Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pathophysiology and management of multivalvular disease

Key Points

  • Multivalvular disease (MVD) is a prevalent form of valvular heart disease; rheumatic heart disease is the predominant aetiology in developing countries, whereas degenerative aetiologies are increasingly common in developed countries

  • Haemodynamic interactions between valve lesions can promote, exacerbate, or, by contrast, blunt the clinical expression of each singular lesion

  • Several diagnostic tools used for the assessment of valve stenosis or regurgitation have been validated in patients with single-valve disease, but such tools might not be valid for MVD

  • Therapeutic decisions should be made by a heart valve team, considering the severity of MVD, the patient's life expectancy and comorbidities, and the risks of multiple prostheses and eventual reoperation

  • The introduction of transcatheter valve therapies is changing the therapeutic paradigm, but further studies are needed to guide therapeutic decision-making


Multivalvular disease (MVD) is common among patients with valvular disease, and has a complex pathophysiology dependent on the specific combination of valve lesions. Diagnosis is challenging because several echocardiographic methods commonly used for the assessment of stenosis or regurgitation have been validated only in patients with single-valve disease. Decisions about the timing and type of treatment should be made by a multidisciplinary heart valve team, on a case-by-case basis. Several factors should be considered, including the severity and consequences of the MVD, the patient's life expectancy and comorbidities, the surgical risk associated with combined valve procedures, the long-term risk of morbidity and mortality associated with multiple valve prostheses, and the likelihood and risk of reoperation. The introduction of transcatheter valve therapies into clinical practice has provided new treatment options for patients with MVD, and decision-making algorithms on how to combine surgical and percutaneous treatment options are evolving rapidly. In this Review, we discuss the pathophysiology, diagnosis, and treatment of MVD, focusing on the combinations of valve pathologies that are most often encountered in clinical practice.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Pathophysiology of combined aortic stenosis and mitral regurgitation.
Figure 2: A patient with aortic stenosis and mitral regurgitation.
Figure 3: A patient with aortic and mitral stenosis.
Figure 4: A patient with mitral stenosis and tricuspid regurgitation before surgery.
Figure 5: Management of severe aortic stenosis requiring surgery, with concomitant mitral regurgitation.
Figure 6: Management of tricuspid regurgitation in patients undergoing left-sided valve surgery.


  1. 1

    Iung, B. et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur. Heart J. 24, 1231–1243 (2003).

    Article  Google Scholar 

  2. 2

    Lee, R. et al. Fifteen-year outcome trends for valve surgery in North America. Ann. Thorac. Surg. 91, 677–684 (2011).

    Article  PubMed  Google Scholar 

  3. 3

    Vassileva, C. M. et al. Outcome characteristics of multiple-valve surgery: comparison with single-valve procedures. Innovations (Phila.) 9, 27–32 (2014).

    Article  Google Scholar 

  4. 4

    Leon, M. B. et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Eng. J. Med. 363, 1597–1607 (2010).

    Article  CAS  Google Scholar 

  5. 5

    Smith, C. R. et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 364, 2187–2198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Lindman, B. R. et al. Effect of tricuspid regurgitation and the right heart on survival after transcatheter aortic valve replacement: insights from the Placement of Aortic Transcatheter Valves II inoperable cohort. Circ. Cardiovasc. Interv. 8, 1–10 (2015).

    Article  Google Scholar 

  7. 7

    Roberts, W. C. & Sullivan, M. F. Clinical and necropsy observations early after simultaneous replacement of the mitral and aortic valves. Am. J. Cardiol. 58, 1067–1084 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Goldbarg, S. H., Elmariah, S., Miller, M. A. & Fuster, V. Insights into degenerative aortic valve disease. J. Am. Coll. Cardiol. 50, 1205–1213 (2007).

    Article  PubMed  Google Scholar 

  9. 9

    Unger, P., Rosenhek, R., Dedobbeleer, C., Berrebi, A. & Lancellotti, P. Management of multiple valve disease. Heart 97, 272–277 (2011).

    Article  PubMed  Google Scholar 

  10. 10

    DeBonis, B. M., Maisano, F., La, C. G. & Alfieri, O. Treatment and management of mitral regurgitation. Nat. Rev. Cardiol. 9, 133–146 (2012).

    Article  CAS  Google Scholar 

  11. 11

    Nombela-Franco, L. et al. Significant mitral regurgitation left untreated at the time of aortic valve replacement: a comprehensive review of a frequent entity in the transcatheter aortic valve replacement era. J. Am. Coll. Cardiol. 63, 2643–2658 (2014).

    Article  PubMed  Google Scholar 

  12. 12

    Kodali, S. K. & Moses, J. W. Coronary artery disease and aortic stenosis in the transcatheter aortic valve replacement era: old questions, new paradigms: the evolving role of percutaneous coronary intervention in the treatment of patients with aortic stenosis. Circulation 125, 975–977 (2012).

    Article  PubMed  Google Scholar 

  13. 13

    Barbanti, M. et al. Impact of preoperative moderate/severe mitral regurgitation on 2-year outcome after transcatheter and surgical aortic valve replacement: insight from the Placement of Aortic Transcatheter Valve (PARTNER) Trial Cohort A. Circulation 128, 2776–2784 (2013).

    Article  PubMed  Google Scholar 

  14. 14

    Bedogni, F. et al. Interplay between mitral regurgitation and transcatheter aortic valve replacement with the CoreValve Revalving System: a multicenter registry. Circulation 128, 2145–2153 (2013).

    Article  PubMed  Google Scholar 

  15. 15

    Barreiro, C. J. et al. Aortic valve replacement and concomitant mitral valve regurgitation in the elderly: impact on survival and functional outcome. Circulation 112, I443–I447 (2005).

    PubMed  Google Scholar 

  16. 16

    Kim, D. H. et al. Aortic valve adaptation to aortic root dilatation: insights into the mechanism of functional aortic regurgitation from 3-dimensional cardiac computed tomography. Circ. Cardiovasc. Imaging 7, 828–835 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Unger, P. et al. Mitral regurgitation in patients with aortic stenosis undergoing valve replacement. Heart 96, 9–14 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Paradis, J. M. et al. Aortic stenosis and coronary artery disease: what do we know? What don't we know? A comprehensive review of the literature with proposed treatment algorithms. Eur. Heart J. 35, 2069–2082 (2014).

    Article  PubMed  Google Scholar 

  19. 19

    Unger, P. et al. Effects of valve replacement for aortic stenosis on mitral regurgitation. Am. J. Cardiol. 102, 1378–1382 (2008).

    Article  PubMed  Google Scholar 

  20. 20

    Greve, A. M. et al. Prognostic importance of atrial fibrillation in asymptomatic aortic stenosis: the Simvastatin and Ezetimibe in Aortic Stenosis study. Int. J. Cardiol. 166, 72–76 (2013).

    Article  PubMed  Google Scholar 

  21. 21

    Kristensen, C. B., Jensen, J. S., Sogaard, P., Carstensen, H. G. & Mogelvang, R. Atrial fibrillation in aortic stenosis — echocardiographic assessment and prognostic importance. Cardiovasc. Ultrasound 10, 38 (2012).

    Article  Google Scholar 

  22. 22

    Unger, P., Lancellotti, P. & de Canniere, D. The clinical challenge of concomitant aortic and mitral valve stenosis. Acta Cardiol. 71, 3–6 (2016).

    Article  PubMed  Google Scholar 

  23. 23

    Honey, M. Clinical and haemodynamic observations on combined mitral and aortic stenosis. Br. Heart J. 23, 545–555 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Zitnik, R. S. et al. The masking of aortic stenosis by mitral stenosis. Am. Heart J. 69, 22–30 (1965).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Otto, C. M. & Bonow, R. O. in Braunwald's Heart Disease (eds Libby, P. et al.) 1625–1693 (Saunders Elsevier, 2008).

    Google Scholar 

  26. 26

    Tyagi, G., Dang, P., Pasca, I., Patel, R. & Pai, R. G. Progression of degenerative mitral stenosis: insights from a cohort of 254 patients. J. Heart Valve Dis. 23, 707–712 (2014).

    PubMed  Google Scholar 

  27. 27

    Gash, A. K., Carabello, B. A., Kent, R. L., Frazier, J. A. & Spann, J. F. Left ventricular performance in patients with coexistent mitral stenosis and aortic insufficiency. J. Am. Coll. Cardiol. 3, 703–711 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Cohn, L. H. et al. Preoperative assessment of aortic regurgitation in patients with mitral valve disease. Am. J. Cardiol. 19, 177–182 (1967).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Niles, N. et al. Preoperative left and right ventricular performance in combined aortic and mitral regurgitation and comparison with isolated aortic or mitral regurgitation. Am. J. Cardiol. 65, 1372–1378 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Gentles, T. L., Finucane, A. K., Remenyi, B., Kerr, A. R. & Wilson, N. J. Ventricular function before and after surgery for isolated and combined regurgitation in the young. Ann. Thorac. Surg. 100, 1383–1389 (2015).

    Article  PubMed  Google Scholar 

  31. 31

    Skudicky, D., Essop, M. R. & Sareli, P. Time-related changes in left ventricular function after double valve replacement for combined aortic and mitral regurgitation in a young rheumatic population. Circulation 95, 899–904 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Taramasso, M. et al. The growing clinical importance of secondary tricuspid regurgitation. J. Am. Coll. Cardiol. 59, 703–710 (2012).

    Article  PubMed  Google Scholar 

  33. 33

    Chikwe, J., Itagaki, S., Anyanwu, A. & Adams, D. H. Impact of concomitant tricuspid annuloplasty on tricuspid regurgitation, right ventricular function, and pulmonary artery hypertension after repair of mitral valve prolapse. J. Am. Coll. Cardiol. 65, 1931–1938 (2015).

    Article  PubMed  Google Scholar 

  34. 34

    Jeong, D. S. et al. Fate of functional tricuspid regurgitation in aortic stenosis after aortic valve replacement. J. Thorac. Cardiovasc. Surg. 148, 1328–1333 (2014).

    Article  PubMed  Google Scholar 

  35. 35

    Dahou, A. et al. Tricuspid regurgitation is associated with increased risk of mortality in patients with low-flow low-gradient aortic stenosis and reduced ejection fraction: results of the multicenter TOPAS study (true or pseudo-severe aortic stenosis). JACC Cardiovasc. Interv. 8, 588–596 (2015).

    Article  PubMed  Google Scholar 

  36. 36

    Lancellotti, P. et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 14, 611–644 (2013).

    Article  Google Scholar 

  37. 37

    Moro, E., Nicolosi, G. L., Zanuttini, D., Cervesato, E. & Roelandt, J. Influence of aortic regurgitation on the assessment of the pressure half-time and derived mitral-valve area in patients with mitral stenosis. Eur. Heart J. 9, 1010–1017 (1988).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Flachskampf, F. A. et al. Aortic regurgitation shortens Doppler pressure half-time in mitral stenosis: clinical evidence, in vitro simulation and theoretic analysis. J. Am. Coll. Cardiol. 16, 396–404 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Nishimura, R. A. et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary. J. Am. Coll. Cardiol. 63, 2438–2488 (2014).

    Article  Google Scholar 

  40. 40

    Goldenheim, P. D. & Kazemi, H. Cardiopulmonary monitoring of critically ill patients (2). N. Engl. J. Med. 311, 776–780 (1984).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    van Grondelle, A., Ditchey, R. V., Groves, B. M., Wagner, W. W. Jr & Reeves, J. T. Thermodilution method overestimates low cardiac output in humans. Am. J. Physiol. 245, H690–H692 (1983).

    CAS  PubMed  Google Scholar 

  42. 42

    Tops, L. F. et al. Noninvasive evaluation of the aortic root with multislice computed tomography implications for transcatheter aortic valve replacement. JACC Cardiovasc. Imaging 1, 321–330 (2008).

    Article  PubMed  Google Scholar 

  43. 43

    O'Brien, B. et al. Integration of 3D imaging data in the assessment of aortic stenosis: impact on classification of disease severity. Circ. Cardiovasc. Imaging 4, 566–573 (2011).

    Article  PubMed  Google Scholar 

  44. 44

    Ng, A. C. et al. Comparison of aortic root dimensions and geometries before and after transcatheter aortic valve implantation by 2- and 3-dimensional transesophageal echocardiography and multislice computed tomography. Circ. Cardiovasc. Imaging 3, 94–102 (2010).

    Article  PubMed  Google Scholar 

  45. 45

    Clavel, M. A. et al. Aortic valve area calculation in aortic stenosis by CT and doppler echocardiography. JACC Cardiovasc. Imaging 8, 248–257 (2015).

    Article  PubMed  Google Scholar 

  46. 46

    Clavel, M. A. et al. Validation of conventional and simplified methods to calculate projected valve area at normal flow rate in patients with low flow, low gradient aortic stenosis: the multicenter TOPAS (True or Pseudo Severe Aortic Stenosis) study. J. Am. Soc. Echocardiogr. 23, 380–386 (2010).

    Article  PubMed  Google Scholar 

  47. 47

    Clavel, M. A. et al. The complex nature of discordant severe calcified aortic valve disease grading: new insights from combined Doppler-echocardiographic and computed tomographic study. J. Am. Coll. Cardiol. 62, 2329–2338 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Clavel, M. A. et al. Impact of aortic valve calcification, as measured by MDCT, on survival in patients with aortic stenosis: results of an international registry study. J. Am. Coll. Cardiol. 64, 1202–1213 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Schlosshan, D., Aggarwal, G., Mathur, G., Allan, R. & Cranney, G. Real-time 3D transesophageal echocardiography for the evaluation of rheumatic mitral stenosis. JACC Cardiovasc. Imaging 4, 580–588 (2011).

    Article  PubMed  Google Scholar 

  50. 50

    Chu, J. W. et al. Assessing mitral valve area and orifice geometry in calcific mitral stenosis: a new solution by real-time three-dimensional echocardiography. J. Am. Soc. Echocardiogr. 21, 1006–1009 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Delgado, V. et al. Multimodality imaging before, during, and after percutaneous mitral valve repair. Heart 97, 1704–1714 (2011).

    Article  PubMed  Google Scholar 

  52. 52

    Vahanian, A. et al. Guidelines on the management of valvular heart disease (version 2012). Eur. Heart J. 33, 2451–2496 (2012).

    Article  Google Scholar 

  53. 53

    Galloway, A. C. et al. Multiple valve operation for advanced valvular heart disease: results and risk factors in 513 patients. J. Am. Coll. Cardiol. 19, 725–732 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Rankin, J. S. et al. The Society of Thoracic Surgeons risk model for operative mortality after multiple valve surgery. Ann. Thorac. Surg. 95, 1484–1490 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55

    Han, Q. Q. et al. Primary triple valve surgery for advanced rheumatic heart disease in Mainland China: a single-center experience with 871 clinical cases. Eur. J. Cardiothorac. Surg. 31, 845–850 (2007).

    Article  PubMed  Google Scholar 

  56. 56

    Fukunaga, N. et al. Clinical outcomes of redo valvular operations: a 20-year experience. Ann. Thorac. Surg. 94, 2011–2016 (2012).

    Article  PubMed  Google Scholar 

  57. 57

    Otto, C. M. et al. Prospective study of asymptomatic valvular aortic stenosis. Clinical, echocardiographic, and exercise predictors of outcome. Circulation 95, 2262–2270 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. 58

    Wagner, S. & Selzer, A. Patterns of progression of aortic stenosis: a longitudinal hemodynamic study. Circulation 65, 709–712 (1982).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Vaturi, M. et al. The natural history of aortic valve disease after mitral valve surgery. J. Am. Coll. Cardiol. 33, 2003–2008 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Rosenhek, R. et al. Predictors of outcome in severe, asymptomatic aortic stenosis. N. Engl. J. Med. 343, 611–617 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Borer, J. S. & Bonow, R. O. Contemporary approach to aortic and mitral regurgitation. Circulation 108, 2432–2438 (2003).

    Article  PubMed  Google Scholar 

  62. 62

    Weisenberg, D. et al. Mid-term echocardiographic progression of patients with moderate aortic regurgitation: implications for aortic valve surgery. J. Heart Valve Dis. 22, 192–194 (2013).

    PubMed  Google Scholar 

  63. 63

    Gordon, S. P. F., Douglas, P. S., Come, P. C. & Manning, W. J. Two-dimensional and Doppler echocardiographic determinants of the natural history of mitral valve narrowing in patients with rheumatic mitral stenosis: implications for follow-up. J. Am. Coll. Cardiol. 19, 968–973 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Sagie, A. et al. Doppler echocardiographic assessment of long-term progression of mitral stenosis in 103 patients: valve area and right heart disease. J. Am. Coll. Cardiol. 28, 472–479 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Thalji, N. M. et al. Untreated aortic valve stenosis identified at the time of coronary artery bypass grafting: thresholds associated with adverse prognosis. Eur. J. Cardiothorac. Surg. 47, 712–719 (2015).

    Article  PubMed  Google Scholar 

  66. 66

    Dagenais, F., Mathieu, P., Doyle, D., Dumont, E. & Voisine, P. Moderate aortic stenosis in coronary artery bypass grafting patients more than 70 years of age: to replace or not to replace? Ann. Thorac. Surg. 90, 1495–1499 (2010).

    Article  PubMed  Google Scholar 

  67. 67

    Sareyyupoglu, B. et al. Management of mild aortic stenosis at the time of coronary artery bypass surgery: should the valve be replaced? Ann. Thorac. Surg. 88, 1224–1231 (2009).

    Article  PubMed  Google Scholar 

  68. 68

    Boning, A. et al. Should the aortic valve be replaced in patients with mild aortic stenosis admitted for coronary surgery? Thorac. Cardiovasc. Surg. 56, 467–470 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Pereira, J. J. et al. Aortic valve replacement in patients with mild or moderate aortic stenosis and coronary bypass surgery. Am. J. Med. 118, 735–742 (2005).

    Article  PubMed  Google Scholar 

  70. 70

    Regeer, M. V. et al. Mitral valve geometry changes in patients with aortic regurgitation. J. Am. Soc. Echocardiogr. 28, 455–462 (2015).

    Article  PubMed  Google Scholar 

  71. 71

    Toggweiler, S. et al. Transcatheter aortic valve replacement: outcomes of patients with moderate or severe mitral regurgitation. J. Am. Coll. Cardiol. 59, 2068–2074 (2012).

    Article  PubMed  Google Scholar 

  72. 72

    Unger, P., Dedobbeleer, C., Vanden Eynden, F. & Lancellotti, P. Mitral regurgitation after transcatheter aortic valve replacement: does the prosthesis matter? Int. J. Cardiol. 168, 1706–1709 (2013).

    Article  PubMed  Google Scholar 

  73. 73

    Nombela-Franco, L. et al. Clinical impact and evolution of mitral regurgitation following transcatheter aortic valve replacement: a meta-analysis. Heart 101, 1395–1405 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. 74

    Maluenda, G. et al. Changes in mitral regurgitation after balloon aortic valvuloplasty. Am. J. Cardiol. 108, 1777–1782 (2011).

    Article  PubMed  Google Scholar 

  75. 75

    Nath, J., Foster, E. & Heidenreich, P. A. Impact of tricuspid regurgitation on long-term survival. J. Am. Coll. Cardiol. 43, 405–409 (2004).

    Article  PubMed  Google Scholar 

  76. 76

    Braunwald, N. S., Ross, J. Jr & Morrow, A. G. Conservative management of tricuspid regurgitation in patients undergoing mitral valve replacement. Circulation 35, I63–I69 (1967).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Groves, P. H., Lewis, N. P., Ikram, S., Maire, R. & Roger, J. C. H. Reduced exercise capacity in patients with tricuspid regurgitation after successful mitral valve replacement for rheumatic mitral valve disease. Br. Heart J. 66, 295–301 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    King, R. M. et al. Surgery for tricuspid regurgitation late after mitral valve replacement. Circulation 70 (Suppl. 2), I193–I197 (1984).

    CAS  PubMed  Google Scholar 

  79. 79

    Dreyfus, G. D., Corbi, P. J., Chan, K. M. & Bahrami, T. Secondary tricuspid regurgitation or dilatation: which should be the criteria for surgical repair? Ann. Thorac. Surg. 79, 127–132 (2005).

    Article  PubMed  Google Scholar 

  80. 80

    Gillinov, A. M. et al. Mitral valve repair with aortic valve replacement is superior to double valve replacement. J. Thorac. Cardiovasc. Surg. 125, 1372–1387 (2003).

    Article  PubMed  Google Scholar 

  81. 81

    Talwar, S., Mathur, A., Choudhary, S. K., Singh, R. & Kumar, A. S. Aortic valve replacement with mitral valve repair compared with combined aortic and mitral valve replacement. Ann. Thorac. Surg. 84, 1219–1225 (2007).

    Article  PubMed  Google Scholar 

  82. 82

    Thourani, V. H. et al. Does mitral valve repair offer an advantage over replacement in patients undergoing aortic valve replacement? Ann. Thorac. Surg. 98, 598–603 (2014).

    Article  PubMed  Google Scholar 

  83. 83

    Leavitt, B. J. et al. Outcomes of patients undergoing concomitant aortic and mitral valve surgery in northern new England. Circulation 120, S155–S162 (2009).

    Article  PubMed  Google Scholar 

  84. 84

    Hamamoto, M. et al. Durability and outcome of aortic valve replacement with mitral valve repair versus double valve replacement. Ann. Thorac. Surg. 75, 28–33 (2003).

    Article  PubMed  Google Scholar 

  85. 85

    Kuwaki, K. et al. Mitral valve repair versus replacement in simultaneous mitral and aortic valve surgery for rheumatic disease. Ann. Thorac. Surg. 83, 558–563 (2007).

    Article  PubMed  Google Scholar 

  86. 86

    Magne, J. et al. Mitral repair versus replacement for ischemic mitral regurgitation: comparison of short-term and long-term survival. Circulation 120, S104–S111 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Acker, M. A. et al. Mitral-valve repair versus replacement for severe ischemic mitral regurgitation. N. Engl. J. Med. 370, 23–32 (2014).

    Article  CAS  Google Scholar 

  88. 88

    Arsalan, M., Walther, T., Smith, R. L. & Grayburn, P. A. Tricuspid regurgitation diagnosis and treatment. Eur. Heart J., (2015).

  89. 89

    Gatti, G. et al. Tricuspid annuloplasty for tricuspid regurgitation secondary to left-sided heart valve disease: immediate outcomes and risk factors for late failure. Can. J. Cardiol., (2015).

  90. 90

    Rudolph, V. et al. Bivalvular transcatheter treatment of high-surgical-risk patients with coexisting severe aortic stenosis and significant mitral regurgitation. Int. J. Cardiol. 167, 716–720 (2013).

    Article  PubMed  Google Scholar 

  91. 91

    Kische, S. et al. Staged total percutaneous treatment of aortic valve pathology and mitral regurgitation: institutional experience. Catheter. Cardiovasc. Interv. 82, E552–E563 (2013).

    PubMed  Google Scholar 

  92. 92

    Vahanian, A., Himbert, d. & Brochet, E. Multiple valve disease — assessment, strategy and intervention. EuroIntervention 11, W14–W16 (2015).

    Article  PubMed  Google Scholar 

  93. 93

    Himbert, D. et al. Transvenous mitral valve replacement after failure of surgical ring annuloplasty. J. Am. Coll. Cardiol. 60, 1205–1206 (2012).

    Article  PubMed  Google Scholar 

  94. 94

    Himbert, d. et al. Transcatheter valve replacement in patients with severe mitral valve disease and annular calcification. J. Am. Coll. Cardiol. 64, 2557–2558 (2014).

    Article  PubMed  Google Scholar 

  95. 95

    Campelo-Parada, F. et al. First-in man experience of a novel transcatheter repair system for treating severe tricuspid regurgitation. J. Am. Coll. Cardiol. 66, 2475–2483 (2015).

    Article  PubMed  Google Scholar 

  96. 96

    Lancellotti, P. et al. ESC working group on valvular heart disease position paper — heart valve clinics: organization, structure, and experiences. Eur. Heart J. 34, 1597–1606 (2013).

    Article  PubMed  Google Scholar 

  97. 97

    Sanchez-Ledesma, M. et al. Impact of concomitant aortic regurgitation on percutaneous mitral valvuloplasty: immediate results, short-term, and long-term outcome. Am. Heart J. 156, 361–366 (2008).

    Article  PubMed  Google Scholar 

  98. 98

    Bissessor, N. et al. The role of natriuretic peptides in patients with chronic complex (mixed or multiple) heart valve disease. Congest. Heart Fail. 16, 50–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. 99

    Bissessor, N. et al. Complex valve disease: pre-surgical functional capacity evaluation using peak oxygen consumption. J. Heart Valve Dis. 18, 554–561 (2009).

    PubMed  Google Scholar 

Download references


B.R.L. is supported by NIH K23 HL116660. P.P. holds the Canada Research Chair in Valvular Heart Disease, and his research programme is funded by the Canadian Institutes of Health Research (grant numbers FDN-143225, MOP 126072, MOP 114997 and MOP 102737) (Ottawa, Ontario, Canada).

Author information




P.U. researched data for the article. P.U., M.-A.C., B.R.L., and P.M. contributed substantially to discussion of content, and P.U. and P.P. wrote the manuscript. All the authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Philippe Unger or Philippe Pibarot.

Ethics declarations

Competing interests

B.R.L. has received research support from, and served on the scientific advisory board for, Roche Diagnostics. P.P. has Core Lab contracts with Edwards Lifesciences, for which he receives no direct compensation, and has received research grants from Ionis. The other authors declare no competing interests.

PowerPoint slides

Supplementary information

Supplementary information S1 (video)

Moderate-to-severe mitral regurgitation in a patient with severe aortic stenosis. (MOV 1222 kb)

Supplementary information S2 (video)

Transcather aortic valve implantation is performed in a patient with severe aortic stenosis and moderate-to-severe mitral regurgitation and, 6 months after the procedure, only mild mitral regurgitation remains. (MOV 1794 kb)

Supplementary information S3 (video)

Typical features of the combination of rheumatic aortic and mitral stenosis. (MOV 1443 kb)

Supplementary information S4 (video)

Rheumatic mitral stenosis with moderate secondary tricuspid regurgitation, which is a class IIa indication for concomitant tricuspid annuloplasty according to both the AHA/ACC39 and ESC/EACTS52 guidelines. (MOV 344 kb)

Related links

Related links


Society of Thoracic Surgeons (STS) database

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Unger, P., Clavel, MA., Lindman, B. et al. Pathophysiology and management of multivalvular disease. Nat Rev Cardiol 13, 429–440 (2016).

Download citation

Further reading


Quick links