Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heart failure and sleep disorders

Key Points

  • Patients with heart failure (HF) are characterized by relevant problems during sleep, including short sleep time, low sleep quality, and sleep-disordered breathing

  • Approximately 33% of patients with HF have insomnia, potentially related to HF features, adverse effects of medications, or to conditions that often accompany chronic diseases such as mood disorders and psychological stress

  • ACC/AHA guidelines have identified sleep deprivation and poor sleep quality as barriers to self-care and treatment adherence in patients with HF

  • Sleep-disordered breathing is highly prevalent in patients with HF; both central and obstructive sleep apnoeas are frequently observed in these patients, and were shown to have an important added prognostic value

  • Continuous positive airway pressure has a beneficial effect on left ventricular ejection fraction and is currently the best treatment option for obstructive sleep apnoeas in patients with HF

  • At present, no consensus exists on whether central sleep apnoeas should be treated and what the optimal therapy in HF might be

Abstract

Awareness of the importance of sleep-related disorders in patients with cardiovascular diseases is growing. In particular, sleep-disordered breathing, short sleep time, and low sleep quality are frequently reported by patients with heart failure (HF). Sleep-disordered breathing, which includes obstructive sleep apnoea (OSA) and central sleep apnoea (CSA), is common in patients with HF and has been suggested to increase the morbidity and mortality in these patients. Both OSA and CSA are associated with increased sympathetic activation, vagal withdrawal, altered haemodynamic loading conditions, and hypoxaemia. Moreover, OSA is strongly associated with arterial hypertension, the most common risk factor for cardiac hypertrophy and failure. Intrathoracic pressure changes are also associated with OSA, contributing to haemodynamic alterations and potentially affecting overexpression of genes involved in ventricular remodelling. HF treatment can decrease the severity of both OSA and CSA. Indeed, furosemide and spironolactone administration, exercise training, cardiac resynchronization therapy, and eventually heart transplantation have shown a positive effect on OSA and CSA in patients with HF. At present, whether CSA should be treated and, if so, which is the optimal therapy is still debated. By contrast, more evidence is available on the beneficial effects of OSA treatment in patients with HF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polygraphy records of obstructive sleep apnoea (OSA) and central sleep apnoea (CSA).
Figure 2: Relationship between obstructive sleep apnoea (OSA) and heart failure.
Figure 3: Relationship between central sleep apnoea (CSA) and heart failure.

Similar content being viewed by others

References

  1. Desai, A. S. & Stevenson, L. W. Rehospitalization for heart failure: predict or prevent? Circulation 126, 501–506 (2012).

    Article  PubMed  Google Scholar 

  2. Hayes, D. Jr., Anstead, M. I., Ho, J. & Phillips, B. A. Insomnia and chronic heart failure. Heart Fail. Rev. 14, 171–182 (2009).

    Article  PubMed  Google Scholar 

  3. Jimenez, J. A., Greenberg, B. H. & Mills, P. J. Effects of heart failure and its pharmacological management on sleep. Drug Discov. Today Dis. Models 8, 161–166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Redeker, N. S. et al. Nocturia, sleep and daytime function in stable heart failure. J. Card. Fail. 18, 569–575 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Luyster, F. S., Buysse, D. J. & Strollo, P. J. Comorbid insomnia and obstructive sleep apnea: challenges for clinical practice and research. J. Clin. Sleep Med. 6, 196–204 (2010).

    PubMed  PubMed Central  Google Scholar 

  6. Lesman-Leegte, I. et al. Quality of life and depressive symptoms in the elderly: a comparison between patients with heart failure and age- and gender-matched community controls. J. Card. Fail. 15, 17–23 (2009).

    Article  PubMed  Google Scholar 

  7. Mills, P. J. et al. Sleep and health-related quality of life in heart failure. Congest. Heart Fail. 15, 228–233 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Riegel, B. et al. Modifiable factors associated with sleep dysfunction in adults with heart failure. Eur. J. Cardiovasc. Nurs. 11, 402–409 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Riegel, B. et al. State of the science: promoting self-care in persons with heart failure: a scientific statement from the American Heart Association. Circulation 120, 1141–1163 (2009).

    Article  PubMed  Google Scholar 

  10. McMurray, J. J. et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 33, 1787–1847 (2012).

    Article  PubMed  Google Scholar 

  11. Cowie, M. R. et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N. Engl. J. Med. 373, 1095–1105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. US National Library of Science. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT01128816 (2015).

  13. US National Library of Science. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT01953874 (2016).

  14. Redline, S. et al. The scoring of respiratory events in sleep: reliability and validity. J. Clin. Sleep Med. 3, 169–200 (2007).

    PubMed  Google Scholar 

  15. Tkacova, R., Niroumand, M., Lorenzi-Filho, G. & Bradley, T. D. Overnight shift from obstructive to central apneas in patients with heart failure: role of PCO2 and circulatory delay. Circulation 103, 238–243 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Alex, C. G., Onal, E. & Lopata, M. Upper airway occlusion during sleep in patients with Cheyne–Stokes respiration. Am. Rev. Respir. Dis. 133, 42–45 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Shepard, J. W. et al. Effects of changes in central venous pressure on upper airway size in patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 153, 250–254 (1996).

    Article  PubMed  Google Scholar 

  18. Chiu, K. L. et al. Fluid shift by lower body positive pressure increases pharyngeal resistance in healthy subjects. Am. J. Respir. Crit. Care Med. 174, 1378–1383 (2006).

    Article  PubMed  Google Scholar 

  19. Yumino, D. & Bradley, T. D. Central sleep apnea and Cheyne–Stokes respiration. Proc. Am. Thorac. Soc. 5, 226–236 (2008).

    Article  PubMed  Google Scholar 

  20. Lévy, P. et al. Obstructive sleep apnoea syndrome. Nat. Rev. Dis. Primers 1, 15015 (2015).

    Article  PubMed  Google Scholar 

  21. Peppard, P. E. et al. Increased prevalence of sleep-disordered breathing in adults. Am. J. Epidemiol. 177, 1006–1014 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eckert, D. J., Jordan, A. S., Merchia, P. & Malhotra, A. Central sleep apnea: pathophysiology and treatment. Chest 131, 595–607 (2007).

    Article  PubMed  Google Scholar 

  23. Mason, R. J. et al. Murray and Nadel's Textbook of Respiratory Medicine (Elsevier Saunders, 2010).

    Google Scholar 

  24. Arzt, M. et al. Prevalence and predictors of sleep-disordered breathing in patients with stable chronic heart failure: the SchlaHF Registry. JACC Heart Fail. 4, 116–125 (2016).

    Article  PubMed  Google Scholar 

  25. Bitter, T. et al. Sleep-disordered breathing in heart failure with normal left ventricular ejection fraction. Eur. J. Heart Fail. 11, 602–608 (2009).

    Article  PubMed  Google Scholar 

  26. Javaheri, S. et al. Sleep apnea in 81 ambulatory male patients with stable heart failure. Types and their prevalences, consequences, and presentations. Circulation 97, 2154–2159 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Sin, D. D. et al. Risk factors for central and obstructive sleep apnea in 450 men and women with congestive heart failure. Am. J. Respir. Crit. Care Med. 160, 1101–1106 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Schulz, R. et al. Sleep apnoea in heart failure. Eur. Respir. J. 29, 1201–1205 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Shahar, E. et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am. J. Respir. Crit. Care Med. 163, 19–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Tremel, F. et al. High prevalence and persistence of sleep apnoea in patients referred for acute left ventricular failure and medically treated over 2 months. Eur. Heart J. 20, 1201–1209 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Solin, P. et al. Influence of pulmonary capillary wedge pressure on central apnea in heart failure. Circulation 99, 1574–1579 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Oldenburg, O. et al. Sleep-disordered breathing in patients with symptomatic heart failure: a contemporary study of prevalence in and characteristics of 700 patients. Eur. J. Heart Fail. 9, 251–257 (2007).

    Article  PubMed  Google Scholar 

  33. Lofaso, F., Verschueren, P., Rande, J. L., Harf, A. & Goldenberg, F. Prevalence of sleep-disordered breathing in patients on a heart transplant waiting list. Chest 106, 1689–1694 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Grimm, W. et al. Severe central sleep apnea is associated with atrial fibrillation in patients with left ventricular systolic dysfunction. Pacing Clin. Electrophysiol. 38, 706–712 (2015).

    Article  PubMed  Google Scholar 

  35. O'Meara, E. et al. Sex differences in clinical characteristics and prognosis in a broad spectrum of patients with heart failure: results of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) program. Circulation 115, 3111–3120 (2007).

    Article  PubMed  Google Scholar 

  36. Lombardi, C. et al. High-altitude hypoxia and periodic breathing during sleep: gender-related differences. J. Sleep Res. 22, 322–330 (2013).

    Article  PubMed  Google Scholar 

  37. Caravita, S. et al. Sex and acetazolamide effects on chemoreflex and periodic breathing during sleep at altitude. Chest 147, 120–131 (2015).

    Article  PubMed  Google Scholar 

  38. Malhotra, A. & White, D. P. Obstructive sleep apnoea. Lancet 360, 237–245 (2002).

    Article  PubMed  Google Scholar 

  39. Efken, C., Bitter, T., Prib, N., Horstkotte, D. & Oldenburg, O. Obstructive sleep apnoea: longer respiratory event lengths in patients with heart failure. Eur. Respir. J. 41, 1340–1346 (2013).

    Article  PubMed  Google Scholar 

  40. Bradley, T. D. & Floras, J. S. Sleep apnea and heart failure: part I: obstructive sleep apnea. Circulation 107, 1671–1678 (2003).

    Article  PubMed  Google Scholar 

  41. Brinker, J. A. et al. Leftward septal displacement during right ventricular loading in man. Circulation 61, 626–633 (1980).

    Article  CAS  PubMed  Google Scholar 

  42. Mebazaa, A., Gheorghiade, M., Zannad, F. & Parrillo, J. E. Acute Heart Failure (Springer-Verlag, 2008).

    Book  Google Scholar 

  43. Dimsdale, J. E., Coy, T., Ziegler, M. G., Ancoli-Israel, S. & Clausen, J. The effect of sleep apnea on plasma and urinary catecholamines. Sleep 18, 377–381 (1995).

    CAS  PubMed  Google Scholar 

  44. Kato, M. et al. Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea. Circulation 102, 2607–2610 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Parati, G. et al. Position paper on the management of patients with obstructive sleep apnea and hypertension: joint recommendations by the European Society of Hypertension, by the European Respiratory Society and by the members of European COST (COoperation in Scientific and Technological research) ACTION B26 on obstructive sleep apnea. J. Hypertens. 30, 633–646 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Yokoe, T. et al. Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 107, 1129–1134 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Skatrud, J. B. & Dempsey, J. A. Interaction of sleep state and chemical stimuli in sustaining rhythmic ventilation. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 55, 813–822 (1983).

    CAS  PubMed  Google Scholar 

  48. Zhou, X. S., Shahabuddin, S., Zahn, B. R., Babcock, M. A. & Badr, M. S. Effect of gender on the development of hypocapnic apnea/hypopnea during NREM sleep. J. Appl. Physiol. (1985) 89, 192–199 (2000).

    Article  CAS  Google Scholar 

  49. Eckert, D. J., Malhotra, A. & Jordan, A. S. Mechanisms of apnea. Prog. Cardiovasc. Dis. 51, 313–323 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Khoo, M. C., Gottschalk, A. & Pack, A. I. Sleep-induced periodic breathing and apnea: a theoretical study. J. Appl. Physiol. (1985) 70, 2014–2024 (1991).

    Article  CAS  Google Scholar 

  51. Bradley, T. D. & Phillipson, E. A. Central sleep apnea. Clin. Chest Med. 13, 493–505 (1992).

    CAS  PubMed  Google Scholar 

  52. Dempsey, J. A. et al. Role of central/peripheral chemoreceptors and their interdependence in the pathophysiology of sleep apnea. Adv. Exp. Med. Biol. 758, 343–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Lorenzi-Filho, G., Azevedo, E. R., Parker, J. D. & Bradley, T. D. Relationship of carbon dioxide tension in arterial blood to pulmonary wedge pressure in heart failure. Eur. Respir. J. 19, 37–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Kohnlein, T., Welte, T., Tan, L. B. & Elliott, M. W. Central sleep apnoea syndrome in patients with chronic heart disease: a critical review of the current literature. Thorax 57, 547–554 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Szollosi, I., Roebuck, T., Thompson, B. & Naughton, M. T. Lateral sleeping position reduces severity of central sleep apnea/Cheyne–Stokes respiration. Sleep 29, 1045–1051 (2006).

    Article  PubMed  Google Scholar 

  56. Arzt, M. et al. Enhanced ventilatory response to exercise in patients with chronic heart failure and central sleep apnea. Circulation 107, 1998–2003 (2003).

    Article  PubMed  Google Scholar 

  57. Kasai, T., Floras, J. S. & Bradley, T. D. Sleep apnea and cardiovascular disease: a bidirectional relationship. Circulation 126, 1495–1510 (2012).

    Article  PubMed  Google Scholar 

  58. Naughton, M. T. et al. Effects of nasal CPAP on sympathetic activity in patients with heart failure and central sleep apnea. Am. J. Respir. Crit. Care Med. 152, 473–479 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Bitter, T. et al. Cheyne–Stokes respiration and obstructive sleep apnoea are independent risk factors for malignant ventricular arrhythmias requiring appropriate cardioverter-defibrillator therapies in patients with congestive heart failure. Eur. Heart J. 32, 61–74 (2011).

    Article  PubMed  Google Scholar 

  60. Parker, J. D. et al. Acute and chronic effects of airway obstruction on canine left ventricular performance. Am. J. Respir. Crit. Care Med. 160, 1888–1896 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Morgan, B. J., Denahan, T. & Ebert, T. J. Neurocirculatory consequences of negative intrathoracic pressure versus asphyxia during voluntary apnea. J. Appl. Physiol. (1985) 74, 2969–2975 (1993).

    Article  CAS  Google Scholar 

  62. Somers, V. K., Mark, A. L., Zavala, D. C. & Abboud, F. M. Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans. J. Appl. Physiol. (1985) 67, 2101–2106 (1989).

    Article  CAS  Google Scholar 

  63. Horner, R. L., Brooks, D., Kozar, L. F., Tse, S. & Phillipson, E. A. Immediate effects of arousal from sleep on cardiac autonomic outflow in the absence of breathing in dogs. J. Appl. Physiol. (1985) 79, 151–162 (1995).

    Article  CAS  Google Scholar 

  64. Coccagna, G., Mantovani, M., Brignani, F., Parchi, C. & Lugaresi, E. Continuous recording of the pulmonary and systemic arterial pressure during sleep in syndromes of hypersomnia with periodic breathing. Bull. Physiopathol. Respir. (Nancy) 8, 1159–1172 (1972).

    CAS  Google Scholar 

  65. Peppard, P. E., Young, T., Palta, M. & Skatrud, J. Prospective study of the association between sleep-disordered breathing and hypertension. N. Engl. J. Med. 342, 1378–1384 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Xie, A., Skatrud, J. B., Puleo, D. S. & Morgan, B. J. Exposure to hypoxia produces long-lasting sympathetic activation in humans. J. Appl. Physiol. (1985) 91, 1555–1562 (2001).

    Article  CAS  Google Scholar 

  67. Arabi, Y. et al. Daytime blood pressure elevation after nocturnal hypoxia. J. Appl. Physiol. (1985) 87, 689–698 (1999).

    Article  CAS  Google Scholar 

  68. Eisenberg, E., Zimlichman, R. & Lavie, P. Plasma norepinephrine levels in patients with sleep apnea syndrome. N. Engl. J. Med. 322, 932–933 (1990).

    Article  CAS  PubMed  Google Scholar 

  69. Thomas, J. A. & Marks, B. H. Plasma norepinephrine in congestive heart failure. Am. J. Cardiol. 41, 233–243 (1978).

    Article  CAS  PubMed  Google Scholar 

  70. Spaak, J. et al. Muscle sympathetic nerve activity during wakefulness in heart failure patients with and without sleep apnea. Hypertension 46, 1327–1332 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Szollosi, I., Krum, H., Kaye, D. & Naughton, M. T. Sleep apnea in heart failure increases heart rate variability and sympathetic dominance. Sleep 30, 1509–1514 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Parati, G., Saul, J. P., Di Rienzo, M. & Mancia, G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension 25, 1276–1286 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Noda, A. et al. Continuous positive airway pressure improves daytime baroreflex sensitivity and nitric oxide production in patients with moderate to severe obstructive sleep apnea syndrome. Hypertens. Res. 30, 669–676 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Parati, G. et al. Autonomic cardiac regulation in obstructive sleep apnea syndrome: evidence from spontaneous baroreflex analysis during sleep. J. Hypertens. 15, 1621–1626 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Lombardi, C. et al. Daytime sleepiness and neural cardiac modulation in sleep-related breathing disorders. J. Sleep Res. 17, 263–270 (2008).

    Article  PubMed  Google Scholar 

  76. Parati, G., Di Rienzo, M. & Mancia, G. How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J. Hypertens. 18, 7–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Fletcher, E. C. et al. Pulmonary edema develops after recurrent obstructive apneas. Am. J. Respir. Crit. Care Med. 160, 1688–1696 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Sin, D. D. et al. Relationship of systolic BP to obstructive sleep apnea in patients with heart failure. Chest 123, 1536–1543 (2003).

    Article  PubMed  Google Scholar 

  79. Carlson, J. T., Rangemark, C. & Hedner, J. A. Attenuated endothelium-dependent vascular relaxation in patients with sleep apnoea. J. Hypertens. 14, 577–584 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Dyugovskaya, L., Lavie, P. & Lavie, L. Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am. J. Respir. Crit. Care Med. 165, 934–939 (2002).

    Article  PubMed  Google Scholar 

  81. Schulz, R. et al. Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Impact of continuous positive airway pressure therapy. Am. J. Respir. Crit. Care Med. 162, 566–570 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Shamsuzzaman, A. S. et al. Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation 105, 2462–2464 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Rifai, N. & Ridker, P. M. Inflammatory markers and coronary heart disease. Curr. Opin. Lipidol. 13, 383–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Godoy, J., Mellado, P., Tapia, J. & Santin, J. Obstructive sleep apnea as an independent stroke risk factor: possible mechanisms. Curr. Mol. Med. 9, 203–209 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Bradley, T. D. & Floras, J. S. Obstructive sleep apnoea and its cardiovascular consequences. Lancet 373, 82–93 (2009).

    Article  PubMed  Google Scholar 

  86. Tkacova, R., Rankin, F., Fitzgerald, F. S., Floras, J. S. & Bradley, T. D. Effects of continuous positive airway pressure on obstructive sleep apnea and left ventricular afterload in patients with heart failure. Circulation 98, 2269–2275 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Floras, J. S. Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure. J. Am. Coll. Cardiol. 22, 72a–84a (1993).

    Article  CAS  PubMed  Google Scholar 

  88. La Rovere, M. T. et al. Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation 103, 2072–2077 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Parati, G., Lombardi, C. & Narkiewicz, K. Sleep apnea: epidemiology, pathophysiology, and relation to cardiovascular risk. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R1671–R1683 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Franklin, K. A., Nilsson, J. B., Sahlin, C. & Naslund, U. Sleep apnoea and nocturnal angina. Lancet 345, 1085–1087 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Hla, K. M. et al. Coronary heart disease incidence in sleep disordered breathing: the Wisconsin Sleep Cohort Study. Sleep 38, 677–684 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nadeem, R. et al. Serum inflammatory markers in obstructive sleep apnea: a meta-analysis. J. Clin. Sleep Med. 9, 1003–1012 (2013).

    PubMed  PubMed Central  Google Scholar 

  93. El-Solh, A. A. et al. Adhesion molecules in patients with coronary artery disease and moderate-to-severe obstructive sleep apnea. Chest 121, 1541–1547 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Ip, M. S. et al. Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure. Am. J. Respir. Crit. Care Med. 162, 2166–2171 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Hedner, J. A., Wilcox, I., Laks, L., Grunstein, R. R. & Sullivan, C. E. A specific and potent pressor effect of hypoxia in patients with sleep apnea. Am. Rev. Respir. Dis. 146, 1240–1245 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Jelic, S. et al. Vascular inflammation in obesity and sleep apnea. Circulation 121, 1014–1021 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jelic, S. et al. Endothelial repair capacity and apoptosis are inversely related in obstructive sleep apnea. Vasc. Health Risk Manag. 5, 909–920 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Emin, M. et al. Increased internalization of complement inhibitor CD59 may contribute to endothelial inflammation in obstructive sleep apnea. Sci. Transl. Med. 8, 320ra1 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cohn, J. N., Ferrari, R. & Sharpe, N. Cardiac remodeling — concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J. Am. Coll. Cardiol. 35, 569–582 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Bernardi, L. et al. Slow breathing increases arterial baroreflex sensitivity in patients with chronic heart failure. Circulation 105, 143–145 (2002).

    Article  PubMed  Google Scholar 

  101. Parati, G. et al. Recommendations for the management of patients with obstructive sleep apnoea and hypertension. Eur. Respir. J. 41, 523–538 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Malone, S. et al. Obstructive sleep apnoea in patients with dilated cardiomyopathy: effects of continuous positive airway pressure. Lancet 338, 1480–1484 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. Bradley, T. D., Hall, M. J., Ando, S. & Floras, J. S. Hemodynamic effects of simulated obstructive apneas in humans with and without heart failure. Chest 119, 1827–1835 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Javaheri, S., Shukla, R., Zeigler, H. & Wexler, L. Central sleep apnea, right ventricular dysfunction, and low diastolic blood pressure are predictors of mortality in systolic heart failure. J. Am. Coll. Cardiol. 49, 2028–2034 (2007).

    Article  PubMed  Google Scholar 

  105. Lanfranchi, P. A. et al. Prognostic value of nocturnal Cheyne–Stokes respiration in chronic heart failure. Circulation 99, 1435–1440 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Sin, D. D., Logan, A. G., Fitzgerald, F. S., Liu, P. P. & Bradley, T. D. Effects of continuous positive airway pressure on cardiovascular outcomes in heart failure patients with and without Cheyne–Stokes respiration. Circulation 102, 61–66 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Franklin, K. A., Sandstrom, E., Johansson, G. & Balfors, E. M. Hemodynamics, cerebral circulation, and oxygen saturation in Cheyne–Stokes respiration. J. Appl. Physiol. (1985) 83, 1184–1191 (1997).

    Article  CAS  Google Scholar 

  108. Trinder, J. et al. Pathophysiological interactions of ventilation, arousals, and blood pressure oscillations during Cheyne–Stokes respiration in patients with heart failure. Am. J. Respir. Crit. Care Med. 162, 808–813 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Javaheri, S. & Corbett, W. S. Association of low PaCO2 with central sleep apnea and ventricular arrhythmias in ambulatory patients with stable heart failure. Ann. Intern. Med. 128, 204–207 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Costanzo, M. R. et al. Mechanisms and clinical consequences of untreated central sleep apnea in heart failure. J. Am. Coll. Cardiol. 65, 72–84 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Pinna, G. D., Maestri, R., Mortara, A. & La Rovere, M. T. Cardiorespiratory interactions during periodic breathing in awake chronic heart failure patients. Am. J. Physiol. Heart Circ. Physiol. 278, H932–H941 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Leung, R. S. et al. Influence of Cheyne–Stokes respiration on cardiovascular oscillations in heart failure. Am. J. Respir. Crit. Care Med. 167, 1534–1539 (2003).

    Article  PubMed  Google Scholar 

  113. Brack, T., Jubran, A., Laghi, F. & Tobin, M. J. Fluctuations in end-expiratory lung volume during Cheyne–Stokes respiration. Am. J. Respir. Crit. Care Med. 171, 1408–1413 (2005).

    Article  PubMed  Google Scholar 

  114. Lorenzi-Filho, G., Dajani, H. R., Leung, R. S., Floras, J. S. & Bradley, T. D. Entrainment of blood pressure and heart rate oscillations by periodic breathing. Am. J. Respir. Crit. Care Med. 159, 1147–1154 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Ponikowski, P. et al. Detection and significance of a discrete very low frequency rhythm in RR interval variability in chronic congestive heart failure. Am. J. Cardiol. 77, 1320–1326 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. Guyenet, P. G., Koshiya, N., Huangfu, D., Verberne, A. J. & Riley, T. A. Central respiratory control of A5 and A6 pontine noradrenergic neurons. Am. J. Physiol. (1985) 264, R1035–R1044 (1993).

    CAS  Google Scholar 

  117. Brack, T. et al. Daytime Cheyne–Stokes respiration in ambulatory patients with severe congestive heart failure is associated with increased mortality. Chest 132, 1463–1471 (2007).

    Article  PubMed  Google Scholar 

  118. Corra, U. et al. Sleep and exertional periodic breathing in chronic heart failure: prognostic importance and interdependence. Circulation 113, 44–50 (2006).

    Article  PubMed  Google Scholar 

  119. Meguro, K., Adachi, H., Oshima, S., Taniguchi, K. & Nagai, R. Exercise tolerance, exercise hyperpnea and central chemosensitivity to carbon dioxide in sleep apnea syndrome in heart failure patients. Circ. J. 69, 695–699 (2005).

    Article  PubMed  Google Scholar 

  120. Ponikowski, P. et al. Chemoreceptor dependence of very low frequency rhythms in advanced chronic heart failure. Am. J. Physiol. 272, H438–H447 (1997).

    CAS  PubMed  Google Scholar 

  121. Hanly, P. J. & Zuberi-Khokhar, N. S. Increased mortality associated with Cheyne–Stokes respiration in patients with congestive heart failure. Am. J. Respir. Crit. Care Med. 153, 272–276 (1996).

    Article  CAS  PubMed  Google Scholar 

  122. Naughton, M. T. Cheyne–Stokes respiration: friend or foe? Thorax 67, 357–360 (2012).

    Article  PubMed  Google Scholar 

  123. Roebuck, T. et al. Increased long-term mortality in heart failure due to sleep apnoea is not yet proven. Eur. Respir. J. 23, 735–740 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Mansfield, D. et al. Raised sympathetic nerve activity in heart failure and central sleep apnea is due to heart failure severity. Circulation 107, 1396–1400 (2003).

    Article  PubMed  Google Scholar 

  125. Yeh, G. Y. et al. Enhancement of sleep stability with Tai Chi exercise in chronic heart failure: preliminary findings using an ECG-based spectrogram method. Sleep Med. 9, 527–536 (2008).

    Article  PubMed  Google Scholar 

  126. Parthasarathy, S. et al. Persistent insomnia is associated with mortality risk. Am. J. Med. 128, 268–275.e2 (2015).

    Article  PubMed  Google Scholar 

  127. McEwen, B. S. Sleep deprivation as a neurobiologic and physiologic stressor: allostasis and allostatic load. Metabolism 55, S20–S23 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Arzt, M. et al. Sleepiness and sleep in patients with both systolic heart failure and obstructive sleep apnea. Arch. Intern. Med. 166, 1716–1722 (2006).

    Article  PubMed  Google Scholar 

  129. Grimm, W., Hildebrandt, O., Nell, C. & Koehler, U. Excessive daytime sleepiness and central sleep apnea in patients with stable heart failure. Int. J. Cardiol. 176, 1447–1448 (2014).

    Article  PubMed  Google Scholar 

  130. McKelvie, R. S. et al. The 2011 Canadian Cardiovascular Society heart failure management guidelines update: focus on sleep apnea, renal dysfunction, mechanical circulatory support, and palliative care. Can. J. Cardiol. 27, 319–338 (2011).

    Article  PubMed  Google Scholar 

  131. Mehra, R. & Redline, S. Arrhythmia risk associated with sleep disordered breathing in chronic heart failure. Curr. Heart Fail. Rep. 11, 88–97 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. [No authors listed.] Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep 22, 667–689 (1999).

  133. American Academy of Sleep Medicine. International Classification of Sleep Disorders (American Academy of Sleep Medicine, 2014).

  134. Farre, R., Montserrat, J. M. & Navajas, D. Noninvasive monitoring of respiratory mechanics during sleep. Eur. Respir. J. 24, 1052–1060 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Janssens, J. P., Borel, J. C. & Pepin, J. L. Nocturnal monitoring of home non-invasive ventilation: contribution of simple tools such as pulse-oximetry, capnography, built-in ventilator software and autonomic markers of sleep fragmentation. Rev. Mal. Respir. 31, 107–118 (in French) (2014).

    Article  PubMed  Google Scholar 

  136. Pinna, G. D. et al. Can cardiorespiratory polygraphy replace portable polysomnography in the assessment of sleep-disordered breathing in heart failure patients? Sleep Breath. 18, 475–482 (2014).

    Article  PubMed  Google Scholar 

  137. Ward, N. R. et al. Utility of overnight pulse oximetry and heart rate variability analysis to screen for sleep-disordered breathing in chronic heart failure. Thorax 67, 1000–1005 (2012).

    Article  PubMed  Google Scholar 

  138. Defaye, P. et al. A pacemaker transthoracic impedance sensor with an advanced algorithm to identify severe sleep apnea: the DREAM European study. Heart Rhythm 11, 842–848 (2014).

    Article  PubMed  Google Scholar 

  139. Oldenburg, O. et al. Nocturnal hypoxaemia is associated with increased mortality in stable heart failure patients. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehv624 (2015).

  140. Bucca, C. B. et al. Diuretics in obstructive sleep apnea with diastolic heart failure. Chest 132, 440–446 (2007).

    Article  PubMed  Google Scholar 

  141. Tkacova, R. et al. Continuous positive airway pressure improves nocturnal baroreflex sensitivity of patients with heart failure and obstructive sleep apnea. J. Hypertens. 18, 1257–1262 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Kauta, S. R., Keenan, B. T., Goldberg, L. & Schwab, R. J. Diagnosis and treatment of sleep disordered breathing in hospitalized cardiac patients: a reduction in 30-day hospital readmission rates. J. Clin. Sleep Med. 10, 1051–1059 (2014).

    PubMed  PubMed Central  Google Scholar 

  143. Kaneko, Y. et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N. Engl. J. Med. 348, 1233–1241 (2003).

    Article  PubMed  Google Scholar 

  144. Mansfield, D. R. et al. Controlled trial of continuous positive airway pressure in obstructive sleep apnea and heart failure. Am. J. Respir. Crit. Care Med. 169, 361–366 (2004).

    Article  PubMed  Google Scholar 

  145. Sun, H., Shi, J., Li, M. & Chen, X. Impact of continuous positive airway pressure treatment on left ventricular ejection fraction in patients with obstructive sleep apnea: a meta-analysis of randomized controlled trials. PLoS ONE 8, e62298 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang, H. et al. Influence of obstructive sleep apnea on mortality in patients with heart failure. J. Am. Coll. Cardiol. 49, 1625–1631 (2007).

    Article  PubMed  Google Scholar 

  147. Kasai, T. et al. Prognosis of patients with heart failure and obstructive sleep apnea treated with continuous positive airway pressure. Chest 133, 690–696 (2008).

    Article  PubMed  Google Scholar 

  148. Somers, V. K. et al. Sleep apnea and cardiovascular disease: an American Heart Association/american College Of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council On Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation 118, 1080–1111 (2008).

    Article  PubMed  Google Scholar 

  149. Khayat, R. N. et al. Cardiac effects of continuous and bilevel positive airway pressure for patients with heart failure and obstructive sleep apnea: a pilot study. Chest 134, 1162–1168 (2008).

    Article  PubMed  Google Scholar 

  150. Sharples, L. et al. Clinical effectiveness and cost-effectiveness results from the randomised controlled Trial of Oral Mandibular Advancement Devices for Obstructive sleep apnoea-hypopnoea (TOMADO) and long-term economic analysis of oral devices and continuous positive airway pressure. Health Technol. Assess. 18, 1–296 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  151. McDaid, C. et al. Continuous positive airway pressure devices for the treatment of obstructive sleep apnoea-hypopnoea syndrome: a systematic review and economic analysis. Health Technol. Assess. 13, 4 (2009).

    Article  Google Scholar 

  152. Schwartz, A. R. Hypoglossal nerve stimulation — optimizing its therapeutic potential in obstructive sleep apnea. J. Neurol. Sci. 346, 1–3 (2014).

    Article  PubMed  Google Scholar 

  153. Lin, H. C., Friedman, M., Chang, H. W. & Gurpinar, B. The efficacy of multilevel surgery of the upper airway in adults with obstructive sleep apnea/hypopnea syndrome. Laryngoscope 118, 902–908 (2008).

    Article  PubMed  Google Scholar 

  154. Hudgel, D. W. & Thanakitcharu, S. Pharmacologic treatment of sleep-disordered breathing. Am. J. Respir. Crit. Care Med. 158, 691–699 (1998).

    Article  CAS  PubMed  Google Scholar 

  155. De Backer, W. A. Central sleep apnoea, pathogenesis and treatment: an overview and perspective. Eur. Respir. J. 8, 1372–1383 (1995).

    Article  CAS  PubMed  Google Scholar 

  156. Javaheri, S. et al. Effect of theophylline on sleep-disordered breathing in heart failure. N. Engl. J. Med. 335, 562–567 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. Bradley, T. D. & Floras, J. S. Sleep apnea and heart failure: part II: central sleep apnea. Circulation 107, 1822–1826 (2003).

    Article  PubMed  Google Scholar 

  158. Walsh, J. T. et al. Effects of captopril and oxygen on sleep apnoea in patients with mild to moderate congestive cardiac failure. Br. Heart J. 73, 237–241 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Baylor, P., Tayloe, D., Owen, D. & Sanders, C. Cardiac failure presenting as sleep apnea: elimination of apnea following medical management of cardiac failure. Chest 94, 1298–1300 (1988).

    Article  CAS  PubMed  Google Scholar 

  160. Dark, D. S. et al. Breathing pattern abnormalities and arterial oxygen desaturation during sleep in the congestive heart failure syndrome: improvement following medical therapy. Chest 91, 833–836 (1987).

    Article  CAS  PubMed  Google Scholar 

  161. Giannoni, A. et al. Combined increased chemosensitivity to hypoxia and hypercapnia as a prognosticator in heart failure. J. Am. Coll. Cardiol. 53, 1975–1980 (2009).

    Article  PubMed  Google Scholar 

  162. Hermand, E., Lhuissier, F. J., Larribaut, J., Pichon, A. & Richalet, J. P. Ventilatory oscillations at exercise: effects of hyperoxia, hypercapnia, and acetazolamide. Physiol. Rep. 3, e12446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hanly, P. J. et al. The effect of oxygen on respiration and sleep in patients with congestive heart failure. Ann. Intern. Med. 111, 777–782 (1989).

    Article  CAS  PubMed  Google Scholar 

  164. Staniforth, A. D., Kinnear, W. J., Starling, R., Hetmanski, D. J. & Cowley, A. J. Effect of oxygen on sleep quality, cognitive function and sympathetic activity in patients with chronic heart failure and Cheyne–Stokes respiration. Eur. Heart J. 19, 922–928 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. Teschler, H., Dohring, J., Wang, Y. M. & Berthon-Jones, M. Adaptive pressure support servo-ventilation: a novel treatment for Cheyne–Stokes respiration in heart failure. Am. J. Respir. Crit. Care Med. 164, 614–619 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Stub, D. et al. Air versus oxygen in ST-segment-elevation myocardial infarction. Circulation 131, 2143–2150 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Chua, T. P. et al. Clinical characteristics of chronic heart failure patients with an augmented peripheral chemoreflex. Eur. Heart J. 18, 480–486 (1997).

    Article  CAS  PubMed  Google Scholar 

  168. Yamada, K. et al. Role of central sympathoexcitation in enhanced hypercapnic chemosensitivity in patients with heart failure. Am. Heart J. 148, 964–970 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Tomita, T. et al. Attenuation of hypercapnic carbon dioxide chemosensitivity after postinfarction exercise training: possible contribution to the improvement in exercise hyperventilation. Heart 89, 404–410 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Naughton, M. T., Liu, P. P., Bernard, D. C., Goldstein, R. S. & Bradley, T. D. Treatment of congestive heart failure and Cheyne–Stokes respiration during sleep by continuous positive airway pressure. Am. J. Respir. Crit. Care Med. 151, 92–97 (1995).

    Article  CAS  PubMed  Google Scholar 

  171. Naughton, M. T., Benard, D. C., Rutherford, R. & Bradley, T. D. Effect of continuous positive airway pressure on central sleep apnea and nocturnal PCO2 in heart failure. Am. J. Respir. Crit. Care Med. 150, 1598–1604 (1994).

    Article  CAS  PubMed  Google Scholar 

  172. Badr, S. Central sleep apnea in patients with congestive heart failure. Heart Fail. Rev. 14, 135–141 (2009).

    Article  PubMed  Google Scholar 

  173. Javaheri, S. Effects of continuous positive airway pressure on sleep apnea and ventricular irritability in patients with heart failure. Circulation 101, 392–397 (2000).

    Article  CAS  PubMed  Google Scholar 

  174. Tkacova, R., Liu, P. P., Naughton, M. T. & Bradley, T. D. Effect of continuous positive airway pressure on mitral regurgitant fraction and atrial natriuretic peptide in patients with heart failure. J. Am. Coll. Cardiol. 30, 739–745 (1997).

    Article  CAS  PubMed  Google Scholar 

  175. Bradley, T. D. et al. Continuous positive airway pressure for central sleep apnea and heart failure. N. Engl. J. Med. 353, 2025–2033 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. Arzt, M. et al. Suppression of central sleep apnea by continuous positive airway pressure and transplant-free survival in heart failure: a post hoc analysis of the Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure Trial (CANPAP). Circulation 115, 3173–3180 (2007).

    Article  PubMed  Google Scholar 

  177. Meza, S., Mendez, M., Ostrowski, M. & Younes, M. Susceptibility to periodic breathing with assisted ventilation during sleep in normal subjects. J. Appl. Physiol. (1985) 85, 1929–1940 (1998).

    Article  CAS  Google Scholar 

  178. Arzt, M. et al. Effects of dynamic bilevel positive airway pressure support on central sleep apnea in men with heart failure. Chest 134, 61–66 (2008).

    Article  PubMed  Google Scholar 

  179. Fietze, I. et al. Bi-level positive pressure ventilation and adaptive servo ventilation in patients with heart failure and Cheyne–Stokes respiration. Sleep Med. 9, 652–659 (2008).

    Article  PubMed  Google Scholar 

  180. Brown, L. K. & Javaheri, S. Adaptive servo-ventilation for the treatment of central sleep apnea in congestive heart failure: what have we learned? Curr. Opin. Pulm. Med. 20, 550–557 (2014).

    Article  PubMed  Google Scholar 

  181. Oldenburg, O., Spiesshofer, J., Fox, H., Prib, N. & Horstkotte, D. Performance of conventional and enhanced adaptive servoventilation (ASV) in heart failure patients with central sleep apnea who have adapted to conventional ASV. Sleep Breath. 19, 795–800 (2015).

    Article  PubMed  Google Scholar 

  182. Aurora, R. N. et al. The treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based literature review and meta-analyses. Sleep 35, 17–40 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Ohmura, T. et al. Impact of predischarge nocturnal pulse oximetry (sleep-disordered breathing) on postdischarge clinical outcomes in hospitalized patients with left ventricular systolic dysfunction after acute decompensated heart failure. Am. J. Cardiol. 113, 697–700 (2014).

    Article  PubMed  Google Scholar 

  184. Padeletti, M., Green, P., Mooney, A. M., Basner, R. C. & Mancini, D. M. Sleep disordered breathing in patients with acutely decompensated heart failure. Sleep Med. 10, 353–360 (2009).

    Article  PubMed  Google Scholar 

  185. Garrigue, S., Bordier, P., Barold, S. S. & Clementy, J. Sleep apnea: a new indication for cardiac pacing? Pacing Clin. Electrophysiol. 27, 204–211 (2004).

    Article  PubMed  Google Scholar 

  186. Garrigue, S. et al. Benefit of atrial pacing in sleep apnea syndrome. N. Engl. J. Med. 346, 404–412 (2002).

    Article  PubMed  Google Scholar 

  187. Ueno, L. M. et al. Effects of exercise training in patients with chronic heart failure and sleep apnea. Sleep 32, 637–647 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Yamamoto, U. et al. Six-month aerobic exercise training ameliorates central sleep apnea in patients with chronic heart failure. J. Card. Fail. 13, 825–829 (2007).

    Article  PubMed  Google Scholar 

  189. Lamba, J. et al. Cardiac resynchronization therapy for the treatment of sleep apnoea: a meta-analysis. Europace 13, 1174–1179 (2011).

    Article  PubMed  Google Scholar 

  190. US National Library of Science. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT02577445 (2015).

  191. Abraham, W. T. et al. Phrenic nerve stimulation for the treatment of central sleep apnea. JACC Heart Fail. 3, 360–369 (2015).

    Article  PubMed  Google Scholar 

  192. Hetzenecker, A. et al. Adaptive servo-ventilation therapy of central sleep apnoea and its effect on sleep quality. Clin. Res. Cardiol. 105, 189–195 (2016).

    Article  PubMed  Google Scholar 

  193. Javaheri, S. Sleep dysfunction in heart failure. Curr. Treat. Options Neurol. 10, 323–335 (2008).

    Article  PubMed  Google Scholar 

  194. Botelho, R. V., Bittencourt, L. R., Rotta, J. M. & Tufik, S. A prospective controlled study of sleep respiratory events in patients with craniovertebral junction malformation. J. Neurosurg. 99, 1004–1009 (2003).

    Article  PubMed  Google Scholar 

  195. Chervin, R. D. Sleepiness, fatigue, tiredness, and lack of energy in obstructive sleep apnea. Chest 118, 372–379 (2000).

    Article  CAS  PubMed  Google Scholar 

  196. Myers, K. A., Mrkobrada, M. & Simel, D. L. Does this patient have obstructive sleep apnea?: The Rational Clinical Examination systematic review. JAMA 310, 731–741 (2013).

    Article  CAS  PubMed  Google Scholar 

  197. Bitter, T., Fox, H., Gaddam, S., Horstkotte, D. & Oldenburg, O. Sleep-disordered breathing and cardiac arrhythmias. Can. J. Cardiol. 31, 928–934 (2015).

    Article  PubMed  Google Scholar 

  198. Young, T. et al. The occurrence of sleep-disordered breathing among middle-aged adults. N. Engl. J. Med. 328, 1230–1235 (1993).

    Article  CAS  PubMed  Google Scholar 

  199. Epstein, L. J. et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J. Clin. Sleep Med. 5, 263–276 (2009).

    PubMed  Google Scholar 

  200. White, L. H. & Bradley, T. D. Role of nocturnal rostral fluid shift in the pathogenesis of obstructive and central sleep apnoea. J. Physiol. 591, 1179–1193 (2013).

    Article  PubMed  Google Scholar 

  201. Nelson, K. A. & Trupp, R. J. Sleep and heart failure. Crit. Care Nurs. Clin. North Am. 27, 511–522 (2015).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors contributed equally to researching data, discussions of content, writing the article, and to reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Gianfranco Parati.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parati, G., Lombardi, C., Castagna, F. et al. Heart failure and sleep disorders. Nat Rev Cardiol 13, 389–403 (2016). https://doi.org/10.1038/nrcardio.2016.71

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.71

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing