Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Role of gut microbiota in atherosclerosis

Key Points

  • Microorganisms that reside in the human body, the majority of which colonize the gut, might affect host physiology in various ways

  • Bacteria from the gut or the oral cavity might translocate to atherosclerotic plaques and could affect the development of atherosclerosis and cardiovascular disease

  • Microbial transplantations in mice influence diet-enhanced susceptibility to atherosclerosis and thrombosis

  • Dietary components can either alter the composition of gut microbiota or be processed into metabolites that can delay or accelerate the development of atherosclerosis

  • Trimethylamine N-oxide is a potentially harmful bacterial metabolite that influences cholesterol metabolism and thrombosis activity

  • To determine the role of the (gut) microbiota in cardiovascular disease and atherosclerosis, the underlying mechanisms need to be further elucidated

Abstract

Infections have been linked to the development of cardiovascular disease and atherosclerosis. Findings from the past decade have identified microbial ecosystems residing in different habitats of the human body that contribute to metabolic and cardiovascular-related disorders. In this Review, we describe three pathways by which microbiota might affect atherogenesis. First, local or distant infections might cause a harmful inflammatory response that aggravates plaque development or triggers plaque rupture. Second, metabolism of cholesterol and lipids by gut microbiota can affect the development of atherosclerotic plaques. Third, diet and specific components that are metabolized by gut microbiota can have various effects on atherosclerosis; for example, dietary fibre is beneficial, whereas the bacterial metabolite trimethylamine-N-oxide is considered harmful. Although specific bacterial taxa have been associated with atherosclerosis, which is supported by increasing mechanistic evidence, several questions remain to be answered to understand fully how the microbiota contributes to atherosclerosis and cardiovascular disease. Such knowledge might pave the way for novel diagnostics and therapeutics based on microbiota.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Body sites of microbiota that influences atherosclerosis.
Figure 2: Microbiota-related pathways in atherosclerosis.

References

  1. 1

    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  2. 2

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  3. 3

    Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Sommer, F. & Backhed, F. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  5. 5

    Ott, S. J. et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 113, 929–937 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4592–4598 (2011).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Trevisan, M. & Dorn, J. The relationship between periodontal disease (PD) and cardiovascular disease (CVD). Mediterr. J. Hematol. Infect. Dis. 2, e2010030 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Mattila, K. J. et al. Association between dental health and acute myocardial infarction. BMJ 298, 779–781 (1989).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  9. 9

    de Oliveira, C., Watt, R. & Hamer, M. Toothbrushing, inflammation, and risk of cardiovascular disease: results from Scottish Health Survey. BMJ 340, c2451 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Fak, F., Tremaroli, V., Bergstrom, G. & Backhed, F. Oral microbiota in patients with atherosclerosis. Atherosclerosis 243, 573–578 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. 11

    Hayashi, C. et al. Pathogen-mediated inflammatory atherosclerosis is mediated in part via Toll-like receptor 2-induced inflammatory responses. J. Innate Immun. 2, 334–343 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  12. 12

    Hayashi, C. et al. Porphyromonas gingivalis accelerates inflammatory atherosclerosis in the innominate artery of ApoE deficient mice. Atherosclerosis 215, 52–59 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  13. 13

    Zhang, T. et al. Aggregatibacter actinomycetemcomitans accelerates atherosclerosis with an increase in atherogenic factors in spontaneously hyperlipidemic mice. FEMS Immunol. Med. Microbiol. 59, 143–151 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14

    Karlsson, F. H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15

    Emoto, T. et al. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels http://dx.doi.org/10.1007/s00380-016-0841-y (2016).

  16. 16

    Emoto, T. et al. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J. Atheroscler. Thromb. 23, 908–921 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  17. 17

    Shor, A., Kuo, C. C. & Patton, D. L. Detection of Chlamydia pneumoniae in coronary arterial fatty streaks and atheromatous plaques. S. Afr. Med. J. 82, 158–161 (1992).

    PubMed  PubMed Central  CAS  Google Scholar 

  18. 18

    Blasi, F. et al. Detection of Chlamydia pneumoniae but not Helicobacter pylori in atherosclerotic plaques of aortic aneurysms. J. Clin. Microbiol. 34, 2766–2769 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  19. 19

    Thomas, M. et al. Relation between direct detection of Chlamydia pneumoniae DNA in human coronary arteries at postmortem examination and histological severity (Stary grading) of associated atherosclerotic plaque. Circulation 99, 2733–2736 (1999).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  20. 20

    Gibbs, R. G. et al. Chlamydia pneumoniae does not influence atherosclerotic plaque behavior in patients with established carotid artery stenosis. Stroke 31, 2930–2935 (2000).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  21. 21

    Berger, M. et al. Chlamydia pneumoniae DNA in non-coronary atherosclerotic plaques and circulating leukocytes. J. Lab. Clin. Med. 136, 194–200 (2000).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  22. 22

    Nadareishvili, Z. G. et al. Increased CD8+ T cells associated with Chlamydia pneumoniae in symptomatic carotid plaque. Stroke 32, 1966–1972 (2001).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  23. 23

    Johnston, S. C. et al. C-reactive protein levels and viable Chlamydia pneumoniae in carotid artery atherosclerosis. Stroke 32, 2748–2752 (2001).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  24. 24

    Calandrini, C. A. et al. Microbial composition of atherosclerotic plaques. Oral Dis. 20, e128–e134 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  25. 25

    Mitra, S. et al. In silico analyses of metagenomes from human atherosclerotic plaque samples. Microbiome 3, 38 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Rosenfeld, M. E. & Campbell, L. A. Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb. Haemost. 106, 858–867 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  27. 27

    Epstein, S. E. et al. Infection and atherosclerosis: potential roles of pathogen burden and molecular mimicry. Arterioscler Thromb. Vasc. Biol. 20, 1417–1420 (2000).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  28. 28

    Smeeth, L. et al. Risk of myocardial infarction and stroke after acute infection or vaccination. N. Engl. J. Med. 351, 2611–2618 (2004).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  29. 29

    Filardo, S., Di Pietro, M., Farcomeni, A., Schiavoni, G. & Sessa, R. Chlamydia pneumoniae-mediated inflammation in atherosclerosis: a meta-analysis. Mediators Inflamm. 2015, 378658 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30

    Hizo-Abes, P. et al. Cardiovascular disease after Escherichia coli O157:H7 gastroenteritis. CMAJ 185, E70–E77 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Andraws, R., Berger, J. S. & Brown, D. L. Effects of antibiotic therapy on outcomes of patients with coronary artery disease: a meta-analysis of randomized controlled trials. JAMA 293, 2641–2647 (2005).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Grayston, J. T. Antibiotic treatment of atherosclerotic cardiovascular disease. Circulation 107, 1228–1230 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    O'Connor, C. M. et al. Azithromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial. JAMA 290, 1459–1466 (2003).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Grayston, J. T. et al. Azithromycin for the secondary prevention of coronary events. N. Engl. J. Med. 352, 1637–1645 (2005).

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Cannon, C. P. et al. Antibiotic treatment of Chlamydia pneumoniae after acute coronary syndrome. N. Engl. J. Med. 352, 1646–1654 (2005).

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Jespersen, C. M. et al. Randomised placebo controlled multicentre trial to assess short term clarithromycin for patients with stable coronary heart disease: CLARICOR trial. BMJ 332, 22–27 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. 37

    Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  38. 38

    Elkind, M. S. et al. Infectious burden and carotid plaque thickness: the northern Manhattan study. Stroke 41, e117–e122 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Epstein, S. E., Zhu, J., Najafi, A. H. & Burnett, M. S. Insights into the role of infection in atherogenesis and in plaque rupture. Circulation 119, 3133–3141 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  40. 40

    Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  41. 41

    Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  42. 42

    Ostos, M. A., Recalde, D., Zakin, M. M. & Scott-Algara, D. Implication of natural killer T cells in atherosclerosis development during a LPS-induced chronic inflammation. FEBS Lett. 519, 23–29 (2002).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  43. 43

    Rocha, D. M., Caldas, A. P., Oliveira, L. L., Bressan, J. & Hermsdorff, H. H. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 244, 211–215 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  44. 44

    Caesar, R., Tremaroli, V., Kovatcheva-Datchary, P., Cani, P. D. & Backhed, F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 22, 658–668 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  45. 45

    Bjorkbacka, H. et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat. Med. 10, 416–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Michelsen, K. S. et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl Acad. Sci. USA 101, 10679–10684 (2004).

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Edfeldt, K., Swedenborg, J., Hansson, G. K. & Yan, Z. Q. Expression of Toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105, 1158–1161 (2002).

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Xu, X. H. et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 104, 3103–3108 (2001).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  49. 49

    Arbour, N. C. et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet. 25, 187–191 (2000).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  50. 50

    Zhang, K. et al. Lack of association between TLR4 Asp299Gly polymorphism and atherosclerosis: evidence from meta-analysis. Thromb. Res. 130, e203–208 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  51. 51

    Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52

    Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  53. 53

    Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  54. 54

    Yusuf, S., Reddy, S., Ounpuu, S. & Anand, S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 104, 2746–2753 (2001).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  55. 55

    Fu, J. et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ. Res. 117, 817–824 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  56. 56

    Velagapudi, V. R. et al. The gut microbiota modulates host energy and lipid metabolism in mice. J. Lipid Res. 51, 1101–1112 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  57. 57

    Lefebvre, P., Cariou, B., Lien, F., Kuipers, F. & Staels, B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89, 147–191 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  58. 58

    Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  59. 59

    Wahlstrom, A., Sayin, S. I., Marschall, H. U. & Backhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Li, F. et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat. Commun. 4, 2384 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. 61

    Jiang, C. et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J. Clin. Invest. 125, 386–402 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Jiang, C. et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat. Commun. 6, 10166 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  63. 63

    Parseus, A. et al. Microbiota-induced obesity requires farnesoid X receptor. Gut http://dx.doi.org/10.1136/gutjnl-2015-310283 (2016).

  64. 64

    Lambert, G. et al. The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J. Biol. Chem. 278, 2563–2570 (2003).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  65. 65

    Miyazaki-Anzai, S., Masuda, M., Levi, M., Keenan, A. L. & Miyazaki, M. Dual activation of the bile acid nuclear receptor FXR and G-protein-coupled receptor TGR5 protects mice against atherosclerosis. PLoS ONE 9, e108270 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. 66

    Hartman, H. B. et al. Activation of farnesoid X receptor prevents atherosclerotic lesion formation in LDLR−/− and apoE−/− mice. J. Lipid Res. 50, 1090–1100 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  67. 67

    Mencarelli, A., Renga, B., Distrutti, E. & Fiorucci, S. Antiatherosclerotic effect of farnesoid X receptor. Am. J. Physiol. Heart Circ. Physiol. 296, H272–H281 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  68. 68

    Hanniman, E. A., Lambert, G., McCarthy, T. C. & Sinal, C. J. Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient mice. J. Lipid Res. 46, 2595–2604 (2005).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  69. 69

    Guo, G. L. et al. Effects of FXR in foam-cell formation and atherosclerosis development. Biochim. Biophys. Acta 1761, 1401–1409 (2006).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  70. 70

    Zhang, Y. et al. FXR deficiency causes reduced atherosclerosis in Ldlr−/− mice. Arterioscler. Thromb. Vasc. Biol. 26, 2316–2321 (2006).

    CAS  Article  PubMed  Google Scholar 

  71. 71

    Bishop-Bailey, D., Walsh, D. T. & Warner, T. D. Expression and activation of the farnesoid X receptor in the vasculature. Proc. Natl Acad. Sci. USA 101, 3668–3673 (2004).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  72. 72

    Zhang, Q. et al. FXR-mediated regulation of angiotensin type 2 receptor expression in vascular smooth muscle cells. Cardiovasc. Res. 77, 560–569 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  73. 73

    He, F. et al. Downregulation of endothelin-1 by farnesoid X receptor in vascular endothelial cells. Circ. Res. 98, 192–199 (2006).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  74. 74

    Sonnenburg, J. & Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  75. 75

    Tilg, H. & Moschen, A. R. Food, immunity, and the microbiome. Gastroenterology 148, 1107–1119 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76

    Pendyala, S., Walker, J. M. & Holt, P. R. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 142, 1100–1101.e2 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  77. 77

    Erridge, C., Attina, T., Spickett, C. M. & Webb, D. J. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 86, 1286–1292 (2007).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  78. 78

    Li, D. et al. Metabonomic changes associated with atherosclerosis progression for LDLR−/− mice. J. Proteome Res. 14, 2237–2254 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  79. 79

    Ghosh, S. S., Bie, J., Wang, J. & Ghosh, S. Oral supplementation with non-absorbable antibiotics or curcumin attenuates western diet-induced atherosclerosis and glucose intolerance in LDLR−/− mice—role of intestinal permeability and macrophage activation. PLoS ONE 9, e108577 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. 80

    Stepankova, R. et al. Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. J. Atheroscler. Thromb. 17, 796–804 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  81. 81

    Wright, S. D. et al. Infectious agents are not necessary for murine atherogenesis. J. Exp. Med. 191, 1437–1442 (2000).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  82. 82

    O'Connor, A., Quizon, P. M., Albright, J. E., Lin, F. T. & Bennett, B. J. Responsiveness of cardiometabolic-related microbiota to diet is influenced by host genetics. Mamm. Genome 25, 583–599 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  83. 83

    Org, E. et al. Genetic and environmental control of host-gut microbiota interactions. Genome Res. 25, 1558–1569 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  84. 84

    Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  85. 85

    Koeth, R. A. et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  86. 86

    Koeth, R. A. et al. γ-butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of l-carnitine to TMAO. Cell Metab. 20, 799–812 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  87. 87

    Skagen, K. et al. The carnitine–butyrobetaine–trimethylamine-N-oxide pathway and its association with cardiovascular mortality in patients with carotid atherosclerosis. Atherosclerosis 247, 64–69 (2016).

    CAS  Article  PubMed  Google Scholar 

  88. 88

    Tang, W. H. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  89. 89

    Wang, Z. et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur. Heart J. 35, 904–910 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  90. 90

    Mente, A. et al. The relationship between trimethylamine-N-oxide and prevalent cardiovascular disease in a multiethnic population living in Canada. Can. J. Cardiol. 31, 1189–1194 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  91. 91

    Tang, W. H. et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J. Card. Fail. 21, 91–96 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  92. 92

    Tang, W. H. et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J. Am. Coll. Cardiol. 64, 1908–1914 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  93. 93

    Troseid, M. et al. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J. Intern. Med. 277, 717–726 (2015).

    CAS  Article  PubMed  Google Scholar 

  94. 94

    Bennett, B. J. et al. Genetic architecture of atherosclerosis in mice: a systems genetics analysis of common inbred strains. PLoS Genet. 11, e1005711 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95

    Gregory, J. C. et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J. Biol. Chem. 290, 5647–5660 (2015).

    CAS  Article  PubMed  Google Scholar 

  96. 96

    Romano, K. A., Vivas, E. I., Amador-Noguez, D. & Rey, F. E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio 6, e02481 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  97. 97

    Collins, H. L. et al. L-carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE−/− transgenic mice expressing CETP. Atherosclerosis 244, 29–37 (2016).

    CAS  Article  PubMed  Google Scholar 

  98. 98

    Seldin, M. M. et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J. Am. Heart Assoc. 5, e002767 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  99. 99

    Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  100. 100

    Bennett, B. J. et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 17, 49–60 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  101. 101

    Shih, D. M. et al. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J. Lipid Res. 56, 22–37 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  102. 102

    Warrier, M. et al. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep. 10, 326–338 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  103. 103

    Miao, J. et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat. Commun. 6, 6498 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  104. 104

    Cashman, J. R. et al. Biochemical and clinical aspects of the human flavin-containing monooxygenase form 3 (FMO3) related to trimethylaminuria. Curr. Drug Metab. 4, 151–170 (2003).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  105. 105

    Wang, Z. N. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 1585–1595 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  106. 106

    Chen, M. L. et al. Resveratrol attenuates trimethylamine-N-Oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio 7, e02210-15 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  107. 107

    Tremaroli, V. et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 22, 228–238 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  108. 108

    Slavin, J. Fiber and prebiotics: mechanisms and health benefits. Nutrients 5, 1417–1435 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  109. 109

    Sahyoun, N. R., Jacques, P. F., Zhang, X. L., Juan, W. & McKeown, N. M. Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults. Am. J. Clin. Nutr. 83, 124–131 (2006).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  110. 110

    Rault-Nania, M. H. et al. Inulin attenuates atherosclerosis in apolipoprotein E-deficient mice. Br. J. Nutr. 96, 840–844 (2006).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  111. 111

    Karlsson, C. et al. Probiotic therapy to men with incipient arteriosclerosis initiates increased bacterial diversity in colon: a randomized controlled trial. Atherosclerosis 208, 228–233 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  112. 112

    Naruszewicz, M., Johansson, M. L., Zapolska-Downar, D. & Bukowska, H. Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am. J. Clin. Nutr. 76, 1249–1255 (2002).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  113. 113

    Taranto, M. P., Medici, M., Perdigon, G., Ruiz Holgado, A. P. & Valdez, G. F. Effect of Lactobacillus reuteri on the prevention of hypercholesterolemia in mice. J. Dairy Sci. 83, 401–403 (2000).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  114. 114

    Andrade, S. & Borges, N. Effect of fermented milk containing Lactobacillus acidophilus and Bifidobacterium longum on plasma lipids of women with normal or moderately elevated cholesterol. J. Dairy Res. 76, 469–474 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  115. 115

    London, L. E. et al. Exopolysaccharide-producing probiotic Lactobacilli reduce serum cholesterol and modify enteric microbiota in ApoE-deficient mice. J. Nutr. 144, 1956–1962 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  116. 116

    Fak, F. & Backhed, F. Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe−/− mice. PLoS ONE 7, e46837 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  117. 117

    Portugal, L. R. et al. Effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and on atherogenesis in apolipoprotein E knock-out mice. Braz. J. Med. Biol. Res. 39, 629–635 (2006).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  118. 118

    Collado, M. C., Derrien, M., Isolauri, E., de Vos, W. M. & Salminen, S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 73, 7767–7770 (2007).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  119. 119

    Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S. & de Vos, W. M. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl. Environ. Microbiol. 74, 1646–1648 (2008).

    CAS  Article  PubMed  Google Scholar 

  120. 120

    Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    CAS  Article  PubMed  Google Scholar 

  121. 121

    Li, J., Lin, S., Vanhoutte, P. M., Woo, C. W. & Xu, A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe−/− Mice. Circulation 133, 2434–2446 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  122. 122

    Byrd, A. L. & Segre, J. A. Infectious disease. Adapting Koch's postulates. Science 351, 224–226 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Anna Hallén, Walleneberg Laboratory at University of Gothenburg, Sweden, for assistance with figures and artwork. The authors' laboratory is supported by grants from AFA-insurances, the Ragnar Söderberg's Foundation, the Swedish Foundation for Strategic Research, the Swedish Heart Lung Foundation, the Swedish Research Council, Torsten Söderberg's, and LUA-ALF grants from Västra Götalandsregionen. F.B. is a recipient of ERC consolidator Grant 2013 (European Research Council, Consolidator grant 615362-METABASE).

Author information

Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, and wrote, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Fredrik Bäckhed.

Ethics declarations

Competing interests

F.B. is founder and shareholder of Metabogen AB. A.L.J. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jonsson, A., Bäckhed, F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol 14, 79–87 (2017). https://doi.org/10.1038/nrcardio.2016.183

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing