Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diagnosis, pathophysiology, and management of exercise-induced arrhythmias

Key Points

  • A growing body of evidence suggests that both atrial fibrillation (AF) and right ventricular arrhythmia can be the result of intense exercise among highly trained athletes

  • The risk of AF conferred by exercise progressively increases with the intensity of exercise

  • Parasympathetic tone enhancement and atrial structural remodelling (that is, atrial dilatation and fibrosis) are progressively being recognized as contributors to increased exercise-induced proarrhythmogenic risk

  • The most appropriate approach for treating exercise-induced AF remains unknown

  • The evidence for a pure exercise-induced arrhythmogenic right ventricular cardiomyopathy (ARVC) is limited, but several studies have indicated that regular exercise is an important promoter of ARVC progression

  • For athletes who fulfil ARVC criteria, guidelines published by scientific societies prohibit competitive sports and encourage avoidance of high-intensity dynamic sports in general

Abstract

The cardiovascular benefits of physical activity are indisputable. Nevertheless, growing evidence suggests that both atrial fibrillation and right ventricular arrhythmia can be caused by intense exercise in some individuals. Exercise-induced atrial fibrillation is most commonly diagnosed in middle-aged, otherwise healthy men who have been engaged in endurance training for >10 years, and is mediated by atrial dilatation, parasympathetic enhancement, and possibly atrial fibrosis. Cardiac ablation is evolving as a first-line tool for athletes with exercise-induced arrhythmia who are eager to remain active. The relationship between physical activity and right ventricular arrhythmia is complex and involves genetic and physical factors that, in a few athletes, eventually lead to right ventricular dilatation, followed by subsequent myocardial fibrosis and lethal ventricular arrhythmias. Sinus bradycardia and atrioventricular conduction blocks are common in athletes, most of whom remain asymptomatic, although incomplete reversibility has been shown after exercise cessation. In this Review, we summarize the evidence supporting the existence of exercise-induced arrhythmias and discuss the specific considerations for the clinical management of these patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evidence assessing the association between physical activity and risk of atrial fibrillation (AF).
Figure 2: Identification of individuals at risk of exercise-induced atrial fibrillation (AF).
Figure 3: U-shape relationship between exercise dose and risk of atrial fibrillation (AF).
Figure 4: Mechanisms potentially involved in exercise-induced atrial fibrillation (AF).
Figure 5: Proposed clinical approach in athletes at suspicion of atrial fibrillation (AF) and with diagnosed AF.
Figure 6: Proposed arrhythmogenic right ventricular cardiomyopathy (ARVC)-continuum in relation to exercise dose.
Figure 7: Proposed clinical approach to athletes with right ventricular arrhythmias.

Similar content being viewed by others

References

  1. Eijsvogels, T. M. H., Fernandez, A. B. & Thompson, P. D. Are there deleterious cardiac effects of acute and chronic endurance exercise? Physiol. Rev. 96, 99–125 (2016).

    Article  PubMed  Google Scholar 

  2. Siscovick, D. S., Weiss, N. S., Fletcher, R. H. & Lasky, T. The incidence of primary cardiac arrest during vigorous exercise. N. Engl. J. Med. 311, 874–877 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Harmon, K. G. et al. Incidence, cause, and comparative frequency of sudden cardiac death in National Collegiate Athletic Association athletes: a decade in review. Circulation 132, 10–19 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Corrado, D., Basso, C., Rizzoli, G., Schiavon, M. & Thiene, G. Does sports activity enhance the risk of sudden death in adolescents and young adults? J. Am. Coll. Cardiol. 42, 1959–1963 (2003).

    Article  PubMed  Google Scholar 

  5. Maron, B. J. et al. Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA 276, 199–204 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Corrado, D. et al. Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. JAMA 296, 1593–1601 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Mont, L. et al. Pre-participation cardiovascular evaluation for athletic participants to prevent sudden death: position paper from the EHRA and the EACPR, Q2 Q3 branches of the ESC. Endorsed by APHRS, HRS, and SOLAECE. Europace. Europace(in press).

  8. Karjalainen, J., Kujala, U. M., Kaprio, J., Sarna, S. & Viitasalo, M. Lone atrial fibrillation in vigorously exercising middle aged men: case–control study. BMJ 316, 1784–1785 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mont, L. et al. Long-lasting sport practice and lone atrial fibrillation. Eur. Heart J. 23, 477–482 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Heidbüchel, H. et al. High prevalence of right ventricular involvement in endurance athletes with ventricular arrhythmias. Role of an electrophysiologic study in risk stratification. Eur. Heart J. 24, 1473–1480 (2003).

    Article  PubMed  Google Scholar 

  11. Armstrong, M. E. G. et al. Frequent physical activity may not reduce vascular disease risk as much as moderate activity: large prospective study of women in the United Kingdom. Circulation 131, 721–729 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. January, C. T. et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 64, 2246–2280 (2014).

    Article  Google Scholar 

  13. Guasch, E. & Nattel, S. CrossTalk proposal: prolonged intense exercise training does lead to myocardial damage. J. Physiol. 591, 4939–4941 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andersson, T. et al. All-cause mortality in 272 186 patients hospitalized with incident atrial fibrillation 1995–2008: a Swedish nationwide long-term case–control study. Eur. Heart J. 34, 1061–1067 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Calvo, N. et al. Emerging risk factors and the dose–response relationship between physical activity and lone atrial fibrillation: a prospective case–control study. Europace 18, 57–63 (2016).

    Article  PubMed  Google Scholar 

  16. Ruiz, J. R., Joyner, M. & Lucia, A. CrossTalk opposing view: prolonged intense exercise does not lead to cardiac damage. J. Physiol. 591, 4943–4945 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Strath, S. J. et al. Guide to the assessment of physical activity: clinical and research applications: a scientific statement from the American Heart Association. Circulation 128, 2259–2279 (2013).

    Article  PubMed  Google Scholar 

  18. Molina, L. et al. Long-term endurance sport practice increases the incidence of lone atrial fibrillation in men: a follow-up study. Europace 10, 618–623 (2008).

    Article  PubMed  Google Scholar 

  19. Baldesberger, S. et al. Sinus node disease and arrhythmias in the long-term follow-up of former professional cyclists. Eur. Heart J. 29, 71–78 (2008).

    Article  PubMed  Google Scholar 

  20. Grimsmo, J., Grundvold, I., Maehlum, S. & Arnesen, H. High prevalence of atrial fibrillation in long-term endurance cross-country skiers: echocardiographic findings and possible predictors — a 28–30 years follow-up study. Eur. J. Cardiovasc. Prev. Rehabil. 17, 100–105 (2010).

    Article  PubMed  Google Scholar 

  21. Andersen, K. et al. Risk of arrhythmias in 52 755 long-distance cross-country skiers: a cohort study. Eur. Heart J. 34, 3624–3631 (2013).

    Article  PubMed  Google Scholar 

  22. Aizer, A. et al. Relation of vigorous exercise to risk of atrial fibrillation. Am. J. Cardiol. 103, 1572–1577 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thelle, D. S. et al. Resting heart rate and physical activity as risk factors for lone atrial fibrillation: a prospective study of 309 540 men and women. Heart 99, 1755–1760 (2013).

    Article  PubMed  Google Scholar 

  24. Drca, N., Wolk, A., Jensen-Urstad, M. & Larsson, S. C. Atrial fibrillation is associated with different levels of physical activity levels at different ages in men. Heart 100, 1037–1042 (2014).

    Article  PubMed  Google Scholar 

  25. Andersen, K. et al. Exercise capacity and muscle strength and risk of vascular disease and arrhythmia in 1.1 million young Swedish men: cohort study. BMJ 351, h4543 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Qureshi, W. T. et al. Cardiorespiratory fitness and risk of incident atrial fibrillation: results from the Henry Ford Exercise Testing (FIT) Project. Circulation 131, 1827–1834 (2015).

    Article  PubMed  Google Scholar 

  27. Mozaffarian, D., Furberg, C. D., Psaty, B. M. & Siscovick, D. Physical activity and incidence of atrial fibrillation in older adults: the cardiovascular health study. Circulation 118, 800–807 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bapat, A. et al. Relation of physical activity and incident atrial fibrillation (from the Multi-Ethnic Study of Atherosclerosis). Am. J. Cardiol. 116, 883–888 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pathak, R. K. et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: the ARREST-AF cohort study. J. Am. Coll. Cardiol. 64, 2222–2231 (2014).

    Article  PubMed  Google Scholar 

  30. Pathak, R. K. et al. Long-term effect of goal-directed weight management in an atrial fibrillation cohort: a long-term follow-up study (LEGACY). J. Am. Coll. Cardiol. 65, 2159–2169 (2015).

    Article  PubMed  Google Scholar 

  31. Pathak, R. K. et al. Impact of cardiorespiratory fitness on arrhythmia recurrence in obese individuals with atrial fibrillation: the CARDIO-FIT study. J. Am. Coll. Cardiol. 66, 985–996 (2015).

    Article  PubMed  Google Scholar 

  32. Malmo, V. et al. Aerobic interval training reduces the burden of atrial fibrillation in the short term: a randomized trial. Circulation 133, 466–473 (2016).

    Article  PubMed  Google Scholar 

  33. Edelmann, F. et al. Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the Ex-DHF (Exercise training in Diastolic Heart Failure) pilot study. J. Am. Coll. Cardiol. 58, 1780–1791 (2011).

    Article  PubMed  Google Scholar 

  34. Frost, L., Frost, P. & Vestergaard, P. Work related physical activity and risk of a hospital discharge diagnosis of atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study. Occup. Environ. Med. 62, 49–53 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morseth, B. et al. Physical activity, resting heart rate, and atrial fibrillation: the Tromsø Study. Eur. Heart J. 37, 2307–2313 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Claessen, G. et al. Long-term endurance sport is a risk factor for development of lone atrial flutter. Heart 97, 918–922 (2011).

    Article  PubMed  Google Scholar 

  37. Myrstad, M. et al. Effect of years of endurance exercise on risk of atrial fibrillation and atrial flutter. Am. J. Cardiol. 114, 1229–1233 (2014).

    Article  PubMed  Google Scholar 

  38. Drca, N., Wolk, A., Jensen-Urstad, M. & Larsson, S. C. Physical activity is associated with a reduced risk of atrial fibrillation in middle-aged and elderly women. Heart 101, 1627–1630 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Mont, L. et al. Physical activity, height, and left atrial size are independent risk factors for lone atrial fibrillation in middle-aged healthy individuals. Europace 10, 15–20 (2008).

    Article  PubMed  Google Scholar 

  40. Myrstad, M., Aarønæs, M., Graff-Iversen, S., Nystad, W. & Ranhoff, A. H. Does endurance exercise cause atrial fibrillation in women? Int. J. Cardiol. 184, 431–432 (2015).

    Article  PubMed  Google Scholar 

  41. Azarbal, F. et al. Obesity, physical activity, and their interaction in incident atrial fibrillation in postmenopausal women. J. Am. Heart Assoc.3, e001127 (2014).

  42. Everett, B. M. et al. Physical activity and the risk of incident atrial fibrillation in women. Circ. Cardiovasc. Qual. Outcomes 4, 321–327 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhu, W.-G. et al. Sex differences in the association between regular physical activity and incident atrial fibrillation: a meta-analysis of 13 prospective studies. Clin. Cardiol. 39, 360–367 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Guasch, E. & Mont, L. Exercise, sex and atrial fibrillation: arrhythmogenesis beyond Y-chromosome? Heart 101, 1607–1609 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Myrstad, M. et al. Increased risk of atrial fibrillation among elderly Norwegian men with a history of long-term endurance sport practice. Scand. J. Med. Sci. Sports 24, e238–e244 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Van Buuren, F. et al. The occurrence of atrial fibrillation in former top-level handball players above the age of 50. Acta Cardiol. 67, 213–220 (2012).

    Article  PubMed  Google Scholar 

  47. Calvo, N. et al. Improved outcomes and complications of atrial fibrillation catheter ablation over time: learning curve, techniques, and methodology. Rev. Esp. Cardiol. (Engl. Ed.) 65, 131–138 (2012).

    Article  Google Scholar 

  48. Pelliccia, A. et al. Prevalence and clinical significance of left atrial remodeling in competitive athletes. J. Am. Coll. Cardiol. 46, 690–696 (2005).

    Article  PubMed  Google Scholar 

  49. Guasch, E. & Mont, L. Exercise and the heart: unmasking Mr. Hyde. Heart 100, 999–1000 (2014).

    Article  PubMed  Google Scholar 

  50. Mont, L., Brugada, J. & Elosua, R. Letter by Mont et al regarding article, 'Physical activity and incidence of atrial fibrillation in older adults: the Cardiovascular Health Study'. Circulation 119, e195; author reply e196 (2009).

    Article  PubMed  Google Scholar 

  51. Gabrielli, L. et al. Differential atrial performance at rest and exercise in athletes: potential trigger for developing atrial dysfunction? Scand. J. Med. Sci. Sports http://dx.doi.org/10.1111/sms.12610 (2016).

  52. Khan, H. et al. Cardiorespiratory fitness and atrial fibrillation: a population-based follow-up study. Heart Rhythm 12, 1424–1430 (2015).

    Article  PubMed  Google Scholar 

  53. Coote, J. H. & White, M. J. CrossTalk proposal: bradycardia in the trained athlete is attributable to high vagal tone. J. Physiol. 593, 1745–1747 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. D'Souza, A., Sharma, S. & Boyett, M. R. CrossTalk opposing view: bradycardia in the trained athlete is attributable to a downregulation of a pacemaker channel in the sinus node. J. Physiol. 593, 1749–1751 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shen, M. J. et al. Neural mechanisms of atrial arrhythmias. Nat. Rev. Cardiol. 9, 30–39 (2012).

    Article  Google Scholar 

  56. Hoogsteen, J., Schep, G., Van Hemel, N. M. & Van Der Wall, E. E. Paroxysmal atrial fibrillation in male endurance athletes. A 9-year follow up. Europace 6, 222–228 (2004).

    Article  PubMed  Google Scholar 

  57. Wilhelm, M. et al. Atrial remodeling, autonomic tone, and lifetime training hours in nonelite athletes. Am. J. Cardiol. 108, 580–585 (2011).

    Article  PubMed  Google Scholar 

  58. Guasch, E. et al. Atrial fibrillation promotion by endurance exercise: demonstration and mechanistic exploration in an animal model. J. Am. Coll. Cardiol. 62, 68–77 (2013).

    Article  PubMed  Google Scholar 

  59. Zou, R., Kneller, J., Leon, L. J. & Nattel, S. Substrate size as a determinant of fibrillatory activity maintenance in a mathematical model of canine atrium. Am. J. Physiol. Heart Circ. Physiol. 289, H1002–H1012 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Nattel, S. et al. Early management of atrial fibrillation to prevent cardiovascular complications. Eur. Heart J. 35, 1448–1456 (2014).

    Article  PubMed  Google Scholar 

  61. Burstein, B. & Nattel, S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J. Am. Coll. Cardiol. 51, 802–809 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Benito, B. et al. Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation 123, 13–22 (2011).

    Article  PubMed  Google Scholar 

  63. Aschar-Sobbi, R. et al. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFα. Nat. Commun. 6, 6018 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Lindsay, M. M. & Dunn, F. G. Biochemical evidence of myocardial fibrosis in veteran endurance athletes. Br. J. Sports Med. 41, 447–452 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ho, J. E. et al. Galectin 3 and incident atrial fibrillation in the community. Am. Heart J. 167, 729–734.e1 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baggish, A. L. et al. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J. Physiol. 589, 3983–3994 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wilhelm, M. et al. Long-term cardiac remodeling and arrhythmias in nonelite marathon runners. Am. J. Cardiol. 110, 129–135 (2012).

    Article  PubMed  Google Scholar 

  68. D'Ascenzi, F. et al. P-wave morphology is unaffected by training-induced biatrial dilatation: a prospective, longitudinal study in healthy athletes. Int. J. Cardiovasc. Imaging 32, 407–415 (2016).

    Article  PubMed  Google Scholar 

  69. Scott, C. C., Leier, C. V., Kilman, J. W., Vasko, J. S. & Unverferth, D. V. The effect of left atrial histology and dimension on P wave morphology. J. Electrocardiol. 16, 363–366 (1983).

    Article  CAS  PubMed  Google Scholar 

  70. Sanz-de la Garza, M. et al. Acute, exercise dose-dependent impairment in atrial performance during an endurance race: 2D ultrasound speckle-tracking strain analysis. JACC Cardiovasc. Imaging http://dx.doi.org/10.1016/j.jcmg.2016.03.016 (2016).

  71. Gay-Jordi, G. et al. Losartan prevents heart fibrosis induced by long-term intensive exercise in an animal model. PLoS ONE 8, e55427 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Leischik, R., Spelsberg, N., Niggemann, H., Dworrak, B. & Tiroch, K. Exercise-induced arterial hypertension — an independent factor for hypertrophy and a ticking clock for cardiac fatigue or atrial fibrillation in athletes? F1000Res. 3, 105 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Trachsel, L. D., Carlen, F., Brugger, N., Seiler, C. & Wilhelm, M. Masked hypertension and cardiac remodeling in middle-aged endurance athletes. J. Hypertens. 33, 1276–1283 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Gabrielli, L. et al. Atrial functional and geometrical remodeling in highly trained male athletes: for better or worse? Eur. J. Appl. Physiol. 114, 1143–1152 (2014).

    Article  PubMed  Google Scholar 

  75. La Gerche, A. et al. Relationship between inflammatory cytokines and indices of cardiac dysfunction following intense endurance exercise. PLoS ONE 10, 1–15 (2015).

    Article  CAS  Google Scholar 

  76. Oláh, A. et al. Cardiac effects of acute exhaustive exercise in a rat model. Int. J. Cardiol. 182, 258–266 (2015).

    Article  PubMed  Google Scholar 

  77. Wilhelm, M. et al. Inflammation and atrial remodeling after a mountain marathon. Scand. J. Med. Sci. Sport. 24, 519–525 (2014).

    Article  CAS  Google Scholar 

  78. Walsh, N. P. et al. Position statement part one: immune function and exercise. Exerc. Immunol. Rev. 17, 6–63 (2011).

    PubMed  Google Scholar 

  79. Hellard, P., Avalos, M., Guimaraes, F., Toussaint, J. F. & Pyne, D. B. Training-related risk of common illnesses in elite swimmers over a 4-yr period. Med. Sci. Sports Exerc. 47, 698–707 (2015).

    Article  PubMed  Google Scholar 

  80. Nieman, D. C., Johanssen, L. M., Lee, J. W. & Arabatzis, K. Infectious episodes in runners before and after the Los Angeles Marathon. J. Sports Med. Phys. Fitness 30, 316–328 (1990).

    CAS  PubMed  Google Scholar 

  81. Mahrholdt, H. et al. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114, 1581–1590 (2006).

    PubMed  Google Scholar 

  82. Begieneman, M. P. V. et al. Ventricular myocarditis coincides with atrial myocarditis in patients. Cardiovasc. Pathol. 25, 141–148 (2016).

    Article  PubMed  Google Scholar 

  83. Kiel, R. J., Smith, F. E., Chason, J., Khatib, R. & Reyes, M. P. Coxsackievirus B3 myocarditis in C3H/HeJ mice: description of an inbred model and the effect of exercise on virulence. Eur. J. Epidemiol. 5, 348–350 (1989).

    Article  CAS  PubMed  Google Scholar 

  84. Lau, D. H. et al. Atrial fibrillation and anabolic steroid abuse. Int. J. Cardiol. 117, e86–e87 (2007).

    Article  PubMed  Google Scholar 

  85. Akçakoyun, M. et al. Long-Term anabolic androgenic steroid use is associated with increased atrial electromechanical delay in male bodybuilders. Biomed. Res. Int. 451520 (2014).

  86. Agulló-Calatayud, V., González-Alcaide, G., Valderrama- Zurián, J. C. & Aleixandre-Benavent, R. Consumption of anabolic steroids in sport, physical activity and as a drug of abuse: an analysis of the scientific literature and areas of research. Br. J. Sports Med. 42, 103–109 (2008).

    Article  PubMed  Google Scholar 

  87. Walters, T. E. et al. Acute atrial stretch results in conduction slowing and complex signals at the pulmonary vein to left atrial junction: insights into the mechanism of pulmonary vein arrhythmogenesis. Circ. Arrhythm. Electrophysiol. 7, 1189–1197 (2014).

    Article  PubMed  Google Scholar 

  88. Ueda, N., Yamamoto, M., Honjo, H., Kodama, I. & Kamiya, K. The role of gap junctions in stretch-induced atrial fibrillation. Cardiovasc. Res. 104, 364–370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Furlanello, F. et al. Atrial fibrillation in elite athletes. J. Cardiovasc. Electrophysiol. 9, S63–S68 (1998).

    CAS  PubMed  Google Scholar 

  90. Myrstad, M. et al. Physical activity, symptoms, medication and subjective health among veteran endurance athletes with atrial fibrillation. Clin. Res. Cardiol. 105, 154–161 (2015).

    Article  PubMed  Google Scholar 

  91. Taggar, J. S., Coleman, T., Lewis, S., Heneghan, C. & Jones, M. Accuracy of methods for diagnosing atrial fibrillation using 12-lead ECG: a systematic review and meta-analysis. Int. J. Cardiol. 184, 175–183 (2015).

    Article  PubMed  Google Scholar 

  92. Hållmarker, U. et al. Risk of recurrent stroke and death after first stroke in long-distance ski race participants. J. Am. Heart Assoc. 4, e002469 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Benjamin, E. J. et al. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation 98, 946–952 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Potpara, T. S. et al. A 12-year follow-up study of patients with newly diagnosed lone atrial fibrillation. Implications of arrhythmia progression on prognosis: the Belgrade Atrial Fibrillation Study. Chest 141, 339–347 (2012).

    Article  PubMed  Google Scholar 

  95. Kim, E.-J. et al. Atrial fibrillation without comorbidities: prevalence, incidence and prognosis (from the Framingham Heart Study). Am. Heart J. 177, 138–144 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Heidbüchel, H. et al. Endurance sports is a risk factor for atrial fibrillation after ablation for atrial flutter. Int. J. Cardiol. 107, 67–72 (2006).

    Article  PubMed  Google Scholar 

  97. Sussman, S., Lisha, N. & Griffiths, M. Prevalence of the addictions: a problem of the majority or the minority? Eval. Health Prof. 34, 3–56 (2011).

    Article  PubMed  Google Scholar 

  98. Giacomantonio, N. B., Bredin, S. S. D., Foulds, H. J. A. & Warburton, D. E. R. A systematic review of the health benefits of exercise rehabilitation in persons living with atrial fibrillation. Can. J. Cardiol. 29, 483–491 (2013).

    Article  PubMed  Google Scholar 

  99. Calvo, N. et al. Efficacy of circumferential pulmonary vein ablation of atrial fibrillation in endurance athletes. Europace 12, 30–36 (2010).

    Article  PubMed  Google Scholar 

  100. Koopman, P. et al. Efficacy of radiofrequency catheter ablation in athletes with atrial fibrillation. Europace 13, 1386–1393 (2011).

    Article  PubMed  Google Scholar 

  101. Furlanello, F. et al. Radiofrequency catheter ablation of atrial fibrillation in athletes referred for disabling symptoms preventing usual training schedule and sport competition. J. Cardiovasc. Electrophysiol. 19, 457–462 (2008).

    Article  PubMed  Google Scholar 

  102. Palatini, P. et al. Prevalence and possible mechanisms of ventricular arrhythmias in athletes. Am. Heart J. 110, 560–567 (1985).

    Article  CAS  PubMed  Google Scholar 

  103. Jensen-Urstad, K., Bouvier, F., Saltin, B. & Jensen-Urstad, M. High prevalence of arrhythmias in elderly male athletes with a lifelong history of regular strenuous exercise. Heart 79, 161–164 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pelliccia, A. et al. Remodeling of left ventricular hypertrophy in elite athletes after long-term deconditioning. Circulation 105, 944–949 (2002).

    Article  PubMed  Google Scholar 

  105. Ector, J. et al. Reduced right ventricular ejection fraction in endurance athletes presenting with ventricular arrhythmias: a quantitative angiographic assessment. Eur. Heart J. 28, 345–353 (2007).

    Article  PubMed  Google Scholar 

  106. La Gerche, A. et al. Lower than expected desmosomal gene mutation prevalence in endurance athletes with complex ventricular arrhythmias of right ventricular origin. Heart 96, 1268–1274 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Ruwald, A. C. et al. Association of competitive and recreational sport participation with cardiac events in patients with arrhythmogenic right ventricular cardiomyopathy: results from the North American multidisciplinary study of arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 36, 1735–1743 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Sawant, A. C. et al. Exercise has a disproportionate role in the pathogenesis of arrhythmogenic right ventricular dysplasia/cardiomyopathy in patients without desmosomal mutations. J. Am. Heart Assoc. 3, e001471 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. James, C. a et al. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy associated desmosomal mutation carriers. J. Am. Coll. Cardiol. 62 1290–1297 (2013).

    Article  PubMed  Google Scholar 

  110. Saberniak, J. et al. Vigorous physical activity impairs myocardial function in patients with arrhythmogenic right ventricular cardiomyopathy and in mutation positive family members. Eur. J. Heart Fail. 16, 1337–1344 (2014).

    Article  PubMed  Google Scholar 

  111. Hättasch, R. et al. Galectin-3 increase in endurance athletes. Eur. J. Prev. Cardiol. 21, 1192–1199 (2014).

    Article  PubMed  Google Scholar 

  112. Dello Russo, A. et al. Concealed cardiomyopathies in competitive athletes with ventricular arrhythmias and an apparently normal heart: role of cardiac electroanatomical mapping and biopsy. Heart Rhythm 8, 1915–1922 (2011).

    Article  PubMed  Google Scholar 

  113. Ambale-Venkatesh, B. & Lima, J. A. Cardiac MRI: a central prognostic tool in myocardial fibrosis. Nat. Rev. Cardiol. 12, 18–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Bohm, P. et al. Right and left ventricular function and mass in male elite master athletes: a controlled contrast-enhanced cardiovascular magnetic resonance study. Circulation 133, 1927–1935 (2016).

    Article  PubMed  Google Scholar 

  115. La Gerche, A. et al. Disproportionate exercise load and remodeling of the athlete's right ventricle. Med. Sci. Sports Exerc. 43, 974–981 (2011).

    Article  PubMed  Google Scholar 

  116. Gaudreault, V. et al. Transient myocardial tissue and function changes during a marathon in less fit marathon runners. Can. J. Cardiol. 29, 1269–1276 (2013).

    Article  PubMed  Google Scholar 

  117. Breuckmann, F. et al. Myocardial late gadolinium enhancement: prevalence, pattern, and prognostic relevance in marathon runners. Radiology 251, 50–57 (2009).

    Article  PubMed  Google Scholar 

  118. Möhlenkamp, S. et al. Running: the risk of coronary events: prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur. Heart J. 29, 1903–1910 (2008).

    Article  PubMed  Google Scholar 

  119. La Gerche, A. et al. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur. Heart J. 33, 998–1006 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Elliott, A. D. & La Gerche, A. The right ventricle following prolonged endurance exercise: are we overlooking the more important side of the heart? A meta-analysis. Br. J. Sports Med. 49, 724–729 (2014).

    Article  PubMed  Google Scholar 

  121. Sanz de la Garza, M. et al. Inter-individual variability in right ventricle adaptation after an endurance race. Eur. J. Prev. Cardiol. 23, 1114–1124 (2015).

    Article  PubMed  Google Scholar 

  122. Casella, M. et al. Ventricular arrhythmias induced by long-term use of ephedrine in two competitive athletes. Heart Vessels 30, 280–283 (2015).

    Article  PubMed  Google Scholar 

  123. La Gerche, A. et al. Exercise-induced right ventricular dysfunction is associated with ventricular arrhythmias in endurance athletes. Eur. Heart J. 36, 1998–2010 (2015).

    Article  PubMed  Google Scholar 

  124. Perrin, M. J. et al. Exercise testing in asymptomatic gene carriers exposes a latent electrical substrate of arrhythmogenic right ventricular cardiomyopathy. J. Am. Coll. Cardiol. 62, 1772–1779 (2013).

    Article  PubMed  Google Scholar 

  125. Priori, S. G. et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 36, 2793–2867 (2015).

    Article  PubMed  Google Scholar 

  126. Corrado, D. et al. Treatment of arrhythmogenic right ventricular cardiomyopathy/dysplasia: an international task force consensus statement. Eur. Heart J. 36, 3227–3237 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Brosnan, M. et al. Comparison of frequency of significant electrocardiographic abnormalities in endurance versus nonendurance athletes. Am. J. Cardiol. 113, 1567–1573 (2014).

    Article  PubMed  Google Scholar 

  128. Sharma, S. et al. Electrocardiographic changes in 1000 highly trained junior elite athletes. Br. J. Sports Med. 33, 319–324 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Senturk, T. et al. Cardiac pauses in competitive athletes: a systematic review examining the basis of current practice recommendations. Europace http://dx.doi.org/10.1093/europace/euv373 (2015).

  130. Danson, E. J. F. & Paterson, D. J. Enhanced neuronal nitric oxide synthase expression is central to cardiac vagal phenotype in exercise-trained mice. J. Physiol. 546, 225–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Katona, P. G., McLean, M., Dighton, D. H. & Guz, A. Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest. J. Appl. Physiol. 52, 1652–1657 (1982).

    Article  CAS  PubMed  Google Scholar 

  132. Stein, R., Medeiros, C. M., Rosito, G. A., Zimerman, L. I. & Ribeiro, J. P. Intrinsic sinus and atrioventricular node electrophysiologic adaptations in endurance athletes. J. Am. Coll. Cardiol. 39, 1033–1038 (2002).

    Article  PubMed  Google Scholar 

  133. D'Souza, A. et al. Exercise training reduces resting heart rate via downregulation of the funny channel HCN4. Nat. Commun. 5, 3775 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Santos, M., Pinheiro-Vieira, A. & Hipólito-Reis, A. Bradycardia in the athlete: don't always blame the autonomic system! Europace 15, 1650 (2013).

    Article  PubMed  Google Scholar 

  135. Bjørnstad, H. H. et al. Long-term assessment of electrocardiographic and echocardiographic findings in Norwegian elite endurance athletes. Cardiology 112, 234–241 (2009).

    Article  PubMed  Google Scholar 

  136. Serra-Grima, R., Puig, T., Doñate, M., Gich, I. & Ramon, J. Long-term follow-up of bradycardia in elite athletes. Int. J. Sports Med. 29, 934–937 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Zipes, D. P. et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 9: Arrhythmias and Conduction Defects: a scientific statement from the American Heart Association and American College of Cardiology. J. Am. Coll. Cardiol. 66, 2412–2423 (2015).

    Article  PubMed  Google Scholar 

  138. Brignole, M. et al. 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy: the task force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Europace 15, 1070–1118 (2013).

    Article  PubMed  Google Scholar 

  139. Fabritz, L. et al. Expert consensus document: defining the major health modifiers causing atrial fibrillation: a roadmap to underpin personalized prevention and treatment. Nat. Rev. Cardiol. 13, 230–237 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Woodward, A., Tin Tin, S., Doughty, R. N. & Ameratunga, S. Atrial fibrillation and cycling: six year follow-up of the Taupo bicycle study. BMC Public Health 15, 23 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Elosua, R. et al. Sport practice and the risk of lone atrial fibrillation: a case–control study. Int. J. Cardiol. 108, 332–337 (2006).

    Article  PubMed  Google Scholar 

  142. Ofman, P. et al. Regular physical activity and risk of atrial fibrillation: a systematic review and meta-analysis. Circ. Arrhythm. Electrophysiol. 6, 252–256 (2013).

    Article  PubMed  Google Scholar 

  143. Abdulla, J. & Nielsen, J. R. Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis. Europace 11, 1156–1159 (2009).

    Article  PubMed  Google Scholar 

  144. Kwok, C. S., Anderson, S. G., Myint, P. K., Mamas, M. A. & Loke, Y. K. Physical activity and incidence of atrial fibrillation: a systematic review and meta-analysis. Int. J. Cardiol. 177, 467–476 (2014).

    Article  PubMed  Google Scholar 

  145. Moncayo-Arlandi, J. et al. Molecular disturbance underlies to arrhythmogenic cardiomyopathy induced by transgene content, age and exercise in a truncated PKP2 mouse model. Hum. Mol. Genet. http://dx.doi.org/10.1093/hmg/ddw213 (2016).

  146. Cruz, F. M. et al. Exercise triggers ARVC phenotype in mice expressing a disease-causing mutated version of human plakophilin-2. J. Am. Coll. Cardiol. 65, 1438–1450 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Kirchhof, P. et al. Age- and training-dependent development of arrhythmogenic right ventricular cardiomyopathy in heterozygous plakoglobin-deficient mice. Circulation 114, 1799–1806 (2006).

    Article  PubMed  Google Scholar 

  148. Huxley, R. R. et al. Physical activity, obesity, weight change, and risk of atrial fibrillation the atherosclerosis risk in communities study. Circ. Arrhythm. Electrophysiol. 7, 620–625 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors have received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement 633196 (CATCH ME project) and from Instituto de Salud Carlos III — Fondo de Investigaciones Sanitarias (PI13/01580 and PI16/00703).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, substantially contributed to discussion of its content, and reviewed and edited the manuscript before submission. E.G. wrote the article.

Corresponding authors

Correspondence to Eduard Guasch or Lluís Mont.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guasch, E., Mont, L. Diagnosis, pathophysiology, and management of exercise-induced arrhythmias. Nat Rev Cardiol 14, 88–101 (2017). https://doi.org/10.1038/nrcardio.2016.173

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing