Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Peripheral artery disease: epidemiology and global perspectives

Key Points

  • The ankle–brachial index is the most appropriate measure to use in describing the global distribution of peripheral artery disease (PAD)

  • Worldwide estimates indicate that the greatest numbers of patients with PAD are in Southeast Asia and Western Pacific regions; many individuals are asymptomatic

  • A large proportion of symptomatic patients have atypical leg pain rather than intermittent claudication; patients without pain often have substantial functional impairment

  • Traditional cardiovascular risk factors (smoking, hypertension, diabetes mellitus, and dyslipidaemia) and the ageing of the population are important determinants of PAD in all countries

  • In low-income and middle-income countries especially, environmental factors such as poverty, industrialization, and infection could affect the risk of developing PAD

  • PAD impairs quality of life and is associated with a greatly increased risk of major cardiovascular events and death; PAD is an important cause of amputation worldwide

Abstract

Global populations are undergoing a major epidemiological transition in which the burden of atherosclerotic cardiovascular diseases is shifting rapidly from high-income to low-income and middle-income countries (LMICs). Peripheral artery disease (PAD) is no exception, so that greater focus is now required on the prevention and management of this disease in less-advantaged countries. In this Review, we examine the epidemiology of PAD and, where feasible, take a global perspective. However, the dearth of publications in LMICs means an unavoidable over-reliance on studies in high-income countries. Research to date suggests that PAD might affect a greater proportion of women than men in LMICs. Although factors such as poverty, industrialization, and infection might conceivably influence the development of PAD in such settings, the ageing of the population and increase in traditional cardiovascular risk factors, such as smoking, diabetes mellitus, and hypertension, are likely to be the main driving forces.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Measurement and calculation of ankle–brachial index (ABI) in diagnosing peripheral artery disease.
Figure 2: Classification of high-income, middle-income, and low-income countries.
Figure 3: Number of people with PAD in 2000 and 2010, grouped by age in HICs and LMICs24.
Figure 4: Risk factors for peripheral artery disease in HICs and LMICs.
Figure 5: Possible effects of industrialization and urbanization in low-income and middle-income countries on risk of peripheral artery disease.
Figure 6: Systematic review of all-cause mortality ratios in patients with asymptomatic or symptomatic PAD compared with individuals without PAD.
Figure 7: DALYs from peripheral artery disease per 100,000 population in world regions in 2010.

References

  1. Criqui, M. H. & Aboyans, V. Epidemiology of peripheral artery disease. Circ. Res. 116, 1509–1526 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Criqui, M. H., Denenberg, J. O., Langer, R. D. & Fronek, A. The epidemiology of peripheral arterial disease: importance of identifying the population at risk. Vasc. Med. 2, 221–226 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Fowkes, F. G. Epidemiology of atherosclerotic arterial disease in the lower limbs. Eur. J. Vasc. Surg. 2, 283–291 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Aboyans, V. & Criqui, M. H. in Peripheral Arterial Disease (eds Dieter, R. S. & Dieter, R. A.) 1–25 (McGraw Hill, 2009).

    Google Scholar 

  5. Yusuf, S., Reddy, S., Ounpuu, S. & Anand, S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 104, 2746–2753 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Tendera, M. et al. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the Task Force on the diagnosis and treatment of peripheral artery diseases of the European Society of Cardiology (ESC). Eur. Heart J. 32, 2851–2906 (2011).

    Article  PubMed  Google Scholar 

  7. Arain, F. A. et al. Survival in patients with poorly compressible leg arteries. J. Am. Coll. Cardiol. 59, 400–407 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aboyans, V. et al. Measurement and interpretation of the ankle–brachial index: a scientific statement from the American Heart Association. Circulation 126, 2890–2909 (2012).

    Article  PubMed  Google Scholar 

  9. Aboyans, V. et al. Intrinsic contribution of gender and ethnicity to normal ankle–brachial index values: the Multi-Ethnic Study of Atherosclerosis (MESA). J. Vasc. Surg. 45, 319–327 (2007).

    Article  PubMed  Google Scholar 

  10. Price, J. F., Stewart, M. C., Douglas, A. F., Murray, G. D. & Fowkes, G. F. Frequency of a low ankle brachial index in the general population by age, sex and deprivation: cross-sectional survey of 28,980 men and women. Eur. J. Cardiovasc. Prev. Rehabil. 15, 370–375 (2008).

    Article  PubMed  Google Scholar 

  11. Rose, G. A. The diagnosis of ischaemic heart pain and intermittent claudication in field surveys. Bull. World Health Organ. 27, 645–658 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Criqui, M. H. et al. The correlation between symptoms and non-invasive test results in patients referred for peripheral arterial disease testing. Vasc. Med. 1, 65–71 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Leng, G. C. & Fowkes, F. G. The Edinburgh Claudication Questionnaire: an improved version of the WHO/Rose Questionnaire for use in epidemiological surveys. J. Clin. Epidemiol. 45, 1101–1109 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Aboyans, V. et al. [French translation and validation of the Edinburgh Questionnaire for the diagnosis of intermittent claudication]. Arch. Mal. Coeur Vaiss. 93, 1173–1177 (in French) (2000).

    CAS  PubMed  Google Scholar 

  15. Bennett, P. C., Lip, G. Y., Silverman, S., Blann, A. D. & Gill, P. S. Validation of the Edinburgh Claudication Questionnaire in 1st generation Black African-Caribbean and South Asian UK migrants: a sub-study to the Ethnic-Echocardiographic Heart of England Screening (E-ECHOES) study. BMC Med. Res. Methodol. 11, 85 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Collins, T. C., Petersen, N. J. & Suarez-Almazor, M. Peripheral arterial disease symptom subtype and walking impairment. Vasc. Med. 10, 177–183 (2005).

    Article  PubMed  Google Scholar 

  17. Makdisse, M. et al. Cross-cultural adaptation and validation of the Brazilian Portuguese version of the Edinburgh Claudication Questionnaire. Arq. Bras. Cardiol. 88, 501–506 (2007).

    Article  PubMed  Google Scholar 

  18. McDermott, M. M. et al. Leg symptoms in peripheral arterial disease: associated clinical characteristics and functional impairment. JAMA 286, 1599–1606 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Nehler, M. R. et al. Epidemiology of peripheral arterial disease and critical limb ischemia in an insured national population. J. Vasc. Surg. 60, 686–695. e2 (2014).

    Article  PubMed  Google Scholar 

  20. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385, 117–171 (2015).

  21. Vidula, H. et al. Biomarkers of inflammation and thrombosis as predictors of near-term mortality in patients with peripheral arterial disease: a cohort study. Ann. Intern. Med. 148, 85–93 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hirsch, A. T. et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA 286, 1317–1324 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. World Health Organization. International statistical classification of diseases and related health problems 10th revision. WHO http://apps.who.int/classification/icd10/browse/2016/en (2016).

  24. Fowkes, F. G. et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet 382, 1329–1340 (2013).

    Article  PubMed  Google Scholar 

  25. World Health Organization. Global health observatory data repository. WHO http://apps.who.int/gho/data (2012).

  26. Chuang, S. Y., Chen, C. H., Cheng, C. M. & Chou, P. Combined use of brachial–ankle pulse wave velocity and ankle–brachial index for fast assessment of arteriosclerosis and atherosclerosis in a community. Int. J. Cardiol. 98, 99–105 (2005).

    Article  PubMed  Google Scholar 

  27. He, Y. et al. Prevalence of peripheral arterial disease and its association with smoking in a population-based study in Beijing, China. J. Vasc. Surg. 44, 333–338 (2006).

    Article  PubMed  Google Scholar 

  28. Wang, Y. et al. [Prevalence of peripheral arterial disease and correlative risk factors among natural population in China]. Zhonghua Xin Xue Guan Bing Za Zhi 37, 1127–1131 (in Chinese) (2009).

    PubMed  Google Scholar 

  29. Woo, J. et al. Correlates for a low ankle–brachial index in elderly Chinese. Atherosclerosis 186, 360–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. An, W. et al. Distribution of the ankle–brachial index and peripheral arterial disease in middle-aged and elderly Chinese: a population-based study of 18,000 men and women. Circulation 122, e43 (2010).

    Article  Google Scholar 

  31. Desormais, I. et al. Prevalence of peripheral artery disease in the elderly population in urban and rural areas of Central Africa: the EPIDEMCA study. Eur. J. Prev. Cardiol. 22, 1462–1472 (2015).

    Article  PubMed  Google Scholar 

  32. McDermott, M. M. et al. Ankle–brachial index and subclinical cardiac and carotid disease: the multi-ethnic study of atherosclerosis. Am. J. Epidemiol. 162, 33–41 (2005).

    Article  PubMed  Google Scholar 

  33. Meijer, W. T. et al. Peripheral arterial disease in the elderly: The Rotterdam Study. Arterioscler. Thromb. Vasc. Biol. 18, 185–192 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Vogt, M. T., Cauley, J. A., Kuller, L. H. & Hulley, S. B. Prevalence and correlates of lower extremity arterial disease in elderly women. Am. J. Epidemiol. 137, 559–568 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Eldrup, N., Sillesen, H., Prescott, E. & Nordestgaard, B. G. Ankle brachial index, C-reactive protein, and central augmentation index to identify individuals with severe atherosclerosis. Eur. Heart J. 27, 316–322 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, J. C. et al. Exertional leg pain in patients with and without peripheral arterial disease. Circulation 112, 3501–3508 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Norgren, L. et al. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur. J. Vasc. Endovasc. Surg. 33 (Suppl. 1), S1–S75 (2007).

    Article  PubMed  Google Scholar 

  38. Sigvant, B. et al. A population-based study of peripheral arterial disease prevalence with special focus on critical limb ischemia and sex differences. J. Vasc. Surg. 45, 1185–1191 (2007).

    Article  PubMed  Google Scholar 

  39. Stoffers, H. E., Rinkens, P. E., Kester, A. D., Kaiser, V. & Knottnerus, J. A. The prevalence of asymptomatic and unrecognized peripheral arterial occlusive disease. Int. J. Epidemiol. 25, 282–290 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Rothwell, P. M. et al. Population-based study of event-rate, incidence, case fatality, and mortality for all acute vascular events in all arterial territories (Oxford Vascular Study). Lancet 366, 1773–1783 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Global Lower Extremity Amputation Study Group. Epidemiology of lower extremity amputation in centres in Europe, North America and East Asia. The Global Lower Extremity Amputation Study Group. Br. J. Surg. 87, 328–337 (2000).

  42. Fowkes, F. G. et al. Smoking, lipids, glucose intolerance, and blood pressure as risk factors for peripheral atherosclerosis compared with ischemic heart disease in the Edinburgh Artery Study. Am. J. Epidemiol. 135, 331–340 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Joosten, M. M. et al. Associations between conventional cardiovascular risk factors and risk of peripheral artery disease in men. JAMA 308, 1660–1667 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mendez, D., Alshanqeety, O. & Warner, K. E. The potential impact of smoking control policies on future global smoking trends. Tob. Control 22, 46–51 (2013).

    Article  PubMed  Google Scholar 

  45. Selvin, E. et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann. Intern. Med. 141, 421–431 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Kallio, M., Forsblom, C., Groop, P. H., Groop, L. & Lepantalo, M. Development of new peripheral arterial occlusive disease in patients with type 2 diabetes during a mean follow-up of 11 years. Diabetes Care 26, 1241–1245 (2003).

    Article  PubMed  Google Scholar 

  47. Jude, E. B., Oyibo, S. O., Chalmers, N. & Boulton, A. J. Peripheral arterial disease in diabetic and nondiabetic patients: a comparison of severity and outcome. Diabetes Care 24, 1433–1437 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Guariguata, L. et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 103, 137–149 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Meijer, W. T., Grobbee, D. E., Hunink, M. G., Hofman, A. & Hoes, A. W. Determinants of peripheral arterial disease in the elderly: the Rotterdam study. Arch. Intern. Med. 160, 2934–2938 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Newman, A. B. et al. Ankle–arm index as a marker of atherosclerosis in the Cardiovascular Health Study. Cardiovascular Heart Study (CHS) Collaborative Research Group. Circulation 88, 837–845 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Murabito, J. M., D'Agostino, R. B., Silbershatz, H. & Wilson, W. F. Intermittent claudication: a risk profile from The Framingham Heart Study. Circulation 96, 44–49 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Ridker, P. M., Stampfer, M. J. & Rifai, N. Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 285, 2481–2485 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Criqui, M. H. et al. Ethnicity and peripheral arterial disease: the San Diego Population Study. Circulation 112, 2703–2707 (2005).

    Article  PubMed  Google Scholar 

  54. Price, J. F., Lee, A. J., Rumley, A., Lowe, G. D. & Fowkes, F. G. Lipoprotein (a) and development of intermittent claudication and major cardiovascular events in men and women: the Edinburgh Artery Study. Atherosclerosis 157, 241–249 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Gardner, A. W. et al. Apolipoprotein profiles in subjects with and without peripheral artery disease. Vasc. Med. 18, 129–135 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bosu, W. K. Epidemic of hypertension in Ghana: a systematic review. BMC Public Health 10, 418 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Eraso, L. H. et al. Peripheral arterial disease, prevalence and cumulative risk factor profile analysis. Eur. J. Prev. Cardiol. 21, 704–711 (2014).

    Article  PubMed  Google Scholar 

  58. Ix, J. H. et al. Association of body mass index with peripheral arterial disease in older adults: the Cardiovascular Health Study. Am. J. Epidemiol. 174, 1036–1043 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Khandanpour, N., Loke, Y. K., Meyer, F. J., Jennings, B. & Armon, M. P. Homocysteine and peripheral arterial disease: systematic review and meta-analysis. Eur. J. Vasc. Endovasc. Surg. 38, 316–322 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Graham, I. M. et al. Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA 277, 1775–1781 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Guallar, E. et al. Confounding of the relation between homocysteine and peripheral arterial disease by lead, cadmium, and renal function. Am. J. Epidemiol. 163, 700–708 (2006).

    Article  PubMed  Google Scholar 

  62. Taylor, L. M. et al. Prospective blinded study of the relationship between plasma homocysteine and progression of symptomatic peripheral arterial disease. J. Vasc. Surg. 29, 8–19 (1999).

    Article  PubMed  Google Scholar 

  63. Lowe, G. D. et al. Blood viscosity, fibrinogen, and activation of coagulation and leukocytes in peripheral arterial disease and the normal population in the Edinburgh Artery Study. Circulation 87, 1915–1920 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. McDermott, M. M. & Lloyd-Jones, D. M. The role of biomarkers and genetics in peripheral arterial disease. J. Am. Coll. Cardiol. 54, 1228–1237 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Allison, M. A. et al. Ethnic-specific prevalence of peripheral arterial disease in the United States. Am. J. Prev. Med. 32, 328–333 (2007).

    Article  PubMed  Google Scholar 

  66. Sebastianski, M., Makowsky, M. J., Dorgan, M. & Tsuyuki, R. T. Paradoxically lower prevalence of peripheral arterial disease in South Asians: a systematic review and meta-analysis. Heart 100, 100–105 (2014).

    Article  PubMed  Google Scholar 

  67. Allison, M. A. et al. The effect of novel cardiovascular risk factors on the ethnic-specific odds for peripheral arterial disease in the Multi-Ethnic Study of Atherosclerosis (MESA). J. Am. Coll. Cardiol. 48, 1190–1197 (2006).

    Article  PubMed  Google Scholar 

  68. Kullo, I. J. et al. Ethnic differences in peripheral arterial disease in the NHLBI Genetic Epidemiology Network of Arteriopathy (GENOA) study. Vasc. Med. 8, 237–242 (2003).

    Article  PubMed  Google Scholar 

  69. Singh, S., Bailey, K. R. & Kullo, I. J. Ethnic differences in ankle brachial index are present in middle-aged individuals without peripheral arterial disease. Int. J. Cardiol. 162, 228–233 (2013).

    Article  PubMed  Google Scholar 

  70. Carmelli, D. et al. Contribution of genetic and environmental influences to ankle–brachial blood pressure index in the NHLBI Twin Study. National Heart, Lung, and Blood Institute. Am. J. Epidemiol. 151, 452–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Murabito, J. M., Guo, C. Y., Fox, C. S. & D'Agostino, R. B. Heritability of the ankle–brachial index: the Framingham Offspring study. Am. J. Epidemiol. 164, 963–968 (2006).

    Article  PubMed  Google Scholar 

  72. Kullo, I. J. et al. A genome-wide linkage scan for ankle–brachial index in African American and non-Hispanic white subjects participating in the GENOA study. Atherosclerosis 187, 433–438 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Knowles, J. W., Assimes, T. L., Li, J., Quertermous, T. & Cooke, J. P. Genetic susceptibility to peripheral arterial disease: a dark corner in vascular biology. Arterioscler. Thromb. Vasc. Biol. 27, 2068–2078 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee, A. J., Fowkes, F. G., Lowe, G. D., Connor, J. M. & Rumley, A. Fibrinogen, factor VII and PAI-1 genotypes and the risk of coronary and peripheral atherosclerosis: Edinburgh Artery Study. Thromb. Haemost. 81, 553–560 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Fowkes, F. G. et al. Fibrinogen genotype and risk of peripheral atherosclerosis. Lancet 339, 693–696 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Murabito, J. M. et al. Association between chromosome 9p21 variants and the ankle–brachial index identified by a meta-analysis of 21 genome-wide association studies. Circ. Cardiovasc. Genet. 5, 100–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Kullo, I. J. et al. The ATXN2-SH2B3 locus is associated with peripheral arterial disease: an electronic medical record-based genome-wide association study. Front. Genet. 5, 166 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. Wassel, C. L. et al. Genetic determinants of the ankle–brachial index: a meta-analysis of a cardiovascular candidate gene 50K SNP panel in the candidate gene association resource (CARe) consortium. Atherosclerosis 222, 138–147 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Macintyre, C. C. & Carstairs, V. in Epidemiology of Peripheral Vascular Disease (ed. Fowkes, F. G. R. ) 197–206 (Springer, 1991).

    Book  Google Scholar 

  80. Pande, R. L. & Creager, M. A. Socioeconomic inequality and peripheral artery disease prevalence in US adults. Circ. Cardiovasc. Qual. Outcomes 7, 532–539 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chockalingam, K. et al. Prevalence of tobacco use in urban, semi urban and rural areas in and around Chennai City, India. PLoS ONE 8, e76005 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brook, R. D. Is air pollution a cause of cardiovascular disease? Updated review and controversies. Rev. Environ. Health 22, 115–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Hoffmann, B. et al. Residential exposure to urban air pollution, ankle–brachial index, and peripheral arterial disease. Epidemiology 20, 280–288 (2009).

    Article  PubMed  Google Scholar 

  84. Navas-Acien, A. et al. Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation 109, 3196–3201 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Tellez-Plaza, M. et al. Cadmium exposure and incident peripheral arterial disease. Circ. Cardiovasc. Qual. Outcomes 6, 626–633 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Housley, E., Leng, G. C., Donnan, P. T. & Fowkes, F. G. Physical activity and risk of peripheral arterial disease in the general population: Edinburgh Artery Study. J. Epidemiol. Community Health 47, 475–480 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bowlin, S. J., Medalie, J. H., Flocke, S. A., Zyzanski, S. J. & Goldbourt, U. Epidemiology of intermittent claudication in middle-aged men. Am. J. Epidemiol. 140, 418–430 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. McDermott, M. M. et al. Depressive symptoms and lower extremity functioning in men and women with peripheral arterial disease. J. Gen. Intern. Med. 18, 461–467 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Epstein, S. E., Zhu, J., Najafi, A. H. & Burnett, M. S. Insights into the role of infection in atherogenesis and in plaque rupture. Circulation 119, 3133–3141 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Budzynski, J., Wisniewska, J., Ciecierski, M. & Kedzia, A. Association between bacterial infection and peripheral vascular disease: a review. Int. J. Angiol. 25, 3–13 (2016).

    PubMed  Google Scholar 

  91. Bloemenkamp, D. G. et al. Chlamydia pneumoniae, Helicobacter pylori and cytomegalovirus infections and the risk of peripheral arterial disease in young women. Atherosclerosis 163, 149–156 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Sawayama, Y. et al. Chronic Helicobacter pylori infection is associated with peripheral arterial disease. J. Infect. Chemother. 14, 250–254 (2008).

    Article  PubMed  Google Scholar 

  93. Andraws, R., Berger, J. S. & Brown, D. L. Effects of antibiotic therapy on outcomes of patients with coronary artery disease: a meta-analysis of randomized controlled trials. JAMA 293, 2641–2647 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Gluud, C. et al. Clarithromycin for 2 weeks for stable coronary heart disease: 6-year follow-up of the CLARICOR randomized trial and updated meta-analysis of antibiotics for coronary heart disease. Cardiology 111, 280–287 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jaff, M. R. et al. Anti-chlamydial antibiotic therapy for symptom improvement in peripheral artery disease: prospective evaluation of rifalazil effect on vascular symptoms of intermittent claudication and other endpoints in Chlamydia pneumoniae seropositive patients (PROVIDENCE-1). Circulation 119, 452–458 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Vos, T. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2163–2196 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cowan, J. et al. Comparison of interferon-γ-, interleukin (IL)-17- and IL-22-expressing CD4 T cells, IL-22-expressing granulocytes and proinflammatory cytokines during latent and active tuberculosis infection. Clin. Exp. Immunol. 167, 317–329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sullivan, Z. A., Wong, E. B., Ndung'u, T., Kasprowicz, V. O. & Bishai, W. R. Latent and active tuberculosis infection increase immune activation in individuals co-infected with HIV. EBioMedicine 2, 334–340 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Huaman, M. A., Henson, D., Ticona, E., Sterling, T. R. & Garvy, B. A. Tuberculosis and cardiovascular disease: linking the epidemics. Trop. Dis. Travel Med. Vaccines 1, 10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Chung, W. S. et al. Tuberculosis increases the subsequent risk of acute coronary syndrome: a nationwide population-based cohort study. Int. J. Tuberc. Lung Dis. 18, 79–83 (2014).

    Article  PubMed  Google Scholar 

  101. Sheu, J. J., Chiou, H. Y., Kang, J. H., Chen, Y. H. & Lin, H. C. Tuberculosis and the risk of ischemic stroke: a 3-year follow-up study. Stroke 41, 244–249 (2010).

    Article  PubMed  Google Scholar 

  102. Triant, V. A. Epidemiology of coronary heart disease in HIV patients. Rev. Cardiovasc. Med. 15, S1–S8 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sico, J. J. et al. HIV status and the risk of ischemic stroke among men. Neurology 84, 1933–1940 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hanna, D. B. et al. HIV infection is associated with progression of subclinical carotid atherosclerosis. Clin. Infect. Dis. 61, 640–650 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schouten, J. et al. Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between HIV-infected and uninfected individuals: the AGEhIV cohort study. Clin. Infect. Dis. 59, 1787–1797 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Ye, Y. et al. HIV infection: an independent risk factor of peripheral arterial disease. J. Acquir. Immune Defic. Syndr. 53, 276–278 (2010).

    Article  PubMed  Google Scholar 

  107. Francischetti, I. M. Does activation of the blood coagulation cascade have a role in malaria pathogenesis? Trends Parasitol. 24, 258–263 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Moxon, C. A. et al. Persistent endothelial activation and inflammation after Plasmodium falciparum infection in Malawian children. J. Infect. Dis. 209, 610–615 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Yeo, T. W. et al. Decreased endothelial nitric oxide bioavailability, impaired microvascular function, and increased tissue oxygen consumption in children with falciparum malaria. J. Infect. Dis. 210, 1627–1632 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Doolan, D. L., Dobano, C. & Baird, J. K. Acquired immunity to malaria. Clin. Microbiol. Rev. 22, 13–36 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. de Mast, Q. et al. Is asymptomatic malaria really asymptomatic? Hematological, vascular and inflammatory effects of asymptomatic malaria parasitemia. J. Infect. 71, 587–596 (2015).

    Article  PubMed  Google Scholar 

  112. Imrie, H. J. et al. Individual variation in levels of haptoglobin-related protein in children from Gabon. PLoS ONE 7, e49816 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Desai, M. et al. Epidemiology and burden of malaria in pregnancy. Lancet Infect. Dis. 7, 93–104 (2007).

    Article  PubMed  Google Scholar 

  114. Barker, D. J. Fetal nutrition and cardiovascular disease in later life. Br. Med. Bull. 53, 96–108 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Smith, C. J. et al. The impact of birth weight on cardiovascular disease risk in the Women's Health Initiative. Nutr. Metab. Cardiovasc. Dis. 26, 239–245 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Pihlstrom, B. L., Michalowicz, B. S. & Johnson, N. W. Periodontal diseases. Lancet 366, 1809–1820 (2005).

    Article  PubMed  Google Scholar 

  117. Stewart, R. & West, M. Increasing evidence for an association between periodontitis and cardiovascular disease. Circulation 133, 549–551 (2016).

    Article  PubMed  Google Scholar 

  118. Lockhart, P. B. et al. Periodontal disease and atherosclerotic vascular disease: does the evidence support an independent association?: a scientific statement from the American Heart Association. Circulation 125, 2520–2544 (2012).

    Article  PubMed  Google Scholar 

  119. Chen, Y. W. et al. Periodontitis may increase the risk of peripheral arterial disease. Eur. J. Vasc. Endovasc. Surg. 35, 153–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Soto-Barreras, U. et al. Peripheral arterial disease associated with caries and periodontal disease. J. Periodontol. 84, 486–494 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Mays, R. J. et al. Assessment of functional status and quality of life in claudication. J. Vasc. Surg. 53, 1410–1421 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Dumville, J. C., Lee, A. J., Smith, F. B. & Fowkes, F. G. The health-related quality of life of people with peripheral arterial disease in the community: the Edinburgh Artery Study. Br. J. Gen. Pract. 54, 826–831 (2004).

    PubMed  PubMed Central  Google Scholar 

  123. Regensteiner, J. G. et al. The impact of peripheral arterial disease on health-related quality of life in the Peripheral Arterial Disease Awareness, Risk, and Treatment: New Resources for Survival (PARTNERS) Program. Vasc. Med. 13, 15–24 (2008).

    Article  PubMed  Google Scholar 

  124. Hallin, A., Bergqvist, D., Fugl-Meyer, K. & Holmberg, L. Areas of concern, quality of life and life satisfaction in patients with peripheral vascular disease. Eur. J. Vasc. Endovasc. Surg. 24, 255–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Murphy, T. P. Medical outcomes studies in peripheral vascular disease. J. Vasc. Interv. Radiol. 9, 879–889 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Sprengers, R. W. et al. Quality of life in patients with no-option critical limb ischemia underlines the need for new effective treatment. J. Vasc. Surg. 52, 843–849. e1 (2010).

    Article  PubMed  Google Scholar 

  127. Brevetti, G. et al. Intermittent claudication and risk of cardiovascular events. Angiology 49, 843–848 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. McDermott, M. M. et al. Functional decline in peripheral arterial disease: associations with the ankle brachial index and leg symptoms. JAMA 292, 453–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. McDermott, M. M. et al. Associations of borderline and low normal ankle–brachial index values with functional decline at 5-year follow-up: the WALCS (Walking and Leg Circulation Study). J. Am. Coll. Cardiol. 53, 1056–1062 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Sigvant, B., Lundin, F. & Wahlberg, E. The risk of disease progression in peripheral arterial disease is higher than expected: a meta-analysis of mortality and disease progression in peripheral arterial disease. Eur. J. Vasc. Endovasc. Surg. 51, 395–403 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Aboyans, V. et al. Risk factors for progression of peripheral arterial disease in large and small vessels. Circulation 113, 2623–2629 (2006).

    Article  PubMed  Google Scholar 

  132. McDermott, M. M. et al. Leg symptom categories and rates of mobility decline in peripheral arterial disease. J. Am. Geriatr. Soc. 58, 1256–1262 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  133. McDermott, M. M., Fried, L., Simonsick, E., Ling, S. & Guralnik, J. M. Asymptomatic peripheral arterial disease is independently associated with impaired lower extremity functioning: the women's health and aging study. Circulation 101, 1007–1012 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Leng, G. C. et al. Incidence, natural history and cardiovascular events in symptomatic and asymptomatic peripheral arterial disease in the general population. Int. J. Epidemiol. 25, 1172–1181 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Hooi, J. D. et al. Incidence of and risk factors for asymptomatic peripheral arterial occlusive disease: a longitudinal study. Am. J. Epidemiol. 153, 666–672 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Smith, F. B., Lee, A. J., Price, J. F., van Wijk, M. C. & Fowkes, F. G. Changes in ankle brachial index in symptomatic and asymptomatic subjects in the general population. J. Vasc. Surg. 38, 1323–1330 (2003).

    Article  PubMed  Google Scholar 

  137. Kennedy, M. et al. Risk factors for declining ankle–brachial index in men and women 65 years or older: the Cardiovascular Health Study. Arch. Intern. Med. 165, 1896–1902 (2005).

    Article  PubMed  Google Scholar 

  138. Allison, M. A. et al. Ethnicity and risk factors for change in the ankle–brachial index: the Multi-Ethnic Study of Atherosclerosis. J. Vasc. Surg. 50, 1049–1056 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Belch, J. et al. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet 377, 1929–1937 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Hirsch, A. T. et al. ACC/AHA 2005 guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): executive summary a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease) endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. J. Am. Coll. Cardiol. 47, 1239–1312 (2006).

    Article  PubMed  Google Scholar 

  141. Bhatt, D. L. et al. International prevalence, recognition, and treatment of cardiovascular risk factors in outpatients with atherothrombosis. JAMA 295, 180–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Steg, P. G. et al. One-year cardiovascular event rates in outpatients with atherothrombosis. JAMA 297, 1197–1206 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Hooi, J. D. et al. Asymptomatic peripheral arterial occlusive disease predicted cardiovascular morbidity and mortality in a 7-year follow-up study. J. Clin. Epidemiol. 57, 294–300 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Lee, A. J. et al. Improved prediction of fatal myocardial infarction using the ankle brachial index in addition to conventional risk factors: the Edinburgh Artery Study. Circulation 110, 3075–3080 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Diehm, C. et al. Mortality and vascular morbidity in older adults with asymptomatic versus symptomatic peripheral artery disease. Circulation 120, 2053–2061 (2009).

    Article  PubMed  Google Scholar 

  146. Jonsson, B. & Skau, T. Ankle–brachial index and mortality in a cohort of questionnaire recorded leg pain on walking. Eur. J. Vasc. Endovasc. Surg. 24, 405–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Criqui, M. H. et al. Mortality over a period of 10 years in patients with peripheral arterial disease. N. Engl. J. Med. 326, 381–386 (1992).

    Article  CAS  PubMed  Google Scholar 

  148. Ankle Brachial Index Collaboration et al. Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis. JAMA 300, 197–208 (2008).

  149. Smith, G. D., Shipley, M. J. & Rose, G. Intermittent claudication, heart disease risk factors, and mortality. The Whitehall Study. Circulation 82, 1925–1931 (1990).

    Article  CAS  PubMed  Google Scholar 

  150. Smith, F. B. & Fowkes, F. G. R. in The Durability of Vascular and Endovascular Surgery: Management of the Progression of Vascular Disease (ed. Greenhalgh, R. M.) 149–162 (W. B. Saunders, 1999).

    Google Scholar 

  151. [No authors listed.] Long-term mortality and its predictors in patients with critical leg ischaemia. The I.C.A.I. Group (Gruppo di Studio dell'Ischemia Cronica Critica degli Arti Inferiori). The Study Group of Criticial Chronic Ischemia of the Lower Exremities. Eur. J. Vasc. Endovasc. Surg. 14, 91–95 (1997).

  152. Cambou, J. P. et al. Characteristics and outcome of patients hospitalised for lower extremity peripheral artery disease in France: the COPART Registry. Eur. J. Vasc. Endovasc. Surg. 39, 577–585 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Monreal, M. et al. Clinical outcome in patients with peripheral artery disease. Results from a prospective registry (FRENA). Eur. J. Intern. Med. 19, 192–197 (2008).

    Article  PubMed  Google Scholar 

  154. Reinecke, H. et al. Peripheral arterial disease and critical limb ischaemia: still poor outcomes and lack of guideline adherence. Eur. Heart J. 36, 932–938 (2015).

    Article  PubMed  Google Scholar 

  155. Murray, C. J. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012).

    Article  PubMed  Google Scholar 

  156. Sampson, U. K. et al. Global and regional burden of death and disability from peripheral artery disease: 21 world regions, 1990 to 2010. Glob. Heart 9, 145–158.e21 (2014).

    Article  PubMed  Google Scholar 

  157. World Health Organization. Global action plan for the prevention and control of NCDs 2013–2020. WHO http://www.who.int/nmh/publications/ncd-action-plan/en/ (2013).

  158. Metabolic Risk Factors of Chronic Diseases Collaborating Group. Global burden of metabolic risk factors of chronic diseases. Imperial College London www.imperial.ac.uk/medicine/globalmetabolics (2016).

Download references

Acknowledgements

F.J.I.F. is supported by an Australian Research Council Future Fellowship. The views expressed in this article are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute, National Institutes of Health, or the US Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Contributions

F.J.I.F. researched data for the article. F.G.R.F., V.A., M.M.M., U.K.A.S., and M.H.C. discussed the content of the article, and F.G.R.F., V.A., and F.J.I.F. wrote the manuscript. All the authors reviewed/edited the article before submission.

Corresponding author

Correspondence to F. Gerry R. Fowkes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fowkes, F., Aboyans, V., Fowkes, F. et al. Peripheral artery disease: epidemiology and global perspectives. Nat Rev Cardiol 14, 156–170 (2017). https://doi.org/10.1038/nrcardio.2016.179

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.179

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing