart. Cardiovasc. Drugs Ther. 27, 403–412 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Luz, A. et al. Lack of benefit of ischemic postconditioning after routine thrombus aspiration during reperfusion: immediate and midterm results. J. Cardiovasc. Pharmacol. Ther. 20, 523–531 (2015).

    Article  PubMed  Google Scholar 

  10. Mentias, A. et al. Ischemic postconditioning during primary percutaneous coronary intervention. Catheter. Cardiovasc. Interv. http://dx.doi.org/10.1002/ccd.26965 (2017).

  11. Elbadawi, A., Ha, L. D., Abuzaid, A. S., Crimi, G. & Azzouz, M. S. Meta-analysis of randomized trials on remote ischemic conditioning during primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction. Am. J. Cardiol. 119, 832–838 (2017).

    Article  PubMed  Google Scholar 

  12. Gao, J. et al. The effects of remote ischemic conditioning in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention: a meta-analysis. Minerva Med. http://dx.doi.org/10.23736/s0026-4806.17.04631-6 (2017).

  13. Le Page, S., Bejan-Angoulvant, T., Angoulvant, D. & Prunier, F. Remote ischemic conditioning and cardioprotection: a systematic review and meta-analysis of randomized clinical trials. Bas. Res. Cardiol. 110, 11 (2015).

    Article  CAS  Google Scholar 

  14. Man, C., Gong, D., Zhou, Y. & Fan, Y. Meta-analysis of remote ischemic conditioning in patients with acute myocardial infarction. Sci. Rep. 7, 43529 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hale, S. L. & Kloner, R. A. Myocardial temperature in acute myocardial infarction: protection with mild regional hypothermia. Am. J. Physiol. 273, H220–227 (1997).

    CAS  PubMed  Google Scholar 

  16. Herring, M. J., Dai, W., Hale, S. L. & Kloner, R. A. Rapid induction of hypothermia by the thermosuit system profoundly reduces infarct size and anatomic zone of no reflow following ischemia-reperfusion in rabbit and rat hearts. J. Cardiovasc. Pharmacol. Ther. 20, 193–202 (2015).

    Article  PubMed  Google Scholar 

  17. Pfeffer, M. A. et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N. Engl. J. Med. 327, 669–677 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Fisher, S. A., Doree, C., Taggart, D. P., Mathur, A. & Martin-Rendon, E. Cell therapy for heart disease: trial sequential analyses of two Cochrane reviews. Clin. Pharmacol. Ther. 100, 88–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Zhu, K., Li, J., Wang, Y., Lai, H. & Wang, C. Nanoparticles-assisted stem cell therapy for ischemic heart disease. Stem Cells Int. 2016, 1384658 (2016).

    PubMed  Google Scholar 

  20. Tang, J. et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat. Commun. 8, 13724 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gerczuk, P. Z. & Kloner, R. A. Protecting the heart from ischemia: an update on ischemic and pharmacologic conditioning. Hosp. Pract. 39, 35–43 (2011) (1995).

    Article  Google Scholar 

  22. Kloner, R. A., Dai, W., Hale, S. L. & Shi, J. Approaches to improving cardiac structure and function during and after an acute myocardial infarction: acute and chronic phases. J. Cardiovasc. Pharmacol. Ther. 21, 363–367 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. US National Library of Medicine. Transplantation of autologous derived mitochondria following ischemia. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02851758 (2016).

  24. Brown, D. A. et al. Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat. Rev. Cardiol. 14, 238–250 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brown, D. A., Sabbah, H. N. & Shaikh, S. R. Mitochondrial inner membrane lipids and proteins as targets for decreasing cardiac ischemia/reperfusion injury. Pharmacol. Ther. 140, 258–266 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Murphy, E. & Steenbergen, C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol. Rev. 88, 581–609 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Walters, A. M., Porter, G. A. Jr & Brookes, P. S. Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ. Res. 111, 1222–1236 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brown, D. A. & O'Rourke, B. Cardiac mitochondria and arrhythmias. Cardiovasc. Res. 88, 241–249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hausenloy, D. J. & Yellon, D. M. Targeting myocardial reperfusion injury—the search continues. N. Engl. J. Med. 373, 1073–1075 (2015).

    Article  PubMed  Google Scholar 

  30. Murphy, E. & Steenbergen, C. Ion transport and energetics during cell death and protection. Physiol. (Bethesda, Md.) 23, 115–123 (2008).

    CAS  Google Scholar 

  31. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Orr, A. L. et al. Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening. Free Radic. Biol. Med. 65, 1047–1059 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Siu, K. L., Lotz, C., Ping, P. & Cai, H. Netrin-1 abrogates ischemia/reperfusion-induced cardiac mitochondrial dysfunction via nitric oxide-dependent attenuation of NOX4 activation and recoupling of NOS. J. Mol. Cell. Cardiol. 78, 174–185 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Kaludercic, N., Carpi, A., Menabo, R., Di Lisa, F. & Paolocci, N. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim. Biophys. Acta 1813, 1323–1332 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Kaludercic, N., Mialet-Perez, J., Paolocci, N., Parini, A. & Di Lisa, F. Monoamine oxidases as sources of oxidants in the heart. J. Mol. Cell. Cardiol. 73, 34–42 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Alleman, R. J., Katunga, L. A., Nelson, M. A., Brown, D. A. & Anderson, E. J. The “Goldilocks Zone” from a redox perspective — Adaptive vs. deleterious responses to oxidative stress in striated muscle. Frontiers Physiol. 5, 358 (2014).

    Article  Google Scholar 

  37. Frasier, C. R. et al. Redox-dependent increases in glutathione reductase and exercise preconditioning: role of NADPH oxidase and mitochondria. Cardiovasc. Res. 98, 47–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Nelson, M. J., Harris, M. B., Boluyt, M. O., Hwang, H. S. & Starnes, J. W. Effect of N-2-mercaptopropionyl glycine on exercise-induced cardiac adaptations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R993–R1000 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Pain, T. et al. Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals. Circ. Res. 87, 460–466 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Rosca, M. G., Tandler, B. & Hoppel, C. L. Mitochondria in cardiac hypertrophy and heart failure. J. Mol. Cell. Cardiol. 55, 31–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Song, M. et al. Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy. Circ. Res. 115, 348–353 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bolli, R. et al. Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc. Natl Acad. Sci. USA 86, 4695–4699 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kloner, R. A. et al. Reduction of ischemia/reperfusion injury with bendavia, a mitochondria-targeting cytoprotective peptide. J. Am. Heart Assoc. 1, e001644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zweier, J. L. Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. J. Biol. Chem. 263, 1353–1357 (1988).

    CAS  PubMed  Google Scholar 

  45. Zweier, J. L., Flaherty, J. T. & Weisfeldt, M. L. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc. Natl Acad. Sci. USA 84, 1404–1407 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zweier, J. L. et al. Measurement and characterization of postischemic free radical generation in the isolated perfused heart. J. Biol. Chem. 264, 18890–18895 (1989).

    CAS  PubMed  Google Scholar 

  47. Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Acin-Perez, R., Fernandez-Silva, P., Peleato, M. L., Perez-Martos, A. & Enriquez, J. A. Respiratory active mitochondrial supercomplexes. Mol. Cell 32, 529–539 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Genova, M. L. & Lenaz, G. Functional role of mitochondrial respiratory supercomplexes. Biochim. Biophys. Acta 1837, 427–443 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Lapuente-Brun, E. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567–1570 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Schagger, H. Respiratory chain supercomplexes of mitochondria and bacteria. Biochim. Biophys. Acta 1555, 154–159 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Jang, S. et al. Elucidating mitochondrial electron transport chain supercomplexes in the heart during ischemia-reperfusion. Antioxid. Redox Signal. 27, 57–69 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Gomez, L. A., Monette, J. S., Chavez, J. D., Maier, C. S. & Hagen, T. M. Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart. Arch. Biochem. Biophys. 490, 30–35 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rosca, M., Minkler, P. & Hoppel, C. L. Cardiac mitochondria in heart failure: normal cardiolipin profile and increased threonine phosphorylation of complex IV. Biochim. Biophys. Acta 1807, 1373–1382 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Maranzana, E., Barbero, G., Falasca, A. I., Lenaz, G. & Genova, M. L. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid. Redox Signal. 19, 1469–1480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Escobales, N. et al. Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats. J. Mol. Cell. Cardiol. 77, 136–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ni, R. et al. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Free Radic. Biol. Med. 90, 12–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Eto, M., Kajihara, N., Morita, S. & Tominaga, R. A novel electron paramagnetic resonance spin-probe technique demonstrates the relation between the production of hydroxyl radicals and ischemia-reperfusion injury. Eur. J. Cardiothorac. Surg. 39, 465–470 (2011).

    Article  PubMed  Google Scholar 

  59. Liu, Y. et al. The alternative crosstalk between RAGE and nitrative thioredoxin inactivation during diabetic myocardial ischemia-reperfusion injury. Am. J. Physiol. Endocrinol. Metab. 303, E841–E852 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Pucheu, S., Boucher, F., Malfroy, B. & De Leiris, J. Protective effect of the superoxide scavenger EUK8 against ultrastructural alterations induced by ischemia and reperfusion in isolated rat hearts. Nutrition 11, 582–584 (1995).

    CAS  PubMed  Google Scholar 

  61. van Empel, V. P. et al. EUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overload-induced heart failure in the harlequin mouse mutant. J. Am. Coll. Cardiol. 48, 824–832 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Xu, Y., Liu, B., Zweier, J. L. & He, G. Formation of hydrogen peroxide and reduction of peroxynitrite via dismutation of superoxide at reperfusion enhances myocardial blood flow and oxygen consumption in postischemic mouse heart. J. Pharmacol. Exp. Ther. 327, 402–410 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Nistri, S. et al. A new low molecular weight, MnII-containing scavenger of superoxide anion protects cardiac muscle cells from hypoxia/reoxygenation injury. Free Radic. Res. 49, 67–77 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Bovo, E., Lipsius, S. L. & Zima, A. V. Reactive oxygen species contribute to the development of arrhythmogenic Ca2+ waves during beta-adrenergic receptor stimulation in rabbit cardiomyocytes. J. Physiol. 590, 3291–3304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Flaherty, J. T. et al. Recombinant human superoxide dismutase (h-SOD) fails to improve recovery of ventricular function in patients undergoing coronary angioplasty for acute myocardial infarction. Circulation 89, 1982–1991 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Tsujita, K. et al. Effects of edaravone on reperfusion injury in patients with acute myocardial infarction. Am. J. Cardiol. 94, 481–484 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Maulik, N. et al. Dietary coenzyme Q(10) supplement renders swine hearts resistant to ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 278, H1084–H1090 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Whitman, G. J. et al. The mechanisms of coenzyme Q10 as therapy for myocardial ischemia reperfusion injury. Mol. Aspects Med. 18 (Suppl.), S195–S203 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Mortensen, S. A. et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail 2, 641–649 (2014).

    Article  PubMed  Google Scholar 

  70. Adlam, V. J. et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J. 19, 1088–1095 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Skulachev, V. P. et al. An attempt to prevent senescence: a mitochondrial approach. Biochim. Biophys. Acta 1787, 437–461 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Lyamzaev, K. G. et al. Novel mitochondria-targeted antioxidants: plastoquinone conjugated with cationic plant alkaloids berberine and palmatine. Pharm. Res. 28, 2883–2895 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Lesnefsky, E. J. et al. Blockade of electron transport during ischemia protects cardiac mitochondria. J. Biol. Chem. 279, 47961–47967 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Bridges, H. R., Jones, A. J., Pollak, M. N. & Hirst, J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem. J. 462, 475–487 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Chen, Q., Camara, A. K., Stowe, D. F., Hoppel, C. L. & Lesnefsky, E. J. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am. J. Physiol. Cell Physiol. 292, C137–C147 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Yin, M. et al. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am. J. Physiol. Heart Circ. Physiol. 301, H459–H468 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Valls-Lacalle, L. et al. Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition. Cardiovasc. Res. 109, 374–384 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Wojtovich, A. P. & Brookes, P. S. The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: implications for ischemic preconditioning. Biochim. Biophys. Acta 1777, 882–889 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chouchani, E. T. et al. Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation. Biochem. J. 430, 49–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Chouchani, E. T. et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat. Med. 19, 753–759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Methner, C. et al. Mitochondria selective S-nitrosation by mitochondria-targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts. Eur. J. Heart Fail. 16, 712–717 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Nadtochiy, S. M., Burwell, L. S. & Brookes, P. S. Cardioprotection and mitochondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury. J. Mol. Cell. Cardiol. 42, 812–825 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Prime, T. A. et al. A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA 106, 10764–10769 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Porter, G. A., Urciuoli, W. R., Brookes, P. S. & Nadtochiy, S. M. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am. J. Physiol. Heart Circ. Physiol. 306, H1602–H1609 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dassanayaka, S. & Jones, S. P. O-GlcNAc and the cardiovascular system. Pharmacol. Ther. 142, 62–71 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Boylston, J. A. et al. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. J. Mol. Cell. Cardiol. 88, 73–81 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Akhmedov, A. et al. Genetic deletion of the adaptor protein p66Shc increases susceptibility to short-term ischaemic myocardial injury via intracellular salvage pathways. Eur. Heart J. 36, 516–526 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Carpi, A. et al. The cardioprotective effects elicited by p66(Shc) ablation demonstrate the crucial role of mitochondrial ROS formation in ischemia/reperfusion injury. Biochim. Biophys. Acta 1787, 774–780 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Heusch, G. Mitochondria at the heart of cardiovascular protection: p66shc-friend or foe? Eur. Heart J. 36, 469–471 (2015).

    Article  PubMed  Google Scholar 

  90. Akar, F. G., Aon, M. A., Tomaselli, G. F. & O'Rourke, B. The mitochondrial origin of postischemic arrhythmias. J. Clin. Invest. 115, 3527–3535 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Alleman, R. J. et al. Exercise-induced protection against reperfusion arrhythmia involves stabilization of mitochondrial energetics. Am. J. Physiol. Heart Circ. Physiol. 310, H1360–H1370 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Matsumoto-Ida, M., Akao, M., Takeda, T., Kato, M. & Kita, T. Real-time 2-photon imaging of mitochondrial function in perfused rat hearts subjected to ischemia/reperfusion. Circulation 114, 1497–1503 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Slodzinski, M. K., Aon, M. A. & O'Rourke, B. Glutathione oxidation as a trigger of mitochondrial depolarization and oscillation in intact hearts. J. Mol. Cell. Cardiol. 45, 650–660 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Aon, M. A., Cortassa, S. & O'Rourke, B. Redox-optimized ROS balance: a unifying hypothesis. Biochim. Biophys. Acta 1797, 865–877 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brand, M. D. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp. Gerontol. 35, 811–820 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Smith, B. K. et al. Salsalate (salicylate) uncouples mitochondria, improves glucose homeostasis, and reduces liver lipids independent of AMPK-β1. Diabetes 65, 3352–3361 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Quarrie, R. et al. Mitochondrial uncoupling does not decrease reactive oxygen species production after ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol. 307, H996–H1004 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brennan, J. P. et al. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc. Res. 72, 313–321 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Nickel, A. G. et al. Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab. 22, 472–484 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. O'Rourke, B. Metabolism: beyond the power of mitochondria. Nat. Rev. Cardiol. 13, 386–388 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Ioroi, T. et al. Serofendic acid protects against myocardial ischemia-reperfusion injury in rats. J. Pharmacol. Sci. 126, 274–280 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Brown, D. A. et al. Cardiac arrhythmias induced by glutathione oxidation can be inhibited by preventing mitochondrial depolarization. J. Mol. Cell. Cardiol. 48, 673–679 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Solhjoo, S. & O'Rourke, B. Mitochondrial instability during regional ischemia-reperfusion underlies arrhythmias in monolayers of cardiomyocytes. J. Mol. Cell. Cardiol. 78, 90–99 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Zamzami, N. et al. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med. 181, 1661–1672 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Tang, H. L. et al. Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol. Biol. Cell 23, 2240–2252 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ding, A. X. et al. CasExpress reveals widespread and diverse patterns of cell survival of caspase-3 activation during development in vivo. eLife 5, e10936 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Alam, M. R., Baetz, D. & Ovize, M. Cyclophilin D and myocardial ischemia-reperfusion injury: a fresh perspective. J. Mol. Cell. Cardiol. 78, 80–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Baines, C. P. The mitochondrial permeability transition pore and ischemia-reperfusion injury. Bas. Res. Cardiol. 104, 181–188 (2009).

    Article  CAS  Google Scholar 

  109. Bernardi, P. & Di Lisa, F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J. Mol. Cell. Cardiol. 78, 100–106 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ong, S. B., Samangouei, P., Kalkhoran, S. B. & Hausenloy, D. J. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J. Mol. Cell. Cardiol. 78, 23–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Hausenloy, D. J., Yellon, D. M., Mani-Babu, S. & Duchen, M. R. Preconditioning protects by inhibiting the mitochondrial permeability transition. Am. J. Physiol. Heart Circ. Physiol. 287, H841–H849 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Lu, X., Kwong, J. Q., Molkentin, J. D. & Bers, D. M. Individual cardiac mitochondria undergo rare transient permeability transition pore openings. Circ. Res. 118, 834–841 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Carraro, M. et al. Channel formation by yeast F-ATP synthase and the role of dimerization in the mitochondrial permeability transition. J. Biol. Chem. 289, 15980–15985 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Giorgio, V. et al. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc. Natl Acad. Sci. USA 110, 5887–5892 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mewton, N. et al. Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. J. Am. Coll. Cardiol. 55, 1200–1205 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Piot, C. et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N. Engl. J. Med. 359, 473–481 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Cung, T. T. et al. Cyclosporine before PCI in Patients with Acute Myocardial Infarction. N. Engl. J. Med. 373, 1021–1031 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Atar, D. et al. Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: MITOCARE study results. Eur. Heart J. 36, 112–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Bell, R. M. et al. 9th Hatter Biannual Meeting: position document on ischaemia/reperfusion injury, conditioning and the ten commandments of cardioprotection. Bas. Res. Cardiol. 111, 41 (2016).

    Article  CAS  Google Scholar 

  120. Calmettes, G. et al. Hexokinases and cardioprotection. J. Mol. Cell. Cardiol. 78, 107–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Halestrap, A. P., Pereira, G. C. & Pasdois, P. The role of hexokinase in cardioprotection - mechanism and potential for translation. Br. J. Pharmacol. 172, 2085–2100 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Nederlof, R., Eerbeek, O., Hollmann, M. W., Southworth, R. & Zuurbier, C. J. Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce ischaemia-reperfusion injury in heart. Br. J. Pharmacol. 171, 2067–2079 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dube, H. et al. A mitochondrial-targeted cyclosporin A with high binding affinity for cyclophilin D yields improved cytoprotection of cardiomyocytes. Biochem. J. 441, 901–907 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Cowan, D. B. et al. Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection. PLoS ONE 11, e0160889 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kaza, A. K. et al. Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J. Thorac. Cardiovasc. Surg. 153, 934–943 (2017).

    Article  PubMed  Google Scholar 

  126. Masuzawa, A. et al. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 304, H966–H982 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Brown, D. A. et al. Reduction of early reperfusion injury with the mitochondria-targeting peptide Bendavia. J. Cardiovasc. Pharmacol. Ther. 153, 934–943 (2013).

    Google Scholar 

  128. Dai, W. et al. Cardioprotective effects of mitochondria-targeted peptide SBT-20 in two different models of rat ischemia/reperfusion. Cardiovasc. Drugs Ther. 30, 559–566 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shi, J. et al. Bendavia restores mitochondrial energy metabolism gene expression and suppresses cardiac fibrosis in the border zone of the infarcted heart. Life Sci. 141, 170–178 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhao, K. et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J. Biol. Chem. 279, 34682–34690 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Tano, J. Y. & Gollasch, M. Calcium-activated potassium channels in ischemia reperfusion: a brief update. Front. Physiol. 5, 381 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Foster, D. B. et al. Mitochondrial ROMK channel is a molecular component of mitoKATP . Circ. Res. 111, 446–454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Foster, M. N. & Coetzee, W. A. KATP channels in the cardiovascular system. Physiol. Rev. 96, 177–252 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Lefer, D. J., Nichols, C. G. & Coetzee, W. A. Sulfonylurea receptor 1 subunits of ATP-sensitive potassium channels and myocardial ischemia/reperfusion injury. Trends Cardiovasc. Med. 19, 61–67 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yang, X. M. et al. Mitochondrially targeted Endonuclease III has a powerful anti-infarct effect in an in vivo rat model of myocardial ischemia/reperfusion. Bas. Res. Cardiol. 110, 3 (2015).

    Article  CAS  Google Scholar 

  137. Skulachev, M. V. et al. Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies. Curr. Drug Targets 12, 800–826 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Smith, R. A., Hartley, R. C., Cocheme, H. M. & Murphy, M. P. Mitochondrial pharmacology. Trends Pharmacol. Sci. 33, 341–352 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Smith, R. A., Hartley, R. C. & Murphy, M. P. Mitochondria-targeted small molecule therapeutics and probes. Antioxid. Redox Signal. 15, 3021–3038 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Chernyak, B. V. et al. Novel mitochondria-targeted compounds composed of natural constituents: conjugates of plant alkaloids berberine and palmatine with plastoquinone. Biochem. Biokhimiia 77, 983–995 (2012).

    Article  CAS  Google Scholar 

  141. Pustovidko, A. V. et al. Derivatives of the cationic plant alkaloids berberine and palmatine amplify protonophorous activity of fatty acids in model membranes and mitochondria. Mitochondrion 13, 520–525 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Yousif, L. F., Stewart, K. M., Horton, K. L. & Kelley, S. O. Mitochondria-penetrating peptides: sequence effects and model cargo transport. Chembiochem. 10, 2081–2088 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Horton, K. L., Pereira, M. P., Stewart, K. M., Fonseca, S. B. & Kelley, S. O. Tuning the activity of mitochondria-penetrating peptides for delivery or disruption. Chembiochem. 13, 476–485 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Horton, K. L., Stewart, K. M., Fonseca, S. B., Guo, Q. & Kelley, S. O. Mitochondria-penetrating peptides. Chem. Biol. 15, 375–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Szeto, H. H. & Schiller, P. W. Novel therapies targeting inner mitochondrial membrane—from discovery to clinical development. Pharm. Res. 28, 2669–2679 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Ikeda, G. et al. Nanoparticle-mediated targeting of cyclosporine A enhances cardioprotection against ischemia-reperfusion injury through inhibition of mitochondrial permeability transition pore opening. Sci. Rep. 6, 20467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ishikita, A. et al. Nanoparticle-mediated delivery of mitochondrial division inhibitor 1 to the myocardium protects the heart from ischemia-reperfusion injury through inhibition of mitochondria outer membrane permeabilization: a new therapeutic modality for acute myocardial infarction. J. Am. Heart Assoc. 5, e003872 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Guerrero-Beltran, C. E. et al. Silica nanoparticles induce cardiotoxicity interfering with energetic status and Ca2+ handling in adult rat cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 312, H645–H661 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Thompson, L. C. et al. Pulmonary instillation of multi-walled carbon nanotubes promotes coronary vasoconstriction and exacerbates injury in isolated hearts. Nanotoxicology 8, 38–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Cope, D. K., Impastato, W. K., Cohen, M. V. & Downey, J. M. Volatile anesthetics protect the ischemic rabbit myocardium from infarction. Anesthesiology 86, 699–709 (1997).

    Article  CAS  PubMed  Google Scholar 

  151. De Hert, S. G. et al. Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology 97, 42–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Mellidis, K. et al. Activation of prosurvival signaling pathways during the memory phase of volatile anesthetic preconditioning in human myocardium: a pilot study. Mol. Cell. Biochem. 388, 195–201 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Riess, M. L., Stowe, D. F. & Warltier, D. C. Cardiac pharmacological preconditioning with volatile anesthetics: from bench to bedside? Am. J. Physiol. Heart Circ. Physiol. 286, H1603–H1607 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Lang, X. E. et al. Isoflurane preconditioning confers cardioprotection by activation of ALDH2. PLoS ONE 8, e52469 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tampo, A., Hogan, C. S., Sedlic, F., Bosnjak, Z. J. & Kwok, W. M. Accelerated inactivation of cardiac L-type calcium channels triggered by anaesthetic-induced preconditioning. Br. J. Pharmacol. 156, 432–443 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Amour, J. et al. Role of heat shock protein 90 and endothelial nitric oxide synthase during early anesthetic and ischemic preconditioning. Anesthesiology 110, 317–325 (2009).

    CAS  PubMed  Google Scholar 

  157. Hieber, S., Huhn, R., Hollmann, M. W., Weber, N. C. & Preckel, B. Hypoxia-inducible factor 1 and related gene products in anaesthetic-induced preconditioning. Eur. J. Anaesthesiol. 26, 201–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Julier, K. et al. Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded, placebo-controlled, multicenter study. Anesthesiology 98, 1315–1327 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Lucchinetti, E. et al. Remote ischemic preconditioning applied during isoflurane inhalation provides no benefit to the myocardium of patients undergoing on-pump coronary artery bypass graft surgery: lack of synergy or evidence of antagonism in cardioprotection? Anesthesiology 116, 296–310 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Suleiman, M. S., Zacharowski, K. & Angelini, G. D. Inflammatory response and cardioprotection during open-heart surgery: the importance of anaesthetics. Br. J. Pharmacol. 153, 21–33 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Nguyen, L. T. et al. Attenuation of isoflurane-induced preconditioning and reactive oxygen species production in the senescent rat heart. Anesthesia Analgesia 107, 776–782 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Kehl, F. et al. Hyperglycemia prevents isoflurane-induced preconditioning against myocardial infarction. Anesthesiology 96, 183–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Canfield, S. G. et al. Marked hyperglycemia attenuates anesthetic preconditioning in human-induced pluripotent stem cell-derived cardiomyocytes. Anesthesiology 117, 735–744 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Saxena, A., Russo, I. & Frangogiannis, N. G. Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Transl. Res. 167, 152–166 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Takahashi, M. NLRP3 inflammasome as a novel player in myocardial infarction. Int. Heart J. 55, 101–105 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Franchi, L., Munoz-Planillo, R. & Nunez, G. Sensing and reacting to microbes through the inflammasomes. Nat. Immunol. 13, 325–332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Aglietti, R. A. et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl Acad. Sci. USA 113, 7858–7863 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Arnoult, D., Soares, F., Tattoli, I. & Girardin, S. E. Mitochondria in innate immunity. EMBO Rep. 12, 901–910 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Garcia, N. & Chavez, E. Mitochondrial DNA fragments released through the permeability transition pore correspond to specific gene size. Life Sci. 81, 1160–1166 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Man, S. M., Karki, R. & Kanneganti, T. D. DNA-sensing inflammasomes: regulation of bacterial host defense and the gut microbiota. Pathog. Dis. 74, ftw028 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Simmons, J. D. et al. Mitochondrial DNA damage associated molecular patterns in ventilator-associated pneumonia: prevention and reversal by intratracheal DNase I. J. Trauma Acute Care Surg. 82, 120–125 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bliksoen, M. et al. Extracellular mtDNA activates NF-κB via toll-like receptor 9 and induces cell death in cardiomyocytes. Bas. Res. Cardiol. 111, 42 (2016).

    Article  CAS  Google Scholar 

  175. Kawaguchi, M. et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123, 594–604 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Pomerantz, B. J., Reznikov, L. L., Harken, A. H. & Dinarello, C. A. Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1β. Proc. Natl Acad. Sci. USA 98, 2871–2876 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jong, W. M. et al. Nlrp3 plays no role in acute cardiac infarction due to low cardiac expression. Int. J. Cardiol. 177, 41–43 (2014).

    Article  PubMed  Google Scholar 

  178. Sandanger, O. et al. NLRP3 inflammasome activation during myocardial ischemia reperfusion is cardioprotective. Biochem. Biophys. Res. Commun. 469, 1012–1020 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Marchetti, C. et al. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J. Cardiovasc. Pharmacol. 63, 316–322 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Mastrocola, R. et al. Pharmacological inhibition of NLRP3 inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways. Oxid. Med. Cell. Longev. 2016, 5271251 (2016).

    PubMed  PubMed Central  Google Scholar 

  182. van Hout, G. P. et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur. Heart J. 38, 828–836 (2016).

    Google Scholar 

  183. Holly, T. A. et al. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J. Mol. Cell. Cardiol. 31, 1709–1715 (1999).

    Article  CAS  PubMed  Google Scholar 

  184. Syed, F. M. et al. Proapoptotic effects of caspase-1/interleukin-converting enzyme dominate in myocardial ischemia. Circ. Res. 96, 1103–1109 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Koshinuma, S., Miyamae, M., Kaneda, K., Kotani, J. & Figueredo, V. M. Combination of necroptosis and apoptosis inhibition enhances cardioprotection against myocardial ischemia-reperfusion injury. J. Anesthesia 28, 235–241 (2014).

    Article  Google Scholar 

  186. Mocanu, M. M., Baxter, G. F. & Yellon, D. M. Caspase inhibition and limitation of myocardial infarct size: protection against lethal reperfusion injury. Br. J. Pharmacol. 130, 197–200 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Duprez, L., Wirawan, E., Vanden Berghe, T. & Vandenabeele, P. Major cell death pathways at a glance. Microbes Infection 11, 1050–1062 (2009).

    Article  CAS  PubMed  Google Scholar 

  188. Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Shao, W., Yeretssian, G., Doiron, K., Hussain, S. N. & Saleh, M. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J. Biol. Chem. 282, 36321–36329 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Yang, X.-M. et al. The highly selective caspase-1 inhibitor VX-765 provides additive protection against myocardial infarction in rat hearts when combined with a platelet inhibitor. J. Cardiovasc. Pharmacol. Ther. http://dx.doi.org/10.1177/1074248417702890 (2017).

  191. Yu, J. et al. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc. Natl Acad. Sci. USA 111, 15514–15519 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Oka, T. et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485, 251–255 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Murry, C. E., Jennings, R. B. & Reimer, K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124–1136 (1986).

    Article  CAS  PubMed  Google Scholar 

  194. Huang, C. et al. Autophagy and protein kinase C are required for cardioprotection by sulfaphenazole. Am. J. Physiol. Heart Circ. Physiol. 298, H570–H579 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Yitzhaki, S. et al. Autophagy is required for preconditioning by the adenosine A1 receptor-selective agonist CCPA. Bas. Res. Cardiol. 104, 157–167 (2009).

    Article  CAS  Google Scholar 

  196. Wang, L. Q., Cheng, X. S., Huang, C. H., Huang, B. & Liang, Q. Rapamycin protects cardiomyocytes against anoxia/reoxygenation injury by inducing autophagy through the PI3k/Akt pathway. J. Huazhong Univ. Sci. Technolog. Med. Sci. 35, 10–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. Wu, X. et al. Induction of autophagy contributes to the myocardial protection of valsartan against ischemiareperfusion injury. Mol. Med. Rep. 8, 1824–1830 (2013).

    Article  CAS  PubMed  Google Scholar 

  198. Gurusamy, N. et al. Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc. Res. 86, 103–112 (2010).

    Article  CAS  PubMed  Google Scholar 

  199. Xie, M. et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation 129, 1139–1151 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Rohailla, S. et al. Acute, delayed and chronic remote ischemic conditioning is associated with downregulation of mTOR and enhanced autophagy signaling. PLoS ONE 9, e111291 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Gurusamy, N., Lekli, I., Gherghiceanu, M., Popescu, L. M. & Das, D. K. BAG-1 induces autophagy for cardiac cell survival. Autophagy 5, 120–121 (2009).

    Article  CAS  PubMed  Google Scholar 

  202. Park, H. K. et al. Autophagy is involved in the ischemic preconditioning. Neurosci. Lett. 451, 16–19 (2009).

    Article  CAS  PubMed  Google Scholar 

  203. Yan, L., Sadoshima, J., Vatner, D. E. & Vatner, S. F. Autophagy in ischemic preconditioning and hibernating myocardium. Autophagy 5, 709–712 (2009).

    Article  CAS  PubMed  Google Scholar 

  204. Huang, C. et al. Autophagy induced by ischemic preconditioning is essential for cardioprotection. J. Cardiovasc. Transl. Res. 3, 365–373 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Huang, C. et al. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS ONE 6, e20975 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Andres, A. M. et al. Mitophagy is required for acute cardioprotection by simvastatin. Antioxid. Redox Signal. 21, 1960–1973 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Matsui, Y. et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ. Res. 100, 914–922 (2007).

    Article  CAS  PubMed  Google Scholar 

  208. Schiattarella, G. G. & Hill, J. A. Therapeutic targeting of autophagy in cardiovascular disease. J. Mol. Cell. Cardiol. 95, 86–93 (2016).

    Article  CAS  PubMed  Google Scholar 

  209. Bhuiyan, M. S. et al. Enhanced autophagy ameliorates cardiac proteinopathy. J. Clin. Invest. 123, 5284–5297 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Delbridge, L. M., Mellor, K. M., Taylor, D. J. & Gottlieb, R. A. Myocardial autophagic energy stress responses—macroautophagy, mitophagy, and glycophagy. Am. J. Physiol. Heart Circ. Physiol. 308, H1194–H1204 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Gottlieb, R. A., Andres, A. M., Sin, J. & Taylor, D. P. J. Untangling autophagy measurements: all fluxed up. Circ. Res. 116, 504–514 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Han, Z. et al. Autophagy is involved in the cardioprotection effect of remote limb ischemic postconditioning on myocardial ischemia/reperfusion injury in normal mice, but not diabetic mice. PLoS ONE 9, e86838 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Ke, J., Yao, B., Li, T., Cui, S. & Ding, H. A2 adenosine receptor-mediated cardioprotection against reperfusion injury in rat hearts is associated with autophagy downregulation. J. Cardiovasc. Pharmacol. 66, 25–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  214. Su, J., Zhang, T., Wang, K., Zhu, T. & Li, X. Autophagy activation contributes to the neuroprotection of remote ischemic perconditioning against focal cerebral ischemia in rats. Neurochem. Res. 39, 2068–2077 (2014).

    Article  CAS  PubMed  Google Scholar 

  215. Zhang, Y. L. et al. Restoration of autophagic flux in myocardial tissues is required for cardioprotection of sevoflurane postconditioning in rats. Acta Pharmacol. Sin. 35, 758–769 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Koike, M. et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am. J. Pathol. 172, 454–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Xing, S. et al. Beclin 1 knockdown inhibits autophagic activation and prevents the secondary neurodegenerative damage in the ipsilateral thalamus following focal cerebral infarction. Autophagy 8, 63–76 (2012).

    Article  CAS  PubMed  Google Scholar 

  218. Liu, Y. et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl Acad. Sci. USA 110, 20364–20371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Elgendy, M., Sheridan, C., Brumatti, G. & Martin, S. J. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol. Cell 42, 23–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  220. Rothermel, B. A. & Hill, J. A. Autophagy in load-induced heart disease. Circ. Res. 103, 1363–1369 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wang, Q. & Ren, J. mTOR-Independent autophagy inducer trehalose rescues against insulin resistance-induced myocardial contractile anomalies: Role of p38 MAPK and Foxo1. Pharmacol. Res. 111, 357–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Jang, S. Y., Kang, H. T. & Hwang, E. S. Nicotinamide-induced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J. Biol. Chem. 287, 19304–19314 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Lee, I. H. et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl Acad. Sci. USA 105, 3374–3379 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Liu, G. et al. Loss of NAD-dependent protein deacetylase sirtuin-2 alters mitochondrial protein acetylation and dysregulates mitophagy. Antioxid. Redox Signal. 26, 849–863 (2016).

    Article  CAS  PubMed  Google Scholar 

  225. Bo, L. et al. Autophagic program is regulated by miR-325. Cell Death Differ. 21, 967–977 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Chen, Q., Zhou, Y., Richards, A. M. & Wang, P. Up-regulation of miRNA-221 inhibits hypoxia/reoxygenation-induced autophagy through the DDIT4/mTORC1 and Tp53inp1/p62 pathways. Biochem. Biophys. Res. Commun. 474, 168–174 (2016).

    Article  CAS  PubMed  Google Scholar 

  227. Gottlieb, R. A. & Pourpirali, S. Lost in translation: miRNAs and mRNAs in ischemic preconditioning and ischemia/reperfusion injury. J. Mol. Cell. Cardiol. 95, 70–77 (2016).

    Article  CAS  PubMed  Google Scholar 

  228. Gupta, S. K. & Thum, T. Non-coding RNAs as orchestrators of autophagic processes. J. Mol. Cell. Cardiol. 95, 26–30 (2016).

    Article  CAS  PubMed  Google Scholar 

  229. Higashi, K. et al. MicroRNA-145 repairs infarcted myocardium by accelerating cardiomyocyte autophagy. Am. J. Physiol. Heart Circ. Physiol. 309, H1813–1826 (2015).

    Article  CAS  PubMed  Google Scholar 

  230. Huang, J., Huang, C., Luo, Y., Liu, S. & Chen, X. Role of MiR.-30a in cardiomyocyte autophagy induced by Angiotensin, II. J. Renin Angiotensin Aldosterone Syst. 16, 1–5 (2015).

    Article  CAS  PubMed  Google Scholar 

  231. Li, D. et al. Salvianolic acid B induced upregulation of miR-30a protects cardiac myocytes from ischemia/reperfusion injury. BMC Complement. Alternative Med. 16, 336 (2016).

    Article  CAS  Google Scholar 

  232. Li, G. et al. miR-22 regulates starvation-induced autophagy and apoptosis in cardiomyocytes by targeting p38α. Biochem. Biophys. Res. Commun. 478, 1165–1172 (2016).

    Article  CAS  PubMed  Google Scholar 

  233. Li, X. et al. Inhibition of microRNA-497 ameliorates anoxia/reoxygenation injury in cardiomyocytes by suppressing cell apoptosis and enhancing autophagy. Oncotarget 6, 18829–18844 (2015).

    PubMed  PubMed Central  Google Scholar 

  234. Nandi, S. S. et al. Induction of autophagy markers is associated with attenuation of miR-133a in diabetic heart failure patients undergoing mechanical unloading. Am. J. Transl. Res. 7, 683–696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Su, M. et al. Cardiac-specific overexpression of miR-222 induces heart failure and inhibits autophagy in mice. Cell. Physiol. Biochem. 39, 1503–1511 (2016).

    Article  CAS  PubMed  Google Scholar 

  236. Su, M. et al. MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis. Cell Death Differ. 22, 986–999 (2015).

    Article  CAS  PubMed  Google Scholar 

  237. Wang, K. et al. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat. Commun. 6, 6779 (2015).

    Article  CAS  PubMed  Google Scholar 

  238. Wu, D., Jiang, H., Chen, S. & Zhang, H. Inhibition of microRNA-101 attenuates hypoxia/reoxygenationinduced apoptosis through induction of autophagy in H9c2 cardiomyocytes. Mol. Med. Rep. 11, 3988–3994 (2015).

    Article  CAS  PubMed  Google Scholar 

  239. Yang, Y. et al. Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia. J. Mol. Med. (Berlin, Germany) 94, 711–724 (2016).

    Article  CAS  Google Scholar 

  240. Zou, Y., Liu, W., Zhang, J. & Xiang, D. miR-153 regulates apoptosis and autophagy of cardiomyocytes by targeting Mcl-1. Mol. Med. Rep. 14, 1033–1039 (2016).

    Article  CAS  PubMed  Google Scholar 

  241. Li, J. et al. MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Bas. Res. Cardiol. 109, 423 (2014).

    Article  CAS  Google Scholar 

  242. Ma, X. et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia-reperfusion injury. Circulation 125, 3170–3181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Shirakabe, A. et al. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation 133, 1249–1263 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Foyil, S. A. et al. BNIP3-induced aurophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. J. Cardiac Fail. 16, S35 (2010).

    Article  Google Scholar 

  245. Cao, D. J. et al. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc. Natl Acad. Sci. USA 108, 4123–4128 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Huang, J. et al. LC3B, a protein that serves as an autophagic marker, modulates angiotensin ii-induced myocardial hypertrophy. J. Cardiovasc. Pharmacol. 66, 576–583 (2015).

    Article  CAS  PubMed  Google Scholar 

  247. Zhou, L., Ma, B. & Han, X. The role of autophagy in angiotensin II-induced pathological cardiac hypertrophy. J. Mol. Endocrinol. 57, R143–R152 (2016).

    Article  CAS  PubMed  Google Scholar 

  248. Ikeda, Y. et al. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ. Res. 116, 264–278 (2015).

    Article  CAS  PubMed  Google Scholar 

  249. Shen, C. et al. Acetaldehyde dehydrogenase 2 (ALDH2) deficiency exacerbates pressure overload-induced cardiac dysfunction by inhibiting Beclin-1 dependent autophagy pathway. Biochim. Biophys. Acta 1852, 310–318 (2015).

    Article  CAS  PubMed  Google Scholar 

  250. Ahmet, I., Wan, R., Mattson, M. P., Lakatta, E. G. & Talan, M. Cardioprotection by intermittent fasting in rats. Circulation 112, 3115–3121 (2005).

    Article  PubMed  Google Scholar 

  251. Godar, R. J. et al. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury. Autophagy 11, 1537–1560 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Hatori, M. et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 15, 848–860 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Hsu, H. C., Chen, C. Y., Lee, B. C. & Chen, M. F. High-fat diet induces cardiomyocyte apoptosis via the inhibition of autophagy. Eur. J. Nutr. 55, 2245–2254 (2016).

    Article  CAS  PubMed  Google Scholar 

  254. Hsu, H. C. et al. Time-dependent cellular response in the liver and heart in a dietary-induced obese mouse model: the potential role of ER stress and autophagy. Eur. J. Nutr. 55, 2031–2043 (2016).

    Article  CAS  PubMed  Google Scholar 

  255. Andres, A. M. et al. Discordant signaling and autophagy response to fasting in hearts of obese mice: Implications for ischemia tolerance. Am. J. Physiol. Heart Circ. Physiol. 311, H219–H228 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Powers, S. K., Quindry, J. C. & Kavazis, A. N. Exercise-induced cardioprotection against myocardial ischemia-reperfusion injury. Free Radic. Biol. Med. 44, 193–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  257. Tam, B. T. et al. Autophagic adaptations to long-term habitual exercise in cardiac muscle. Int. J. Sports Med. 36, 526–534 (2015).

    Article  CAS  PubMed  Google Scholar 

  258. Iyer, S. S. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Stevens, D. A. et al. Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration. Proc. Natl Acad. Sci. USA 112, 11696–11701 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Tao, L. et al. Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis. Cell. Physiol. Biochem. 37, 162–175 (2015).

    Article  CAS  PubMed  Google Scholar 

  261. Bouitbir, J. et al. Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a 'mitohormesis' mechanism involving reactive oxygen species and PGC-1. Eur. Heart J. 33, 1397–1407 (2012).

    Article  CAS  PubMed  Google Scholar 

  262. Yamamoto, T. et al. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS ONE 9, e98972 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Ong, S. B. & Hausenloy, D. J. Mitochondrial dynamics as a therapeutic target for treating cardiac diseases. Handb. Exp. Pharmacol. http://dx.doi.org/10.1007/164_2016_7 (2016).

  264. Ong, S. B. et al. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121, 2012–2022 (2010).

    Article  CAS  PubMed  Google Scholar 

  265. Gustafsson, A. B. & Gottlieb, R. A. Bcl-2 family members and apoptosis, taken to heart. Am. J. Physiol. Cell Physiol. 292, C45–C51 (2007).

    Article  CAS  PubMed  Google Scholar 

  266. Kloner, R. A. No-reflow phenomenon: maintaining vascular integrity. J. Cardiovasc. Pharmacol. Ther. 16, 244–250 (2011).

    Article  PubMed  Google Scholar 

  267. Reffelmann, T. & Kloner, R. A. The “no-reflow” phenomenon: basic science and clinical correlates. Heart 87, 162–168 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Rezkalla, S. H. & Kloner, R. A. No-reflow phenomenon. Circulation 105, 656–662 (2002).

    Article  PubMed  Google Scholar 

  269. Kloner, R. A., Ganote, C. E. & Jennings, R. B. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J. Clin. Invest. 54, 1496–1508 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Reffelmann, T. & Kloner, R. A. Microvascular reperfusion injury: rapid expansion of anatomic no reflow during reperfusion in the rabbit. Am. J. Physiol. Heart Circ. Physiol. 283, H1099–H1107 (2002).

    Article  CAS  PubMed  Google Scholar 

  271. Kloner, R. A. & Alker, K. J. The effect of streptokinase on intramyocardial hemorrhage, infarct size, and the no-reflow phenomenon during coronary reperfusion. Circulation 70, 513–521 (1984).

    Article  CAS  PubMed  Google Scholar 

  272. Zhao, J. L., Yang, Y. J., Cui, C. J., You, S. J. & Gao, R. L. Pretreatment with simvastatin reduces myocardial no-reflow by opening mitochondrial KATP channel. Br. J. Pharmacol. 149, 243–249 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Reffelmann, T., Hale, S. L., Dow, J. S. & Kloner, R. A. No-reflow phenomenon persists long-term after ischemia/reperfusion in the rat and predicts infarct expansion. Circulation 108, 2911–2917 (2003).

    Article  PubMed  Google Scholar 

  274. Ito, H. Etiology and clinical implications of microvascular dysfunction in patients with acute myocardial infarction. Int. Heart J. 55, 185–189 (2014).

    Article  PubMed  Google Scholar 

  275. Rezkalla, S. H., Dharmashankar, K. C., Abdalrahman, I. B. & Kloner, R. A. No-reflow phenomenon following percutaneous coronary intervention for acute myocardial infarction: incidence, outcome, and effect of pharmacologic therapy. J. Interv. Cardiol. 23, 429–436 (2010).

    Article  PubMed  Google Scholar 

  276. Schwartz, B. G. & Kloner, R. A. Coronary no reflow. J. Mol. Cell. Cardiol. 52, 873–882 (2012).

    Article  CAS  PubMed  Google Scholar 

  277. Judd, R. M. et al. Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92, 1902–1910 (1995).

    Article  CAS  PubMed  Google Scholar 

  278. Wu, K. C. et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97, 765–772 (1998).

    Article  CAS  PubMed  Google Scholar 

  279. Bolognese, L. et al. Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation 109, 1121–1126 (2004).

    Article  PubMed  Google Scholar 

  280. Galiuto, L. et al. The extent of microvascular damage during myocardial contrast echocardiography is superior to other known indexes of post-infarct reperfusion in predicting left ventricular remodeling: results of the multicenter AMICI study. J. Am. Coll. Cardiol. 51, 552–559 (2008).

    Article  PubMed  Google Scholar 

  281. White, H. D. et al. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76, 44–51 (1987).

    Article  CAS  PubMed  Google Scholar 

  282. Ndrepepa, G. et al. 5-year prognostic value of no-reflow phenomenon after percutaneous coronary intervention in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 55, 2383–2389 (2010).

    Article  PubMed  Google Scholar 

  283. Niccoli, G., Burzotta, F., Galiuto, L. & Crea, F. Myocardial no-reflow in humans. J. Am. Coll. Cardiol. 54, 281–292 (2009).

    Article  PubMed  Google Scholar 

  284. Hale, S. L., Herring, M. J. & Kloner, R. A. Delayed treatment with hypothermia protects against the no-reflow phenomenon despite failure to reduce infarct size. J. Am. Heart Assoc. 2, e004234 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Yang, X. et al. Cardioprotection by mild hypothermia during ischemia involves preservation of ERK activity. Bas. Res. Cardiol. 106, 421–430 (2011).

    Article  CAS  Google Scholar 

  286. Ucar, A. et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat. Commun. 3, 1078 (2012).

    Article  CAS  PubMed  Google Scholar 

  287. Jian, X. et al. MiR-204 regulate cardiomyocyte autophagy induced by hypoxia-reoxygenation through LC3-II. Int. J. Cardiol. 148, 110–112 (2011).

    Article  PubMed  Google Scholar 

  288. Mikhaylova, O. et al. VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 21, 532–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Xiao, J. et al. MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II. J. Biomed. Sci. 18, 35 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Huang, J. et al. miR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity. PLoS ONE 9, e94382 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Song, L. et al. MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. J. Cell. Mol. Med. 18, 2266–2274 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Pan, W. et al. MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy. PLoS ONE 8, e53950 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Li, Q. et al. Overexpression of microRNA-99a attenuates heart remodelling and improves cardiac performance after myocardial infarction. J. Cell. Mol. Med. 18, 919–928 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.A.B. has received funding from the NIH (NHLBI R01-123647). R.A.G. is supported by NIH (P01 HL112730, R01 HL132075).

Author information

Authors and Affiliations

Authors

Contributions

R.A.K., D.A.B., M.C., W.D., J.M.D., R.G., and J.S. researched data for the article. R.A.K., D.A.B., M.C., J.M.D., and R.G. wrote the article and substantially contributed to the discussion of its content. R.A.K., D.A.B., M.C., J.M.D., R.G., S.L.H., and J.S. reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Robert A. Kloner.

Ethics declarations

Competing interests

R.A.K. has received grant funding from Faraday Pharmaceuticals and Laboratoires Servier. D.A.B. has received funding from Catabasis Pharmaceuticals and Stealth BioTherapeutics, and has received consulting income from Stealth BioTherapeutics. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kloner, R., Brown, D., Csete, M. et al. New and revisited approaches to preserving the reperfused myocardium. Nat Rev Cardiol 14, 679–693 (2017). https://doi.org/10.1038/nrcardio.2017.102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing