Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Induced pluripotent stem cells: at the heart of cardiovascular precision medicine

Key Points

  • Human induced pluripotent stem cells (hiPSCs) can now be reprogrammed from different somatic cell sources and differentiated into common cardiovascular cell types, including cardiomyocytes, endothelial cells, and vascular smooth muscle cells

  • hiPSC-derived cardiovascular cells recapitulate patient-specific and disease-specific phenotypes, which can be exploited to design individualized treatment strategies

  • hiPSC derivatives have enabled the accurate modelling of numerous cardiovascular diseases, including cardiomyopathies, arrhythmia syndromes, cardiometabolic disorders, vascular diseases, and valvulopathies

  • hiPSC-based platforms for drug discovery and cardiotoxicity testing are now being incorporated into major pharmaceutical drug development pipelines and standards of drug safety testing, respectively

  • Further refinement in large-scale production of mature hiPSC-derived cardiovascular cells will be necessary to realize the potential of using hiPSCs to guide precision medicine

Abstract

The advent of human induced pluripotent stem cell (hiPSC) technology has revitalized the efforts in the past decade to realize more fully the potential of human embryonic stem cells for scientific research. Adding to the possibility of generating an unlimited amount of any cell type of interest, hiPSC technology now enables the derivation of cells with patient-specific phenotypes. Given the introduction and implementation of the large-scale Precision Medicine Initiative, hiPSC technology will undoubtedly have a vital role in the advancement of cardiovascular research and medicine. In this Review, we summarize the progress that has been made in the field of hiPSC technology, with particular emphasis on cardiovascular disease modelling and drug development. The growing roles of hiPSC technology in the practice of precision medicine will also be discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of human induced pluripotent stem cell (hiPSC) technology in precision medicine.
Figure 2: Human induced pluripotent stem cell (hiPSC)-based platforms for drug development.

Similar content being viewed by others

References

  1. Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jaffe, S. Planning for US Precision Medicine Initiative underway. Lancet 385, 2448–2449 (2015).

    Article  PubMed  Google Scholar 

  3. Matsa, E., Burridge, P. W. & Wu, J. C. Human stem cells for modeling heart disease and for drug discovery. Sci. Transl. Med. 6, 239ps6 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Karakikes, I., Ameen, M., Termglinchan, V. & Wu, J. C. Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ. Res. 117, 80–88 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wilson, K. D. & Wu, J. C. Induced pluripotent stem cells. JAMA 313, 1613–1614 (2015).

    Article  PubMed  Google Scholar 

  6. Eschenhagen, T., Mummery, C. & Knollmann, B. C. Modelling sarcomeric cardiomyopathies in the dish: from human heart samples to iPSC cardiomyocytes. Cardiovasc. Res. 105, 424–438 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamanaka, S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10, 678–684 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Mercola, M., Colas, A. & Willems, E. Induced pluripotent stem cells in cardiovascular drug discovery. Circ. Res. 112, 534–548 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liang, P. et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127, 1677–1691 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Engle, S. J. & Puppala, D. Integrating human pluripotent stem cells into drug development. Cell Stem Cell 12, 669–677 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Katsnelson, A. Momentum grows to make 'personalized' medicine more 'precise'. Nat. Med. 19, 249 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Hayden, E. C. Technology: the $1,000 genome. Nature 507, 294–295 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Wong, A. H., Gottesman, I. I. & Petronis, A. Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum. Mol. Genet. 14, R11–R18 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Janssens, A. C. & van Duijn, C. M. Genome-based prediction of common diseases: advances and prospects. Hum. Mol. Genet. 17, R166–R173 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Lyssenko, V. et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N. Engl. J. Med. 359, 2220–2232 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Meigs, J. B. et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N. Engl. J. Med. 359, 2208–2219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jostins, L. & Barrett, J. C. Genetic risk prediction in complex disease. Hum. Mol. Genet. 20, R182–R188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Loscalzo, J. & Handy, D. E. Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series). Pulm. Circ. 4, 169–174 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Smith, L. E. & White, M. Y. The role of post-translational modifications in acute and chronic cardiovascular disease. Proteomics Clin. Appl. 8, 506–521 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Mummery, C. L. et al. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ. Res. 111, 344–358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoder, M. C. Differentiation of pluripotent stem cells into endothelial cells. Curr. Opin. Hematol. 22, 252–257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dash, B. C., Jiang, Z., Suh, C. & Qyang, Y. Induced pluripotent stem cell-derived vascular smooth muscle cells: methods and application. Biochem. J. 465, 185–194 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Neofytou, E., O'Brien, C. G., Couture, L. A. & Wu, J. C. Hurdles to clinical translation of human induced pluripotent stem cells. J. Clin. Invest. 125, 2551–2557 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lalit, P. A., Hei, D. J., Raval, A. N., Kamp, T. J. Induced pluripotent stem cells for post-myocardial infarction repair: remarkable opportunities and challenges. Circ. Res. 114, 1328–1345 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Park, I. H., Lerou, P. H., Zhao, R., Huo, H. & Daley, G. Q. Generation of human-induced pluripotent stem cells. Nat. Protoc. 3, 1180–1186 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Lowry, W. E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl Acad. Sci. USA 105, 2883–2888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Hawley, R. G. Does retroviral insertional mutagenesis play a role in the generation of induced pluripotent stem cells? Mol. Ther. 16, 1354–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, A. S., Tang, C., Rao, M. S., Weissman, I. L. & Wu, J. C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat. Med. 19, 998–1004 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ban, H. et al. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc. Natl Acad. Sci. USA 108, 14234–14239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nat. Methods 8, 409–412 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Jia, F. et al. A nonviral minicircle vector for deriving human iPS cells. Nat. Methods 7, 197–199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Diecke, S. et al. Novel codon-optimized mini-intronic plasmid for efficient, inexpensive, and xeno-free induction of pluripotency. Sci. Rep. 5, 8081 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soldner, F. et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964–977 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618–630 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, D. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472–476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schlaeger, T. M. et al. A comparison of non-integrating reprogramming methods. Nat. Biotechnol. 33, 58–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Liang, G. & Zhang, Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell 13, 149–159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Choi, J. et al. A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat. Biotechnol. 33, 1173–1181 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733–2740 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Kehat, I. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407–414 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zwi, L. et al. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120, 1513–1523 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, J. et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104, e30–e41 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Burridge, P. W. et al. Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells 25, 929–938 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Dubois, N. C. et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol. 29, 1011–1018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015–1024 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, Q. et al. Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Res. 21, 579–587 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Elliott, D. A. et al. NKX2-5eGFP/w hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat. Methods 8, 1037–1040 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Hudson, J., Titmarsh, D., Hidalgo, A., Wolvetang, E. & Cooper-White, J. Primitive cardiac cells from human embryonic stem cells. Stem Cells Dev. 21, 1513–1523 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl Acad. Sci. USA 109, E1848–E1857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Burridge, P. W. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 11, 855–860 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Levenberg, S., Ferreira, L. S., Chen-Konak, L., Kraehenbuehl, T. P. & Langer, R. Isolation, differentiation and characterization of vascular cells derived from human embryonic stem cells. Nat. Protoc. 5, 1115–1126 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Orlova, V. V. et al. Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nat. Protoc. 9, 1514–1531 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Ferreira, L. S. et al. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circ. Res. 101, 286–294 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Marchand, M. et al. Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor. Stem Cells Transl. Med. 3, 91–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Moretti, A. et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med. 363, 1397–1409 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Egashira, T. et al. Disease characterization using LQTS-specific induced pluripotent stem cells. Cardiovasc. Res. 95, 419–429 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Ma, D. et al. Characterization of a novel KCNQ1 mutation for type 1 long QT syndrome and assessment of the therapeutic potential of a novel IKs activator using patient-specific induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res. Ther. 6, 39 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhang, M. et al. Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: disease mechanisms and pharmacological rescue. Proc. Natl Acad. Sci. USA 111, E5383–E5392 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Matsa, E. et al. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur. Heart J. 32, 952–962 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Itzhaki, I. et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471, 225–229 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Lahti, A. L. et al. Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. Dis. Model. Mech. 5, 220–230 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Mehta, A. et al. Re-trafficking of hERG reverses long QT syndrome 2 phenotype in human iPS-derived cardiomyocytes. Cardiovasc. Res. 102, 497–506 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Jouni, M. et al. Toward personalized medicine: using cardiomyocytes differentiated from urine-derived pluripotent stem cells to recapitulate electrophysiological characteristics of type 2 long QT syndrome. J. Am. Heart Assoc. 4, e002159 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Terrenoire, C. et al. Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. J. Gen. Physiol. 141, 61–72 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ma, D. et al. Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. Int. J. Cardiol. 168, 5277–5286 (2013).

    Article  PubMed  Google Scholar 

  71. Fatima, A. et al. The disease-specific phenotype in cardiomyocytes derived from induced pluripotent stem cells of two long QT syndrome type 3 patients. PLoS ONE 8, e83005 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Fatima, A. et al. In vitro modeling of ryanodine receptor 2 dysfunction using human induced pluripotent stem cells. Cell. Physiol. Biochem. 28, 579–592 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, X. H. et al. Ca2+ signaling in human induced pluripotent stem cell-derived cardiomyocytes (iPS-CM) from normal and catecholaminergic polymorphic ventricular tachycardia (CPVT)-afflicted subjects. Cell Calcium 54, 57–70 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jung, C. B. et al. Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol. Med. 4, 180–191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Itzhaki, I. et al. Modeling of catecholaminergic polymorphic ventricular tachycardia with patient-specific human-induced pluripotent stem cells. J. Am. Coll. Cardiol. 60, 990–1000 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Kujala, K. et al. Cell model of catecholaminergic polymorphic ventricular tachycardia reveals early and delayed afterdepolarizations. PLoS ONE 7, e44660 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Di Pasquale, E. et al. CaMKII inhibition rectifies arrhythmic phenotype in a patient-specific model of catecholaminergic polymorphic ventricular tachycardia. Cell Death Dis. 4, e843 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Novak, A. et al. Functional abnormalities in iPSC-derived cardiomyocytes generated from CPVT1 and CPVT2 patients carrying ryanodine or calsequestrin mutations. J. Cell. Mol. Med. 19, 2006–2018 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Novak, A. et al. Cardiomyocytes generated from CPVTD307H patients are arrhythmogenic in response to β-adrenergic stimulation. J. Cell. Mol. Med. 16, 468–482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yazawa, M. et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471, 230–234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sun, N. et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci. Transl. Med. 4, 130ra47 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wu, H. et al. Epigenetic regulation of phosphodiesterases 2A and 3A underlies compromised β-adrenergic signaling in an iPSC model of dilated cardiomyopathy. Cell Stem Cell 17, 89–100 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Siu, C. W. et al. Modeling of lamin A/C mutation premature cardiac aging using patient-specific induced pluripotent stem cells. Aging 4, 803–822 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tse, H. F. et al. Patient-specific induced-pluripotent stem cells-derived cardiomyocytes recapitulate the pathogenic phenotypes of dilated cardiomyopathy due to a novel DES mutation identified by whole exome sequencing. Hum. Mol. Genet. 22, 1395–1403 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Lan, F. et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell 12, 101–113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Han, L. et al. Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc. Res. 104, 258–269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tanaka, A. et al. Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes. J. Am. Heart Assoc. 3, e001263 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Caspi, O. et al. Modeling of arrhythmogenic right ventricular cardiomyopathy with human induced pluripotent stem cells. Circ. Cardiovasc. Genet. 6, 557–568 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Kim, C. et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature 494, 105–110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ma, D. et al. Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 34, 1122–1133 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Dick, E. et al. Exon skipping and gene transfer restore dystrophin expression in human induced pluripotent stem cells-cardiomyocytes harboring DMD mutations. Stem Cells Dev. 22, 2714–2724 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lin, B. et al. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. Dis. Model. Mech. 8, 457–466 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Drawnel, F. M. et al. Disease modeling and phenotypic drug screening for diabetic cardiomyopathy using human induced pluripotent stem cells. Cell Rep. 9, 810–821 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Ebert, A. D. et al. Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system. Sci. Transl. Med. 6, 255ra130 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20, 616–623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Huang, H. P. et al. Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification. Hum. Mol. Genet. 20, 4851–4864 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Raval, K. K. et al. Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes. J. Biol. Chem. 290, 3121–3136 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Sato, Y. et al. Disease modeling and lentiviral gene transfer in patient-specific induced pluripotent stem cells from late-onset Pompe disease patient. Mol. Ther. Methods Clin. Dev. 2, 15023 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Jiang, Y. et al. An induced pluripotent stem cell model of hypoplastic left heart syndrome (HLHS) reveals multiple expression and functional differences in HLHS-derived cardiac myocytes. Stem Cells Transl. Med. 3, 416–423 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sharma, A. et al. Human induced pluripotent stem cell-derived cardiomyocytes as an in vitro model for coxsackievirus B3-induced myocarditis and antiviral drug screening platform. Circ. Res. 115, 556–566 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sallam, K., Li, Y., Sager, P. T., Houser, S. R. & Wu, J. C. Finding the rhythm of sudden cardiac death: new opportunities using induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 116, 1989–2004 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. O'Hara, T. & Rudy, Y. Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species. Am. J. Physiol. Heart Circ. Physiol. 302, H1023–H1030 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Braam, S. R. et al. Repolarization reserve determines drug responses in human pluripotent stem cell derived cardiomyocytes. Stem Cell Res. 10, 48–56 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Lieu, D. K. et al. Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Arrhythm. Electrophysiol. 6, 191–201 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Matsa, E. et al. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes. Eur. Heart J. 35, 1078–1087 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Lei, M., Huang, C. L. & Zhang, Y. Genetic Na+ channelopathies and sinus node dysfunction. Prog. Biophys. Mol. Biol. 98, 171–178 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Sallam, K., Kodo, K. & Wu, J. C. Modeling inherited cardiac disorders. Circ. J. 78, 784–794 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hinson, J. T. et al. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349, 982–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Asimaki, A. et al. Identification of a new modulator of the intercalated disc in a zebrafish model of arrhythmogenic cardiomyopathy. Sci. Transl. Med. 6, 240ra74 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Hashem, S. I. et al. Brief report: oxidative stress mediates cardiomyocyte apoptosis in a human model of Danon disease and heart failure. Stem Cells 33, 2343–2350 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nakamura, K., Hirano, K. & Wu, S. M. iPS cell modeling of cardiometabolic diseases. J. Cardiovasc. Transl. Res. 6, 46–53 (2013).

    Article  PubMed  Google Scholar 

  112. Guo, Y. J. et al. The ALDH2 Glu504Lys polymorphism is associated with coronary artery disease in Han Chinese: relation with endothelial ADMA levels. Atherosclerosis 211, 545–550 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Xu, F. et al. ALDH2 genetic polymorphism and the risk of type II diabetes mellitus in CAD patients. Hypertens. Res. 33, 49–55 (2010).

    Article  PubMed  CAS  Google Scholar 

  114. Dhingra, R. et al. Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proc. Natl Acad. Sci. USA 111, E5537–E5544 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Clayton, Z. E., Sadeghipour, S. & Patel, S. Generating induced pluripotent stem cell derived endothelial cells and induced endothelial cells for cardiovascular disease modelling and therapeutic angiogenesis. Int. J. Cardiol. 197, 116–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Pober, B. R. Williams–Beuren syndrome. N. Engl. J. Med. 362, 239–252 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Merla, G., Brunetti-Pierri, N., Piccolo, P., Micale, L. & Loviglio, M. N. Supravalvular aortic stenosis: elastin arteriopathy. Circ. Cardiovasc. Genet. 5, 692–696 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Ge, X. et al. Modeling supravalvular aortic stenosis syndrome with human induced pluripotent stem cells. Circulation 126, 1695–1704 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kinnear, C. et al. Modeling and rescue of the vascular phenotype of Williams–Beuren syndrome in patient induced pluripotent stem cells. Stem Cells Transl. Med. 2, 2–15 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Goergen, C. J., Li, H. H., Francke, U. & Taylor, C. A. Induced chromosome deletion in a Williams–Beuren syndrome mouse model causes cardiovascular abnormalities. J. Vasc. Res. 48, 119–129 (2011).

    Article  PubMed  Google Scholar 

  121. Rajamannan, N. M. & Otto, C. M. Targeted therapy to prevent progression of calcific aortic stenosis. Circulation 110, 1180–1182 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Roberts, W. C. & Ko, J. M. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation 111, 920–925 (2005).

    Article  PubMed  Google Scholar 

  123. Weinberg, E. J., Mack, P. J., Schoen, F. J., Garcia-Cardena, G. & Kaazempur Mofrad, M. R. Hemodynamic environments from opposing sides of human aortic valve leaflets evoke distinct endothelial phenotypes in vitro. Cardiovasc. Eng. 10, 5–11 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Combs, M. D. & Yutzey, K. E. Heart valve development: regulatory networks in development and disease. Circ. Res. 105, 408–421 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Masumura, T., Yamamoto, K., Shimizu, N., Obi, S. & Ando, J. Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-Notch signaling pathways. Arterioscler. Thromb. Vasc. Biol. 29, 2125–2131 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Theodoris, C. V. et al. Human disease modeling reveals integrated transcriptional and epigenetic mechanisms of NOTCH1 haploinsufficiency. Cell 160, 1072–1086 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pollex, R. L. & Hegele, R. A. Hutchinson–Gilford progeria syndrome. Clin. Genet. 66, 375–381 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Liu, G. H. et al. Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472, 221–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang, J. et al. A human iPSC model of Hutchinson Gilford progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8, 31–45 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Kim, H. & Kim, J. S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321–334 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Karakikes, I. et al. Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nat. Commun. 6, 6955 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Wang, Y. et al. Genome editing of isogenic human induced pluripotent stem cells recapitulates long QT phenotype for drug testing. J. Am. Coll. Cardiol. 64, 451–459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Frommeyer, G. & Eckardt, L. Drug-induced proarrhythmia: risk factors and electrophysiological mechanisms. Nat. Rev. Cardiol. 13, 36–47 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Darpo, B. et al. Cardiac Safety Research Consortium: can the thorough QT/QTc study be replaced by early QT assessment in routine clinical pharmacology studies? Scientific update and a research proposal for a path forward. Am. Heart J. 168, 262–272 (2014).

    Article  PubMed  Google Scholar 

  136. Sager, P. T., Gintant, G., Turner, J. R., Pettit, S. & Stockbridge, N. Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. Am. Heart J. 167, 292–300 (2014).

    Article  PubMed  Google Scholar 

  137. Mirams, G. R. et al. Simulation of multiple ion channel block provides improved early prediction of compounds' clinical torsadogenic risk. Cardiovasc. Res. 91, 53–61 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Navarrete, E. G. et al. Screening drug-induced arrhythmia using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays. Circulation 128 (Suppl. 1), S3–S13 (2013).

    CAS  PubMed  Google Scholar 

  139. Jonsson, M. K., Wang, Q. D. & Becker, B. Impedance-based detection of beating rhythm and proarrhythmic effects of compounds on stem cell-derived cardiomyocytes. Assay Drug Dev. Technol. 9, 589–599 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Guo, L. et al. Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol. Sci. 123, 281–289 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Guo, L. et al. Refining the human iPSC-cardiomyocyte arrhythmic risk assessment model. Toxicol. Sci. 136, 581–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Sirenko, O. et al. Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells. J. Biomol. Screen. 18, 39–53 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Sirenko, O. et al. Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity. Toxicol. Appl. Pharmacol. 273, 500–507 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Maddah, M. et al. A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing. Stem Cell Rep. 4, 621–631 (2015).

    Article  CAS  Google Scholar 

  145. Doke, S. K. & Dhawale, S. C. Alternatives to animal testing: a review. Saudi Pharm. J. 23, 223–229 (2015).

    Article  PubMed  Google Scholar 

  146. Giri, S. & Bader, A. A low-cost, high-quality new drug discovery process using patient-derived induced pluripotent stem cells. Drug Discov. Today 20, 37–49 (2015).

    Article  PubMed  Google Scholar 

  147. Burridge, P. W., Holmstrom, A. & Wu, J. C. Chemically defined culture and cardiomyocyte differentiation of human pluripotent stem cells. Curr. Protoc. Hum. Genet. 87, 21.3.1–21.3.15 (2015).

    Google Scholar 

  148. Stillitano, F. et al. Modeling drug-induced long QT syndrome with patient-specific induced pluripotent stem cell-derived cardiomyocytes [abstract]. Circulation 130, A18442 (2014).

    Google Scholar 

  149. Mullard, A. Stem-cell discovery platforms yield first clinical candidates. Nat. Rev. Drug Discov. 14, 589–591 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Bright, J. et al. Human secreted tau increases amyloid-beta production. Neurobiol. Aging 36, 693–709 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Wainger, B. J. et al. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep. 7, 1–11 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Eschenhagen, T. et al. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J. 11, 683–694 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. Eder, A., Vollert, I., Hansen, A. & Eschenhagen, T. Human engineered heart tissue as a model system for drug testing. Adv. Drug Deliv. Rev. 96, 214–224 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Schaaf, S. et al. Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS ONE 6, e26397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Stoehr, A. et al. Automated analysis of contractile force and Ca2+ transients in engineered heart tissue. Am. J. Physiol. Heart Circ. Physiol. 306, H1353–H1363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang, D. et al. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 34, 5813–5820 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nunes, S. S. et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods 10, 781–787 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mathur, A. et al. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci. Rep. 5, 8883 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tzatzalos, E., Abilez, O. J., Shukla, P. & Wu, J. C. Engineered heart tissues and induced pluripotent stem cells: macro- and microstructures for disease modeling, drug screening, and translational studies. Adv. Drug Deliv. Rev. 96, 234–244 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Priest, B. T., Bell, I. M. & Garcia, M. L. Role of hERG potassium channel assays in drug development. Channels 2, 87–93 (2008).

    Article  PubMed  Google Scholar 

  161. Gintant, G. A., Su, Z., Martin, R. L. & Cox, B. F. Utility of hERG assays as surrogate markers of delayed cardiac repolarization and QT safety. Toxicol. Pathol. 34, 81–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Chen, X., Cordes, J. S., Bradley, J. A., Sun, Z. & Zhou, J. Use of arterially perfused rabbit ventricular wedge in predicting arrhythmogenic potentials of drugs. J. Pharmacol. Toxicol. Methods 54, 261–272 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Milberg, P. et al. Transmural dispersion of repolarization as a key factor of arrhythmogenicity in a novel intact heart model of LQT3. Cardiovasc. Res. 65, 397–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Lawrence, C. L., Bridgland-Taylor, M. H., Pollard, C. E., Hammond, T. G. & Valentin, J. P. A rabbit Langendorff heart proarrhythmia model: predictive value for clinical identification of Torsades de Pointes. Br. J. Pharmacol. 149, 845–860 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sugiyama, A. Sensitive and reliable proarrhythmia in vivo animal models for predicting drug-induced torsades de pointes in patients with remodelled hearts. Br. J. Pharmacol. 154, 1528–1537 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lundy, S. D., Zhu, W. Z., Regnier, M. & Laflamme, M. A. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 22, 1991–2002 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Robertson, C., Tran, D. D. & George, S. C. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31, 829–837 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Xu, X. Q., Soo, S. Y., Sun, W. & Zweigerdt, R. Global expression profile of highly enriched cardiomyocytes derived from human embryonic stem cells. Stem Cells 27, 2163–2174 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Hwang, H. S. et al. Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories. J. Mol. Cell. Cardiol. 85, 79–88 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lieu, D. K. et al. Absence of transverse tubules contributes to non-uniform Ca2+ wavefronts in mouse and human embryonic stem cell-derived cardiomyocytes. Stem Cells Dev. 18, 1493–1500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kim, J. J. et al. Mechanism of automaticity in cardiomyocytes derived from human induced pluripotent stem cells. J. Mol. Cell. Cardiol. 81, 81–93 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Tohyama, S. et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12, 127–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Zhu, R. et al. Physical developmental cues for the maturation of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Res. Ther. 5, 117 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Wilson, K. D. et al. Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499. Circ. Cardiovasc. Genet. 3, 426–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Marx, V. Stem cells: disease models that show and tell. Nat. Methods 12, 111–114 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Fluri, D. A. et al. Derivation, expansion and differentiation of induced pluripotent stem cells in continuous suspension cultures. Nat. Methods 9, 509–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chen, V. C. et al. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res. 15, 365–375 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Amit, M. et al. Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nat. Protoc. 6, 572–579 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Kirouac, D. C. & Zandstra, P. W. The systematic production of cells for cell therapies. Cell Stem Cell 3, 369–381 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Paull, D. et al. Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nat. Methods 12, 885–892 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Blake Wu (Department of Radiology, Stanford University School of Medicine) for his assistance with manuscript preparation and Amy Thomas (Department of Radiology, Stanford University School of Medicine) for her assistance with Figures included in this manuscript. Owing to space limitation, we are unable to include all the important papers relevant to hiPSC research, and we apologize to those investigators who have otherwise contributed substantially to this field. This work is supported by research grants from the National Institute of Health T32 training grant (I.Y.C.), American Heart Association 16BGIA27790017 (E.M.), AHA 13EIA14420025, Burroughs Wellcome Foundation Innovation in Regulatory Science Awards, NIH R01 HL123968, NIH HL130020, NIH R01 HL128170, and NIH R01 HL126527 (J.C.W.).

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, substantially contributed to discussion of content, and wrote, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Joseph C. Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, I., Matsa, E. & Wu, J. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat Rev Cardiol 13, 333–349 (2016). https://doi.org/10.1038/nrcardio.2016.36

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.36

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing