Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiovascular effects of bariatric surgery

Key Points

  • Obesity is a major risk factor for cardiovascular disease, and is associated with other cardiovascular risk factors such as hypertension, dyslipidaemia, inflammation, and type 2 diabetes mellitus (T2DM)

  • Effective and sustained BMI reduction has consistently been demonstrated in weight-loss programmes that incorporate bariatric surgery

  • Cardiovascular risk factors, such as hypertension, dyslipidaemia, inflammation, ischaemic heart disease, and T2DM have been shown to improve after bariatric surgery, and such benefits are often sustained in the long term

  • Bariatric surgery is associated with a reduction in cardiovascular events, such as myocardial infarction and stroke

Abstract

Obesity is a major global health problem, and its multisystem effects are inextricably linked with elevated cardiovascular risk and adverse outcomes. The cardiovascular benefits of reversing obesity in adults are well-established. Compared with other weight-loss strategies, programmes that incorporate bariatric surgery for weight loss are beneficial for sustained BMI reduction. A marked improvement in cardiovascular risk factors, including hypertension, dyslipidaemia, inflammation, and type 2 diabetes mellitus, has been observed after bariatric surgery. This broad improvement in cardiovascular risk profile has led to substantial reductions in the risk of myocardial infarction, stroke, and death. As with all procedures, the benefits of bariatric surgery must be weighed against its potential risks. Modern bariatric surgery has an excellent safety profile, but important limitations remain, including the potential for surgical complications and nutritional deficiencies, and the lifelong requirement for nutritional supplementation. Surgery should be considered in patients with severe obesity, especially those with cardiovascular comorbidities. In this Review, we summarize the current management options for patients with obesity, and discuss the effects of bariatric surgery on cardiovascular risk factors and outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Obesity management flow.
Figure 2: The three most commonly performed bariatric surgical procedures.
Figure 3: Effect of bariatric surgery on cardiovascular deaths in the Swedish Obese Subjects study.

Similar content being viewed by others

References

  1. Jensen, M. D. et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and Obesity Society. Circulation 129 (Suppl. 2), S102–S138 (2014).

    PubMed  Google Scholar 

  2. Tunstall-Pedoe, H. et al. Estimation of contribution of changes in coronary care to improving survival, event rates, and coronary heart disease mortality across the WHO MONICA Project populations. Lancet 355, 688–700 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–781 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Oster, G., Thompson, D., Edelsberg, J., Bird, A. P. & Colditz, G. A. Lifetime health and economic benefits of weight loss among obese persons. Am. J. Public Health 89, 1536–1542 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blackburn, G. Effect of degree of weight loss on health benefits. Obes. Res. 3 (Suppl. 2), 211s–216s (1995).

    Article  PubMed  Google Scholar 

  6. Goldstein, D. J. Beneficial health effects of modest weight loss. Int. J. Obes. Relat. Metab. Disord. 16, 397–415 (1992).

    CAS  PubMed  Google Scholar 

  7. World Health Organization. Obesity: preventing and managing the global epidemic (WHO, 2000).

  8. Frerichs, R. R., Webber, L. S., Srinivasan, S. R. & Berenson, G. S. Relation of serum lipids and lipoproteins to obesity and sexual maturity in white and black children. Am. J. Epidemiol. 108, 486–496 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Gunnell, D. J., Frankel, S. J., Nanchahal, K., Peters, T. J. & Davey Smith, G. Childhood obesity and adult cardiovascular mortality: a 57-y follow-up study based on the Boyd Orr cohort. Am. J. Clin. Nutr. 67, 1111–1118 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Coutinho, T. et al. Combining body mass index with measures of central obesity in the assessment of mortality in subjects with coronary disease: role of “normal weight central obesity”. J. Am. Coll. Cardiol. 61, 553–560 (2013).

    Article  PubMed  Google Scholar 

  11. Sahakyan, K. R. et al. Normal-weight central obesity: implications for total and cardiovascular mortality. Ann. Intern. Med. 163, 827–835 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cornier, M. A. et al. Assessing adiposity: a scientific statement from the American Heart Association. Circulation 124, 1996–2019 (2011).

    Article  PubMed  Google Scholar 

  13. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics 128 (Suppl. 5), S213–S256 (2011).

  14. Friedemann, C. et al. Cardiovascular disease risk in healthy children and its association with body mass index: systematic review and meta-analysis. BMJ 345, e4759 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. World Health Organization. Obesity and overweight. World Health Organization Media Centre http://www.who.int/mediacentre/factsheets/fs311/en/ (2016).

  16. Nordstrom, P., Pedersen, N. L., Gustafson, Y., Michaelsson, K. & Nordstrom, A. Risks of myocardial infarction, death, and diabetes in identical twin pairs with different body mass indexes. JAMA Intern. Med. http://dx.doi.org/10.1001/jamainternmed.2016.4104 (2016).

  17. Smith, G. D. & Ebrahim, S. Mendelian randomization: prospects, potentials, and limitations. Int. J. Epidemiol. 33, 30–42 (2004).

    Article  PubMed  Google Scholar 

  18. Hagg, S. et al. Adiposity as a cause of cardiovascular disease: a Mendelian randomization study. Int. J. Epidemiol. 44, 578–586 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Action for Health In Diabetes Study Group. Association of weight loss maintenance and weight regain on 4-year changes in CVD risk factors: the action for health in diabetes clinical trial. Diabetes Care 39, 1345–1355 (2016).

  20. Look, A. R. G. et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).

    Article  CAS  Google Scholar 

  21. Douketis, J. D., Macie, C., Thabane, L. & Williamson, D. F. Systematic review of long-term weight loss studies in obese adults: clinical significance and applicability to clinical practice. Int. J. Obes. 29, 1153–1167 (2005).

    Article  CAS  Google Scholar 

  22. Buchwald, H. et al. Bariatric surgery: a systematic review and meta-analysis. JAMA 292, 1724–1737 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. DeMaria, E. J. Bariatric surgery for morbid obesity. N. Engl. J. Med. 356, 2176–2183 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Sjostrom, L. et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N. Engl. J. Med. 351, 2683–2693 (2004).

    Article  PubMed  Google Scholar 

  25. Dixon, J. B. et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA 299, 316–323 (2008).

    CAS  PubMed  Google Scholar 

  26. Sjostrom, L. et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357, 741–752 (2007).

    Article  PubMed  Google Scholar 

  27. Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N. Engl. J. Med. 366, 1567–1576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mason, E. E. & Ito, C. Gastric bypass in obesity. Surg. Clin. N. Amer. 47, 1345–1351 (1967).

    Article  CAS  PubMed  Google Scholar 

  29. Chang, S. H. et al. The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003-2012. JAMA Surg. 149, 275–287 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Poirier, P. et al. Bariatric surgery and cardiovascular risk factors: a scientific statement from the American Heart Association. Circulation 123, 1683–1701 (2011).

    Article  PubMed  Google Scholar 

  31. Miras, A. D. & le Roux, C. W. Mechanisms underlying weight loss after bariatric surgery. Nat. Rev. Gastroenterol. Hepatol. 10, 575–584 (2013).

    Article  PubMed  Google Scholar 

  32. O'Brien, P. Bariatric surgery: mechanisms, indications and outcomes. J. Gastroenterol. Hepatol. 25, 1358–1365 (2010).

    Article  PubMed  Google Scholar 

  33. Abdeen, G. & le Roux, C. W. Mechanism underlying the weight loss and complications of Roux-en-y gastric bypass. Rev. Obes. Surg. 26, 410–421 (2016).

    Article  CAS  Google Scholar 

  34. Dixon, A. F., Dixon, J. B. & O'Brien, P. E. Laparoscopic adjustable gastric banding induces prolonged satiety: a randomized blind crossover study. J. Clin. Endocrinol. Metab. 90, 813–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Esteban Varela, J. & Nguyen, N. T. Laparoscopic sleeve gastrectomy leads the U. S. utilization of bariatric surgery at academic medical centers. Surg. Obes. Relat. Dis. 11, 987–990 (2015).

    Article  PubMed  Google Scholar 

  36. Angrisani, L. et al. Bariatric Surgery Worldwide 2013. Obes. Surg. 25, 1822–1832 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Olbers, T., Lonroth, H., Fagevik-Olsen, M. & Lundell, L. Laparoscopic gastric bypass: development of technique, respiratory function, and long-term outcome. Obes. Surg. 13, 364–370 (2003).

    Article  PubMed  Google Scholar 

  38. Rosenthal, R. J. et al. International Sleeve Gastrectomy Expert Panel Consensus Statement: best practice guidelines based on experience of >12,000 cases. Surg. Obes. Relat. Dis. 8, 8–19 (2012).

    Article  PubMed  Google Scholar 

  39. Ponce, J. in The ASMBS Textbook of Bariatric Surgery (eds Nguyen, N. T., Blackstone, R. P., Morton, J. M., Ponce, J. & Rosenthal, R.) 193–204 (Springer Science+Business, 2015).

    Google Scholar 

  40. Piche, M. E., Auclair, A., Harvey, J., Marceau, S. & Poirier, P. How to choose and use bariatric surgery in 2015. Can. J. Cardiol. 31, 153–166 (2015).

    Article  PubMed  Google Scholar 

  41. Buchwald, H. & Oien, D. M. Metabolic/bariatric surgery worldwide 2011. Obes. Surg. 23, 427–436 (2013).

    Article  PubMed  Google Scholar 

  42. Li, J. F., Lai, D. D., Ni, B. & Sun, K. X. Comparison of laparoscopic Roux-en-Y gastric bypass with laparoscopic sleeve gastrectomy for morbid obesity or type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Can. J. Surg. 56, E158–E164 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Peterli, R. et al. Early results of the Swiss Multicentre Bypass or Sleeve Study (SM-BOSS): a prospective randomized trial comparing laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass. Ann. Surg. 258, 690–694; discussion 695 (2013).

    Article  PubMed  Google Scholar 

  44. Lee, W. J. et al. Gastric bypass vs sleeve gastrectomy for type 2 diabetes mellitus: a randomized controlled trial. Arch. Surg. 146, 143–148 (2011).

    Article  PubMed  Google Scholar 

  45. Karamanakos, S. N., Vagenas, K., Kalfarentzos, F. & Alexandrides, T. K. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann. Surg. 247, 401–407 (2008).

    Article  PubMed  Google Scholar 

  46. U.S. National Institutes of Health. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02767505 (2016).

  47. Rogers, C. A. et al. The By-Band study: gastric bypass or adjustable gastric band surgery to treat morbid obesity: study protocol for a multi-centre randomised controlled trial with an internal pilot phase. Trials 15, 1–14 (2014).

    Article  Google Scholar 

  48. Inge, T. H. et al. Weight loss and health status 3 years after bariatric surgery in adolescents. N. Engl. J. Med. 374, 113–123 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sakai, P. et al. Is it feasible to reach the bypassed stomach after Roux-en-Y gastric bypass for morbid obesity? The use of the double-balloon enteroscope. Endoscopy 37, 566–569 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Ricci, C. et al. Long-term effects of bariatric surgery on type II diabetes, hypertension and hyperlipidemia: a meta-analysis and meta-regression study with 5-year follow-up. Obes. Surg. 25, 397–405 (2015).

    Article  PubMed  Google Scholar 

  51. Kwok, C. S. et al. Bariatric surgery and its impact on cardiovascular disease and mortality: a systematic review and meta-analysis. Int. J. Cardiol. 173, 20–28 (2014).

    Article  PubMed  Google Scholar 

  52. Nguyen, N. T., Magno, C. P., Lane, K. T., Hinojosa, M. W. & Lane, J. S. Association of hypertension, diabetes, dyslipidemia, and metabolic syndrome with obesity: findings from the National Health and Nutrition Examination Survey, 1999 to 2004. J. Am. Coll. Surg. 207, 928–934 (2008).

    Article  PubMed  Google Scholar 

  53. Puzziferri, N. et al. Long-term follow-up after bariatric surgery: a systematic review. JAMA 312, 934–942 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hallersund, P. et al. Gastric bypass surgery is followed by lowered blood pressure and increased diuresis—long term results from the Swedish Obese Subjects (SOS) study. PLoS ONE 7, e49696 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sjostrom, L. et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 311, 2297–2304 (2014).

    Article  PubMed  CAS  Google Scholar 

  56. Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N. Engl. J. Med. 370, 2002–2013 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mingrone, G. et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet 386, 964–973 (2015).

    Article  PubMed  Google Scholar 

  58. Ikramuddin, S. et al. Roux-en-Y gastric bypass for diabetes (the Diabetes Surgery Study): 2-year outcomes of a 5-year, randomised, controlled trial. Lancet Diabetes Endocrinol. 3, 413–422 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liang, Z. et al. Effect of laparoscopic Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus with hypertension: a randomized controlled trial. Diabetes Res. Clin. Pract. 101, 50–56 (2013).

    Article  PubMed  Google Scholar 

  60. Halperin, F. et al. Roux-en-Y gastric bypass surgery or lifestyle with intensive medical management in patients with type 2 diabetes: feasibility and 1-year results of a randomized clinical trial. JAMA Surg. 149, 716–726 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Courcoulas, A. P. et al. Surgical vs medical treatments for type 2 diabetes mellitus: a randomized clinical trial. JAMA Surg. 149, 707–715 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wentworth, J. M. et al. Multidisciplinary diabetes care with and without bariatric surgery in overweight people: a randomised controlled trial. Lancet Diabetes Endocrinol. 2, 545–552 (2014).

    Article  PubMed  Google Scholar 

  63. Parikh, M. et al. Randomized pilot trial of bariatric surgery versus intensive medical weight management on diabetes remission in type 2 diabetic patients who do NOT meet NIH criteria for surgery and the role of soluble RAGE as a novel biomarker of success. Ann. Surg. 260, 617–622; discussion 622–614 (2014).

    Article  PubMed  Google Scholar 

  64. Cummings, D. E. et al. Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomised controlled trial. Diabetologia 59, 945–953 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schauer, P. R., Mingrone, G., Ikramuddin, S. & Wolfe, B. Clinical outcomes of metabolic surgery: efficacy of glycemic control, weight loss, and remission of diabetes. Diabetes Care 39, 902–911 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ding, S. A. et al. Adjustable gastric band surgery or medical management in patients with type 2 diabetes: a randomized clinical trial. J. Clin. Endocrinol. Metab. 100, 2546–2556 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Heneghan, H. M., Meron-Eldar, S., Brethauer, S. A., Schauer, P. R. & Young, J. B. Effect of bariatric surgery on cardiovascular risk profile. Am. J. Cardiol. 108, 1499–1507 (2011).

    Article  PubMed  Google Scholar 

  68. Miller, G. D., Nicklas, B. J. & Fernandez, A. Serial changes in inflammatory biomarkers after Roux-en-Y gastric bypass surgery. Surg. Obes. Relat. Dis. 7, 618–624 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Karlsson, J., Taft, C., Ryden, A., Sjostrom, L. & Sullivan, M. Ten-year trends in health-related quality of life after surgical and conventional treatment for severe obesity: the SOS intervention study. Int. J. Obes. 31, 1248–1261 (2007).

    Article  CAS  Google Scholar 

  70. Magallares, A. & Schomerus, G. Mental and physical health-related quality of life in obese patients before and after bariatric surgery: a meta-analysis. Psychol. Health Med. 20, 165–176 (2015).

    Article  PubMed  Google Scholar 

  71. Aggarwal, R. et al. The effects of bariatric surgery on cardiac structure and function: a systematic review of cardiac imaging outcomes. Obes. Surg. 26, 1030–1040 (2016).

    Article  PubMed  Google Scholar 

  72. Ramani, G. V., McCloskey, C., Ramanathan, R. C. & Mathier, M. A. Safety and efficacy of bariatric surgery in morbidly obese patients with severe systolic heart failure. Clin. Cardiol. 31, 516–520 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Miranda, W. R. et al. Impact of bariatric surgery on quality of life, functional capacity, and symptoms in patients with heart failure. Obes. Surg. 23, 1011–1015 (2013).

    Article  PubMed  Google Scholar 

  74. Vest, A. R. et al. Clinical and echocardiographic outcomes after bariatric surgery in obese patients with left ventricular systolic dysfunction. Circ. Heart Fail. 9, e002260 (2016).

    Article  PubMed  Google Scholar 

  75. Eliasson, B. et al. Cardiovascular disease and mortality in patients with type 2 diabetes after bariatric surgery in Sweden: a nationwide, matched, observational cohort study. Lancet Diabetes Endocrinol. 3, 847–854 (2015).

    Article  PubMed  Google Scholar 

  76. Sjostrom, L. et al. Bariatric surgery and long-term cardiovascular events. JAMA 307, 56–65 (2012).

    Article  PubMed  Google Scholar 

  77. Sinha, S. et al. Epidemiological study of provision of cholecystectomy in England from 2000 to 2009: retrospective analysis of Hospital Episode Statistics. Surg. Endosc. 27, 162–175 (2013).

    Article  PubMed  Google Scholar 

  78. Sandblom, G., Videhult, P., Crona Guterstam, Y., Svenner, A. & Sadr-Azodi, O. Mortality after a cholecystectomy: a population-based study. HPB (Oxford) 17, 239–243 (2015).

    Article  Google Scholar 

  79. Poirier, P. et al. Cardiovascular evaluation and management of severely obese patients undergoing surgery: a science advisory from the American Heart Association. Circulation 120, 86–95 (2009).

    Article  PubMed  Google Scholar 

  80. Buchwald, H., Estok, R., Fahrbach, K., Banel, D. & Sledge, I. Trends in mortality in bariatric surgery: a systematic review and meta-analysis. Surgery 142, 621–632; discussion 632–625 (2007).

    Article  PubMed  Google Scholar 

  81. Stenberg, E. et al. Early complications after laparoscopic gastric bypass surgery: results from the Scandinavian Obesity Surgery Registry. Ann. Surg. 260, 1040–1047 (2014).

    Article  PubMed  Google Scholar 

  82. Bal, B. S., Finelli, F. C., Shope, T. R. & Koch, T. R. Nutritional deficiencies after bariatric surgery. Nat. Rev. Endocrinol. 8, 544–556 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Alvarez-Leite, J. I. Nutrient deficiencies secondary to bariatric surgery. Curr. Opin. Clin. Nutr. Metabol. Care 7, 569–575 (2004).

    Article  Google Scholar 

  84. Gadgil, M. D. et al. Laboratory testing for and diagnosis of nutritional deficiencies in pregnancy before and after bariatric surgery. J. Womens Health (Larchmt) 23, 129–137 (2014).

    Article  Google Scholar 

  85. Reid, I. R. et al. Determinants of total body and regional bone mineral density in normal postmenopausal women—a key role for fat mass. J. Clin. Endocrinol. Metab. 75, 45–51 (1992).

    CAS  PubMed  Google Scholar 

  86. Wucher, H., Ciangura, C., Poitou, C. & Czernichow, S. Effects of weight loss on bone status after bariatric surgery: association between adipokines and bone markers. Obes. Surg. 18, 58–65 (2008).

    Article  PubMed  Google Scholar 

  87. Rodriguez-Carmona, Y. et al. Bone mineral density after bariatric surgery. A systematic review. Int. J. Surg. 12, 976–982 (2014).

    Article  PubMed  Google Scholar 

  88. Elias, E. et al. Bone mineral density and expression of vitamin D receptor-dependent calcium uptake mechanisms in the proximal small intestine after bariatric surgery. Br. J. Surg. 101, 1566–1575 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Brzozowska, M. M., Sainsbury, A., Eisman, J. A., Baldock, P. A. & Center, J. R. Bariatric surgery, bone loss, obesity and possible mechanisms. Obes. Rev. 14, 52–67 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Lalmohamed, A. et al. Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. BMJ 345, e5085 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Malinowski, S. S. Nutritional and metabolic complications of bariatric surgery. Am. J. Med. Sci. 331, 219–225 (2006).

    Article  PubMed  Google Scholar 

  92. Banerjee, A., Ding, Y., Mikami, D. J. & Needleman, B. J. The role of dumping syndrome in weight loss after gastric bypass surgery. Surg. Endosc. 27, 1573–1578 (2013).

    Article  PubMed  Google Scholar 

  93. Elliot, K. Nutritional considerations after bariatric surgery. Crit. Care Nurs. Q. 26, 133–138 (2003).

    Article  PubMed  Google Scholar 

  94. Kellogg, T. A. et al. Postgastric bypass hyperinsulinemic hypoglycemia syndrome: characterization and response to a modified diet. Surg. Obes. Relat. Dis. 4, 492–499 (2008).

    Article  PubMed  Google Scholar 

  95. Steffen, K. J., Engel, S. G., Pollert, G. A., Li, C. & Mitchell, J. E. Blood alcohol concentrations rise rapidly and dramatically after Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 9, 470–473 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  96. de la Cruz-Munoz, N., Cabrera, J. C., Cuesta, M., Hartnett, S. & Rojas, R. Closure of mesenteric defect can lead to decrease in internal hernias after Roux-en-Y gastric bypass. Surg. Obes. Res. Dis. 7, 176–180 (2011).

    Article  Google Scholar 

  97. Desart, K., Rossidis, G., Michel, M., Lux, T. & Ben-David, K. Gastroesophageal reflux management with the LINX® system for gastroesophageal reflux disease following laparoscopic sleeve gastrectomy. J. Gastrointest. Surg. 19, 1782–1786 (2015).

    Article  PubMed  Google Scholar 

  98. Decker, G. A., Swain, J. M., Crowell, M. D. & Scolapio, J. S. Gastrointestinal and nutritional complications after bariatric surgery. Am. J. Gastroenterol. 102, 2571–2580; quiz 2581 (2007).

    Article  PubMed  Google Scholar 

  99. Braley, S. C., Nguyen, N. T. & Wolfe, B. M. Late gastrointestinal hemorrhage after gastric bypass. Obes. Surg. 12, 404–407 (2002).

    Article  PubMed  Google Scholar 

  100. Brethauer, S. A. et al. Systematic review on reoperative bariatric surgery: American Society for Metabolic and Bariatric Surgery Revision Task Force. Surg. Obes. Relat. Dis. 10, 952–972 (2014).

    Article  PubMed  Google Scholar 

  101. Koornstra, J. J. Double balloon enteroscopy for endoscopic retrograde cholangiopancreaticography after Roux-en-Y reconstruction: case series and review of the literature. Neth. J. Med. 66, 275–279 (2008).

    CAS  PubMed  Google Scholar 

  102. Brown, C. D. et al. Body mass index and the prevalence of hypertension and dyslipidemia. Obes. Res. 8, 605–619 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Freedman, D. S. et al. The contribution of childhood obesity to adult carotid intima-media thickness: the Bogalusa Heart Study. Int. J. Obes. 32, 749–756 (2008).

    Article  CAS  Google Scholar 

  104. Ben-Shlomo, Y. et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J. Am. Coll. Cardiol. 63, 636–646 (2014).

    Article  PubMed  Google Scholar 

  105. Hudson, L. D., Rapala, A., Khan, T., Williams, B. & Viner, R. M. Evidence for contemporary arterial stiffening in obese children and adolescents using pulse wave velocity: a systematic review and meta-analysis. Atherosclerosis 241, 376–386 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Cote, A. T. et al. Obesity and arterial stiffness in children systematic review and meta-analysis. Arterioscler. Thromb. Vasc. Biol. 35, 1038–1044 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Shah, A. S. et al. Severe obesity in adolescents and young adults is associated with sub-clinical cardiac and vascular changes. J. Clin. Endocrinol. Metab. 100, 2751–2757 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Alpert, M. A., Lavie, C. J., Agrawal, H., Aggarwal, K. B. & Kumar, S. A. Obesity and heart failure: epidemiology, pathophysiology, clinical manifestations, and management. Transl Res. 164, 345–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Levy, D., Garrison, R. J., Savage, D. D., Kannel, W. B. & Castelli, W. P. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med. 322, 1561–1566 (1990).

    Article  CAS  PubMed  Google Scholar 

  110. Cuspidi, C., Rescaldani, M., Sala, C. & Grassi, G. Left-ventricular hypertrophy and obesity: a systematic review and meta-analysis of echocardiographic studies. J. Hypertens. 32, 16–25 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Movahed, M. R., Bates, S., Strootman, D. & Sattur, S. Obesity in adolescence is associated with left ventricular hypertrophy and hypertension. Echocardiography 28, 150–153 (2011).

    Article  PubMed  Google Scholar 

  112. Di Salvo, G. et al. Atrial myocardial deformation properties in obese nonhypertensive children. J. Am. Soc. Echocardiogr. 21, 151–156 (2008).

    Article  PubMed  Google Scholar 

  113. Abel, E. D., Litwin, S. E. & Sweeney, G. Cardiac remodeling in obesity. Physiol. Rev. 88, 389–419 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Singh, J. P. et al. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am. J. Cardiol. 83, 897–902 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Mokdad, A. H. et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289, 76–79 (2003).

    Article  PubMed  Google Scholar 

  116. Stratton, I. M. et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321, 405–412 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Selvin, E. et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann. Intern. Med. 141, 421–431 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Gerstein, H. C. et al. The relationship between dysglycaemia and cardiovascular and renal risk in diabetic and non-diabetic participants in the HOPE study: a prospective epidemiological analysis. Diabetologia 48, 1749–1755 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Singh, S., Loke, Y. K. & Furberg, C. D. Thiazolidinediones and heart failure: a teleo-analysis. Diabetes Care 30, 2148–2153 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Sbarbati, A. et al. Obesity and inflammation: evidence for an elementary lesion. Pediatrics 117, 220–223 (2006).

    Article  PubMed  Google Scholar 

  121. Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Kobayashi, S. et al. Interaction of oxidative stress and inflammatory response in coronary plaque instability: important role of C-reactive protein. Arterioscler. Thromb. Vasc. Biol. 23, 1398–1404 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Danesh, J. et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 350, 1387–1397 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Zieske, A. W. et al. Elevated serum C-reactive protein levels and advanced atherosclerosis in youth. Arterioscler. Thromb. Vasc. Biol. 25, 1237–1243 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Yusuf, S. et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet 366, 1640–1649 (2005).

    Article  PubMed  Google Scholar 

  126. Strazzullo, P. et al. Excess body weight and incidence of stroke: meta-analysis of prospective studies with 2 million participants. Stroke 41, e418–e426 (2010).

    Article  PubMed  Google Scholar 

  127. Kenchaiah, S. et al. Obesity and the risk of heart failure. N. Engl. J. Med. 347, 305–313 (2002).

    Article  PubMed  Google Scholar 

  128. Wanahita, N. et al. Atrial fibrillation and obesity—results of a meta-analysis. Am. Heart J. 155, 310–315 (2008).

    Article  PubMed  Google Scholar 

  129. Sabbag, A. et al. Obesity and exercise-induced ectopic ventricular arrhythmias in apparently healthy middle aged adults. Eur. J. Prev. Cardiol. 23, 511–517 (2016).

    Article  PubMed  Google Scholar 

  130. Pietrasik, G., Goldenberg, I., McNitt, S., Moss, A. J. & Zareba, W. Obesity as a risk factor for sustained ventricular tachyarrhythmias in MADIT II patients. J. Cardiovasc. Electrophysiol. 18, 181–184 (2007).

    Article  PubMed  Google Scholar 

  131. Prospective Studies Collaboration et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 373, 1083–1096 (2009).

  132. Kramer, F. M., Jeffery, R. W., Forster, J. L. & Snell, M. K. Long-term follow-up of behavioral treatment for obesity: patterns of weight regain among men and women. Int. J. Obes. 13, 123–136 (1989).

    CAS  PubMed  Google Scholar 

  133. Rosenbaum, M., Leibel, R. L. & Hirsch, J. Obesity. N. Engl. J. Med. 337, 396–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Norris, S. L. et al. Long-term non-pharmacological weight loss interventions for adults with prediabetes. Cochrane Database Syst. Rev. 2, CD005270 (2005).

    Google Scholar 

  135. Mann, T. et al. Medicare's search for effective obesity treatments: diets are not the answer. Am. Psychol. 62, 220–233 (2007).

    Article  PubMed  Google Scholar 

  136. Ebbeling, C. B., Pawlak, D. B. & Ludwig, D. S. Childhood obesity: public-health crisis, common sense cure. Lancet 360, 473–482 (2002).

    Article  PubMed  Google Scholar 

  137. Stunkard, A. & McLaren-Hume, M. The results of treatment for obesity: a review of the literature and report of a series. AMA Arch. Intern. Med. 103, 79–85 (1959).

    Article  CAS  PubMed  Google Scholar 

  138. Rothacker, D. Q. Five-year self-management of weight using meal replacements: comparison with matched controls in rural Wisconsin. Nutrition 16, 344–348 (2000).

    Article  Google Scholar 

  139. Appel, L. J. et al. Comparative effectiveness of weight-loss interventions in clinical practice. N. Engl. J. Med. 365, 1959–1968 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Weinheimer, E. M., Sands, L. P. & Campbell, W. W. A systematic review of the separate and combined effects of energy restriction and exercise on fat-free mass in middle-aged and older adults: implications for sarcopenic obesity. Nutr. Rev. 68, 375–388 (2010).

    Article  PubMed  Google Scholar 

  141. Garrow, J. S. & Summerbell, C. D. Meta-analysis: effect of exercise, with or without dieting, on the body composition of overweight subjects. Eur. J. Clin. Nutr. 49, 1–10 (1995).

    CAS  PubMed  Google Scholar 

  142. Dutton, G. R. & Lewis, C. E. The Look AHEAD Trial: implications for lifestyle intervention in type 2 diabetes mellitus. Prog. Cardiovasc. Dis. 58, 69–75 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Ho, M. et al. Effectiveness of lifestyle interventions in child obesity: systematic review with meta-analysis. Pediatrics 130, e1647–e1671 (2012).

    Article  PubMed  Google Scholar 

  144. Brown, T. et al. Systematic review of long-term lifestyle interventions to prevent weight gain and morbidity in adults. Obes. Rev. 10, 627–638 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Look, A. R. G. Eight-year weight losses with an intensive lifestyle intervention: the look AHEAD study. Obesity 22, 5–13 (2014).

    Article  Google Scholar 

  146. de Waard, F., Ramlau, R., Mulders, Y., de Vries, T. & van Waveren, S. A feasibility study on weight reduction in obese postmenopausal breast cancer patients. Eur. J. Cancer Prev. 2, 233–238 (1993).

    Article  CAS  PubMed  Google Scholar 

  147. Kirk, S. F., Penney, T. L., McHugh, T. L. & Sharma, A. M. Effective weight management practice: a review of the lifestyle intervention evidence. Int. J. Obes. 36, 178–185 (2012).

    Article  CAS  Google Scholar 

  148. Yanovski, S. Z. & Yanovski, J. A. Long-term drug treatment for obesity: a systematic and clinical review. JAMA 311, 74–86 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Rogovik, A. L., Chanoine, J. P. & Goldman, R. D. Pharmacotherapy and weight-loss supplements for treatment of paediatric obesity. Drugs 70, 335–346 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Kang, J. G. & Park, C. Y. Anti-obesity drugs: a review about their effects and safety. Diabetes Metab. J. 36, 13–25 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Diabetes Prevention Program Research Group et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 374, 1677–1686 (2009).

  153. Mechanick, J. I. et al. American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic and Bariatric Surgery Medical Guidelines for Clinical Practice for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient. Surg. Obes. Relat. Dis. 4, S109–S184 (2008).

    Article  PubMed  Google Scholar 

  154. Garrison, R. J., Kannel, W. B., Stokes, J. 3rd & Castelli, W. P. Incidence and precursors of hypertension in young adults: the Framingham Offspring Study. Prev. Med. 16, 235–251 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.J.B. has received research funding from The Royal College of Surgeons of England.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, discussed its content, and wrote, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Thomas H. Inge.

Ethics declarations

Competing interests

T.O. serves as a consultant, advisory board member, and lecturer for Ethicon Endo-Surgery. He has also lectured for AstraZeneca and Sanofi. A.S.K. serves as a consultant for Novo Nordisk Pharmaceuticals and is the signatory author for a paediatric obesity clinical trial sponsored by Novo Nordisk Pharmaceuticals; he does not accept personal or professional income for these activities. He also receives research support from AstraZeneca Pharmaceuticals. T.H.I. has received research grant funding from Ethicon Endo-Surgery and has served as a consultant for Sanofi.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beamish, A., Olbers, T., Kelly, A. et al. Cardiovascular effects of bariatric surgery. Nat Rev Cardiol 13, 730–743 (2016). https://doi.org/10.1038/nrcardio.2016.162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing