Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bioresorbable vascular scaffolds — basic concepts and clinical outcome

Key Points

  • Bioresorbable vascular scaffolds (BVS) are the latest innovation in the field of coronary interventions and are emerging as a promising treatment for patients with coronary artery stenoses

  • Available data from direct comparison in randomized studies showed similar clinical results in patients treated with BVS compared with the current generation of drug-eluting stents

  • Appropriate selection of target lesions and an appropriate implantation technique are crucial to achieving a good long-term result with the currently available devices

  • Some concerns remain about scaffold thrombosis and coronary restenosis

Abstract

The introduction of percutaneous treatment of coronary artery stenosis with balloon angioplasty was the first revolution in interventional cardiology; the advent of metallic coronary stents (bare and drug-eluting) marked the second and third revolutions. However, the latest generation of drug-eluting stents is limited by several factors. Permanent vessel caging impairs arterial physiology, and the incidence of very late stent thrombosis — although lower with the second generation than with the first generation of drug-eluting stents — remains a major concern. This complication is mainly related to the presence of permanent metallic implants, chronic degeneration triggered by an inflammatory response to the coating polymer, and/or adverse effects of antiproliferative drugs on endothelial regeneration. In 2011, self-degrading coronary stents — the bioresorbable vascular scaffolds (BVS) — were introduced into clinical practice, showing good short-term results owing to their adequate strength. The advantage of these devices is the transient nature of vascular scaffolding, which avoids permanent vessel caging. In this Review, we summarize the latest research on BVS, with a particular emphasis on the implantation technique (which is different from that used with metallic stents) to outline the concept that BVS deployment methods have a major effect on procedural success and prognosis of patients with coronary artery stenosis. Furthermore, the clinical outcome of BVS in randomized clinical trials and in phase IV studies are discussed in different pathophysiological settings, such as stable or acute coronary disease. Finally, all the available data on the safety profile of BVS regarding scaffold thrombosis are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Milestones in coronary angioplasty.
Figure 2: Timing of strut reabsorption.
Figure 3: Comparison of the strut thickness of different categories of stent.

Similar content being viewed by others

References

  1. Indolfi, C., Pavia, M. & Angelillo, I. F. Drug-eluting stents versus bare metal stents in percutaneous coronary interventions (a meta-analysis). Am. J. Cardiol. 95, 1146–1152 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Holmes, D. R. et al. Thrombosis and drug-eluting stents: an objective appraisal. J. Am. Coll. Cardiol. 50, 109–118 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Gareri, C., De Rosa, S. & Indolfi, C. MicroRNAs for restenosis and thrombosis after vascular injury. Circ. Res. 118, 1170–1184 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Byrne, R. A. et al. Report of a European Society of Cardiology–European Association of Percutaneous Cardiovascular Interventions task force on the evaluation of coronary stents in Europe: executive summary. Eur. Heart J. 36, 2608–2620 (2015).

    Article  PubMed  Google Scholar 

  5. Ormiston, J. A. & Serruys, P. W. Bioabsorbable coronary stents. Circ. Cardiovasc. Interv. 2, 255–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Serruys, P. W. et al. Dynamics of vessel wall changes following the implantation of the Absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months. EuroIntervention 9, 1271–1284 (2014).

    Article  PubMed  Google Scholar 

  7. Serruys, P. W. et al. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes. Circulation 122, 2301–2312 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Y. J. et al. Comparison of acute gain and late lumen loss after PCI with bioresorbable vascular scaffolds versus everolimus-eluting stents: an exploratory observational study prior to a randomised trial. EuroIntervention. 10, 672–680 (2014).

    Article  PubMed  Google Scholar 

  9. Tanimoto, S. et al. Comparison of in vivo acute stent recoil between the bioabsorbable everolimus-eluting coronary stent and the everolimuseluting cobalt chromiumcoronary stent: insights fromthe ABSORB and SPIRIT trials. Catheter Cardiovasc. Interv. 70, 515–523 (2007).

    Article  PubMed  Google Scholar 

  10. Gomez-Lara, J. et al. A comparison of the conformability of everolimus-eluting bioresorbable vascular scaffolds to metal platform coronary stents. JACC Cardiovasc. Interv. 3, 1190–1198 (2010).

    Article  PubMed  Google Scholar 

  11. Ferdous, J., Kolachalama, V. B., Kolandaivelu, K. & Shazly, T. Degree of bioresorbable vascular scaffold expansion modulates loss of essential function. Acta Biomater. 26, 195–204 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Indolfi, C. et al. Neointimal proliferation is associated with clinical restenosis 2 years after fully bioresorbable vascular scaffold implantation. Circ. Cardiovasc. Imaging 7, 755–757 (2014).

    Article  PubMed  Google Scholar 

  13. Ishida, K., Giacchi, G., Brugaletta, S., Garcıa-Alvarez, A. & Sabate, M. Unfavorable bioresorbable vascular scaffold resorption, a cause of restenosis? Cardiovasc. Revasc. Med. http://dx.doi.org/10.1016/j.carrev.2016.05.013 (2016).

  14. Serruys, P. W. et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet 373, 897–910 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Sarno, G. et al. Morphological and functional evaluation of the bioresorption of the bioresorbable everolimus-eluting vascular scaffold using IVUS, echogenicity and vasomotion testing at two year follow-up: a patient level insight into the ABSORB A clinical trial. Int. J. Cardiovasc. Imaging 28, 51–58 (2012).

    Article  PubMed  Google Scholar 

  16. Ormiston, J. A. et al. First serial assessment at 6 months and 2 years of the second generation of absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study. Circ. Cardiovasc. Interv. 5, 620–632 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Serruys, P. W. et al. Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis 12-month clinical and imaging outcomes. J. Am. Coll. Cardiol. 58, 1578–1588 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Brugaletta, S. et al. Endothelial-dependent vasomotion in a coronary segment treated by ABSORB everolimus-eluting bioresorbable vascular scaffold system is related to plaque composition at the time of bioresorption of the polymer: indirect finding of vascular reparative therapy? Eur. Heart J. 33, 1325–1333 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Togni, M. et al. Sirolimus-eluting stents associated with paradoxic coronary vasoconstriction. J. Am. Coll. Cardiol. 46, 231–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Hofma, S. H. et al. Indication of long-term endothelial dysfunction after sirolimus-eluting stent implantation. Eur. Heart J. 27, 166–170 (2006).

    Article  PubMed  Google Scholar 

  21. Simsek, C. et al. Long-term invasive follow-up of the everolimus-eluting bioresorbable vascular scaffold: five-year results of multiple invasive imaging modalities. EuroIntervention 11, 996–1003 (2016).

    PubMed  Google Scholar 

  22. Haude, M. et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions(BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomized, first-in-man trial. Lancet 387, 31–39 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Puricel, S. et al. Bioresorbable coronary scaffold thrombosis: multicenter comprehensive analysis of clinical presentation, mechanisms, and predictors. J. Am. Coll. Cardiol. 67, 921–931 (2016).

    Article  PubMed  Google Scholar 

  24. Costopoulos, C. et al. Comparison of early clinical outcomes between Absorb bioresorbable vascular scaffold and everolimus-eluting stent implantation in a real-world population. Catheter Cardiovasc. Interv. 85, E10–E15 (2015).

    Article  PubMed  Google Scholar 

  25. Mattesini, A. et al. ABSORB biodegradable stents versus second-generation metal stents: a comparison study of 100 complex lesions treated under OCT guidance. JACC Cardiovasc. Interv. 7, 741–750 (2014).

    Article  PubMed  Google Scholar 

  26. Robaei, D., Back, L., Ooi, S. Y., Pitney, M. & Jepson, N. Twelve-month outcomes with bioresorbable everolimus-eluting scaffold: results of the ESHC-BVS Registry at two Australian centers. J. Invasive Cardiol. 28, 316–322 (2016).

    PubMed  Google Scholar 

  27. Ishibashi, Y. et al. Relation between bioresorbable scaffold sizing using QCA-Dmax and clinical outcomes at 1 year in 1,232 patients from 3 study cohorts (ABSORB Cohort B, ABSORB EXTEND, and ABSORB II). JACC Cardiovasc. Interv. 8, 1715–1726 (2015).

    Article  PubMed  Google Scholar 

  28. Miyazaki, T. et al. The use of a scoring balloon for optimal lesion preparation prior to bioresorbable scaffold implantation: a comparison with conventional balloon predilatation. EuroIntervention 11, e1580–e1588 (2016).

    Article  PubMed  Google Scholar 

  29. Heusch, G. et al. α-Adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation 101, 689–694 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Indolfi, C. et al. Role of alpha 2-adrenoceptors in normal and atherosclerotic human coronary circulation. Circulation 86, 1116–1124 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Kawamoto, H., Jabbour, R. J., Tanaka, A., Latib, A. & Colombo, A. The bioresorbable scaffold: will oversizing affect outcomes? JACC Cardiovasc. Interv. 9, 299–300 (2016).

    Article  PubMed  Google Scholar 

  32. Colombo, A. & Ruparelia, N. Who is thrombogenic: the scaffold or the doctor? Back to the future! JACC Cardiovasc. Interv. 9, 25–27 (2016).

    Article  PubMed  Google Scholar 

  33. Souteyrand, G. et al. Mechanisms of stent thrombosis analysed by optical coherence tomography: insights from the national PESTO French registry. Eur. Heart J. 37, 1208–1216 (2016).

    Article  PubMed  Google Scholar 

  34. Sorrentino, S. et al. The duration of balloon inflation affects the luminal diameter of coronary segments after bioresorbable vascular scaffolds deployment. BMC Cardiovasc. Disord. 15, 169 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Biscaglia, S. et al. Bioresorbable scaffold versus second generation drug eluting stent in long coronary lesions requiring overlap: a propensity-matched comparison (the UNDERDOGS study). Int. J. Cardiol. 208, 40–45 (2016).

    Article  PubMed  Google Scholar 

  36. Kawamoto, H., Ruparelia, N., Tanaka, A., Latib, A. & Colombo, A. Minimal acute recoil following bioresorbable scaffold implantation in fibrocalcific lesion detected by optical frequency-domain imaging. J. Invasive Cardiol. 28, E34–E36 (2016).

    PubMed  Google Scholar 

  37. Caiazzo, G. et al. Optical coherence tomography guidance for percutaneous coronary intervention with bioresorbable scaffolds. Int. J. Cardiol. 221, 352–358 (2016).

    Article  PubMed  Google Scholar 

  38. Tamai, H. et al. Initial 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102, 399–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Nishio, S. et al. Long-term (>10 years) clinical outcomes of first-in-humans biodegradable poly-l-lactic acid coronary stents Igaki-Tamai stents. Circulation 125, 2343–2352 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Serruys, P. W. et al. Bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet 385, 43–54 (2012).

    Article  CAS  Google Scholar 

  41. Gao, R. et al. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial. J. Am. Coll. Cardiol. 66, 2298–2309 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Ellis, S. G. et al. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N. Engl. J. Med. 373, 1905–1915 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Kimura, T. et al. A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds versus everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur. Heart J. 36, 3332–3342 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Puricel, S. et al. Comparison of everolimus- and biolimus-eluting coronary stents with everolimus-eluting bioresorbable vascular scaffolds. J. Am. Coll. Cardiol. 65, 791–801 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Sabaté, M. Everolimus-eluting bioresorbable stent versus durable polymer everolimus-eluting metallic stent in patients with ST-segment elevation myocardial infarction: results of the randomized ABSORB ST-segment elevation myocardial infarction-TROFI II trial. Eur. Heart J. 37, 229–240 (2016).

    Article  PubMed  CAS  Google Scholar 

  46. Caiazzo, G. et al. Absorb bioresorbable vascular scaffold: what have we learned after 5 years of clinical experience? Int. J. Cardiol. 201, 129–136 (2015).

    Article  PubMed  Google Scholar 

  47. Capodanno, D. et al. Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention 10, 1144–1153 (2015).

    Article  PubMed  Google Scholar 

  48. Kraak, R. P. et al. Initial experience and clinical evaluation of the Absorb bioresorbable vascular scaffold (BVS) in real-world practice: the AMC Single Centre Real World PCI registry. EuroIntervention 10, 1160–1168 (2015).

    Article  PubMed  Google Scholar 

  49. Wöhrle, J. et al. Beyond the early stages: insights from the ASSURE registry on bioresorbable vascular scaffolds. EuroIntervention 11, 149–156 (2015).

    Article  PubMed  Google Scholar 

  50. Hoppmann, P. et al. Angiographic and clinical outcomes of patients treated with everolimus-eluting bioresorbable stents in routine clinical practice: Results of the ISAR-ABSORB registry. Catheter Cardiovasc. Interv. 87, 822–829 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Abizaid, A. et al. The ABSORB EXTEND study: preliminary report of the twelve-month clinical outcomes in the first 512 patients enrolled. EuroIntervention 10, 1396–1401 (2015).

    Article  PubMed  Google Scholar 

  52. Rzeszutko, Ł. et al. Contemporary use of bioresorbable vascular scaffolds (BVS) in patients with stable angina and acute coronary syndromes. Polish National Registry. Kardiol. Pol. 72, 1394–1399 (2014).

    Article  PubMed  Google Scholar 

  53. Felix, C. M. et al. Mid- to long-term clinical outcomes of patients treated with the everolimus-eluting bioresorbable vascular scaffold: The BVS Expand Registry. JACC Cardiovasc. Interv. 9, 1652–1663 (2016).

    Article  PubMed  Google Scholar 

  54. Dudek, D. et al. Bioresorbable vascular scaffolds in patients with acute coronary syndromes: the POLAR ACS study. Pol. Arch. Med. Wewn. 124, 669–677 (2014).

    PubMed  Google Scholar 

  55. Gori, T. et al. Early outcome after implantation of Absorb bioresorbable drug-eluting scaffolds in patients with acute coronary syndromes. EuroIntervention 9, 1036–1041 (2014).

    Article  PubMed  Google Scholar 

  56. Wiebe, J. et al. Short-term outcome of patients with ST-segment elevation myocardial infarction (STEMI) treated with an everolimus-eluting bioresorbable vascular scaffold. Clin. Res. Cardiol. 103, 141–148 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Kajiya, T. et al. Everolimus-eluting bioresorbable vascular scaffold (BVS) implantation in patients with ST-segment elevation myocardial infarction (STEMI). EuroIntervention 9, 501–504 (2013).

    Article  PubMed  Google Scholar 

  58. Koc˘ka, V. et al. Bioresorbable vascular scaffolds in acute ST-segment elevation myocardial infarction: a prospective multicentre study 'Prague 19'. Eur. Heart J. 35, 787–794 (2014).

    Article  Google Scholar 

  59. Diletti, R. et al. Everolimus-eluting bioresorbable vascular scaffolds for treatment of patients presenting with ST-segment elevation myocardial infarction: BVS STEMI first study. Eur. Heart J. 35, 777–786 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Cortese, B. et al. Clinical comparison with short-term follow-up of bioresorbable vascular scaffold versus everolimus-eluting stent in primary percutaneous coronary interventions. Am. J. Cardiol. 116, 705–710 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Brugaletta, S. et al. Absorb bioresorbable vascular scaffold versus everolimus-eluting metallic stent in ST-segment elevation myocardial infarction: 1-year results of a propensity score matching comparison: the BVS-EXAMINATION study (bioresorbable vascular scaffold-a clinical evaluation of everolimus eluting coronary stents in the treatment of patients with ST-segment elevation myocardial infarction). JACC Cardiovasc. Interv. 8, 189–197 (2015).

    Article  PubMed  Google Scholar 

  62. Goktekin, O. et al. Evaluation of the safety of everolimus-eluting bioresorbable vascular scaffold (BVS) implantation in patients with chronic total coronary occlusions: acute procedural and short-term clinical results. J. Invasive Cardiol. 27, 461–466 (2015).

    PubMed  Google Scholar 

  63. Moscarella, E. et al. Long-term clinical outcomes after bioresorbable vascular scaffold implantation for the treatment of coronary in-stent restenosis: a multicenter italian experience. Circ. Cardiovasc. Interv. 9, e003148 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Gil, R. J. et al. The use of bioresorbable vascular scaffold Absorb BVS® in patients with stable coronary artery disease: one-year results with special focus on the hybrid BVS and DES treatment. Kardiol Pol. 74, 627–633 (2016).

    PubMed  Google Scholar 

  65. de Ribamar Costa, J. et al. Initial results of the FANTOM 1 trial: a first-in-man evaluation of a novel, radiopaque sirolimus-eluting bioresorbable vascular scaffold. J. Am. Coll. Cardiol. 67, 232–232 (2016).

    Article  Google Scholar 

  66. Abizaid, A. Reva Fantom: differentiating features and studies. Presented at: Joint Interventional Meeting, 11–13 Feb 2016, Milan, Italy.

  67. Erbel, R. et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369, 1869–1875 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Haude, M. et al. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet 381, 836–844 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Bouchi, Y. H. & Gogas, B. D. Biocorrodible metals for coronary revascularization: lessons from PROGRESS-AMS, BIOSOLVE-I, and BIOSOLVE-II. Glob. Cardiol. Sci. Pract. 2015, 63 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Waksman, R. The disappearing stent: when plastic replaces metal. Circulation 125, 2291–2294 (2012).

    Article  PubMed  Google Scholar 

  71. Indolfi, C. et al. Smooth muscle cell proliferation is proportional to the degree of balloon injury in a rat model of angioplasty. Circulation 92, 1230–1235 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Lipinski, M. J., Escarcega, R. O., Lhermusier, T. & Waksman, R. The effects of novel, bioresorbable scaffolds on coronary vascular pathophysiology. J. Cardiovasc. Transl Res. 7, 413–425 (2014).

    Article  PubMed  Google Scholar 

  73. Onuma, Y. et al. Intra-coronary optical coherence tomography and histology at 1 month and 2, 3, and 4 years after implantation of everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model: an attempt to decipher the human optical coherence tomography images in the ABSORB trial. Circulation 122, 2288–2300 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Lipinski, M. J. et al. Scaffold thrombosis after percutaneous coronary intervention with ABSORB bioresorbable vascular scaffold a systematic review and meta-analysis. JACC Cardiovasc. Interv. 9, 12–24 (2016).

    Article  PubMed  Google Scholar 

  75. Çiçek, G., Açıkgoz, S. K., Yayla, Ç., Kundi, H. & Íleri, M. Magnesium as a predictor of acute stent thrombosis in patients with ST-segment elevation myocardial infarction who underwent primary angioplasty. Coron. Artery Dis. 27, 47–51 (2016).

    Article  PubMed  Google Scholar 

  76. Fokkema, M. L. et al. Outcome after percutaneous coronary intervention for different indications: long-term results from the Swedish Coronary Angiography and Angioplasty Registry (SCAAR). EuroIntervention 12, 303–311 (2016).

    Article  PubMed  Google Scholar 

  77. Petronio, A. S. 30-day results of the Italian diffuse/multivessel disease ABSORB prospective registry (IT-DISAPPEARS). Presented at: EuroPCR 2016, 17 May 2016, Paris, France.

  78. Cortese, B. 30-day outcome of the Italian ABSORB registry (RAI), a prospective registry of consecutive patients treated with biovascular scaffold. Presented at: EuroPCR 2016, 17 May 2016, Paris, France.

  79. Koning, R. France ABSORB registry: in-hospital and one-month results in 2,000 patients. Presented at: EuroPCR 2016, 17 May 2016, Paris, France.

  80. Serruys, P. W. et al. A polylactide bioresorbable scaffold eluting everolimus for treatment of coronary stenosis: 5-year follow-up. J. Am. Coll. Cardiol. 67, 766–776 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Yahagi, K., Virmani, R. & Kesavamoorthy, B. Very late scaffold thrombosis of everolimus-eluting bioresorbable scaffold following implantation in STEMI after discontinuation of dual antiplatelet therapy. Cardiovasc. Interv Ther. 31 Oct 2015 [epub ahead of print].

  82. Silber, S. et al. Lack of association between dual antiplatelet therapy use and stent thrombosis between 1 and 12 months following resolute zotarolimus-eluting stent implantation. Eur. Heart J. 35, 1949–1956 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Van Geuns, R. J. Effect of DAPT termination at 12 months on very late scaffold thrombosis in regular clinical practice: data on a regional collaboration including 868 patients. Presented at: EuroPCR 2016, 17 May 2016, Paris, France.

  84. Carino, A. et al. Modulation of circulating microRNAs levels during the switch from clopidogrel to ticagrelor. Biomed. Res. Int. 2016, 3968206 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Caiazzo, G. et al. Administration of a loading dose has no additive effect on platelet aggregation during the switch from ongoing clopidogrel treatment to ticagrelor in patients with acute coronary syndrome. Circ. Cardiovasc. Interv. 7, 104–112 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Franchi, F. & Angiolillo, D. J. Novel antiplatelet agents in acute coronary syndrome. Nat. Rev. Cardiol. 12, 30–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Tateishi, H. et al. Edge vascular response after resorption of the everolimus-eluting bioresorbable vascular scaffold — a 5-year serial optical coherence tomography study. Circ. J. 80, 1131–1141 (2016).

    Article  PubMed  Google Scholar 

  88. Dalos, D. et al. Mechanical properties of the everolimus-eluting bioresorbable vascular scaffold compared to the metallic everolimus-eluting stent. BMC Cardiovasc. Disord. 16, 104 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. De Rosa, S. & Indolfi, C. Letter by De Rosa and Indolfi regarding article, “Clinical presentation and outcomes of coronary in-stent restenosis across 3-stent generations”. Circ. Cardiovasc. Interv. 8, e002375 (2015).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.D.R. researched data for the article and wrote the manuscript. All the authors contributed substantially to discussion of content, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Ciro Indolfi.

Ethics declarations

Competing interests

C.I. has received educational grants from Abbott Vascular. S.D.R. and A.C. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indolfi, C., De Rosa, S. & Colombo, A. Bioresorbable vascular scaffolds — basic concepts and clinical outcome. Nat Rev Cardiol 13, 719–729 (2016). https://doi.org/10.1038/nrcardio.2016.151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing