Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Management of patients with familial hypercholesterolaemia

Key Points

  • Familial hypercholesterolaemia (FH), one of the most common genetic disorders, is characterized by lifelong elevated LDL-cholesterol (LDL-C) levels and is associated with increased risk of premature coronary heart disease and death

  • Current FH treatments are often suboptimal; high-intensity statin is an established treatment for patients with FH, but most patients treated with statin monotherapy fail to achieve LDL-C target levels

  • Ezetimibe can be added to statin treatment to achieve LDL-C target levels

  • Apheresis is used with high-intensity statin therapy in patients with homozygous FH or in statin-refractory patients with heterozygous FH, with or without ezetimibe

  • Mipomersen, an inhibitor of apolipoprotein B-100 synthesis, and lomitapide, a microsomal triglyceride transfer protein inhibitor, reduce LDL-C levels when used with high-intensity statin therapy, but both increase liver fat content

  • PCSK9 inhibitors (alirocumab and evolocumab) seem to be the most promising emerging treatment option, are well tolerated, and reduce LDL-C levels further in patients who are already receiving maximally-tolerated statin treatment

Abstract

Familial hypercholesterolaemia (FH) is an autosomal inherited disorder characterized by markedly elevated LDL-cholesterol (LDL-C) levels and an increased risk of premature atherosclerotic cardiovascular disease. Although FH is one of the most common genetic disorders, this disorder remains mostly undetected and its management is often suboptimal. High-intensity statins are standard treatment for patients with FH, but LDL-C levels in most patients treated with statin monotherapy remain above those recommended by guidelines. Combination therapy to lower LDL-C levels further—such as treatment with statins plus ezetimibe—has been successful, and combination of apheresis with high-intensity statin treatment is used in patients with homozygous FH and in those with heterozygous FH who are statin-refractory. Mipomersen, an inhibitor of apolipoprotein B-100 synthesis, and lomitapide, a microsomal triglyceride transfer protein inhibitor, reduce LDL-C levels further when added to high-intensity statin treatment in homozygous FH, but both have important adverse effects, such as increasing liver fat content. At present, PCSK9 inhibition (with alirocumab or evolocumab) is well tolerated and reduces LDL-C levels considerably in patients receiving the maximally tolerated statin treatment, and seems the most promising emerging treatment option. Nevertheless, data from outcome trials with hard end points for PCSK9 inhibitors, mipomersen, and lomitapide are still needed before these therapies become standard for patients with FH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mipomersen—mode of action.
Figure 2: Lomitapide—mode of action.
Figure 3: PCSK9 inhibitors—mode of action.

Similar content being viewed by others

References

  1. Nordestgaard, B. G. et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur. Heart J. 34, 3478–3490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. WHO. International Classification of Diseases (ICD) [online], (2015).

  3. Brown, M. S. & Goldstein, J. L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Goldstein, J. L. & Brown, M. S. Familial hypercholesterolemia: identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity associated with overproduction of cholesterol. Proc. Natl Acad. Sci. USA 70, 2804–2808 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown, M. S. & Goldstein, J. L. Familial hypercholesterolemia: defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Proc. Natl Acad. Sci. USA 71, 788–792 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leiden Open (source) Variation Database (LOVD). Low-density lipoprotein receptor [online], (2011).

  7. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Soutar, A. K., Naoumova, R. P. & Traub, L. M. Genetics, clinical phenotype, and molecular cell biology of autosomal recessive hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 23, 1963–1970 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Tada, H. et al. Autosomal recessive hypercholesterolemia: a mild phenotype of familial hypercholesterolemia: insight from the kinetic study using stable isotope and animal studies. J. Atheroscler. Thromb. 22, 1–9 (2015).

    Article  PubMed  Google Scholar 

  10. Scientific Steering Committee on behalf of the Simon Broome Register Group. Risk of fatal coronary heart disease in familial hypercholesterolaemia. BMJ 303, 893–896 (1991).

  11. Williams, R. R. et al. Diagnosing heterozygous familial hypercholesterolemia using new practical criteria validated by molecular genetics. Am. J. Cardiol. 72, 171–176 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. WHO Familial Hypercholesterolemia Consultation Group. Familial Hypercholesterolemia. Report of a WHO Consultation [online], (1998).

  13. Defesche, J. C. et al. Advanced method for the identification of patients with inherited hypercholesterolemia. Semin. Vasc. Med. 4, 59–65 (2004).

    Article  PubMed  Google Scholar 

  14. Weng, S. F. et al. Improving identification of familial hypercholesterolaemia in primary care: derivation and validation of the familial hypercholesterolaemia case ascertainment tool (FAMCAT). Atherosclerosis 238, 336–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Ademi, Z. et al. Cascade screening based on genetic testing is cost-effective: evidence for the implementation of models of care for familial hypercholesterolemia. Clin. Lipidol. 8, 390–400 (2014).

    Article  Google Scholar 

  16. Bell, D. A. et al. Effectiveness of genetic cascade screening for familial hypercholesterolaemia using a centrally co-ordinated clinical service: an Australian experience. Atherosclerosis 239, 93–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Jannes, C. E. et al. Familial hypercholesterolemia in Brazil: cascade screening program, clinical and genetic aspects. Atherosclerosis 238, 101–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. George, R., Kovak, K. & Cox, S. L. Aligning policy to promote cascade genetic screening for prevention and early diagnosis of heritable diseases. J. Genet. Couns. 24, 388–399 (2015).

    Article  PubMed  Google Scholar 

  19. Taylor, A. et al. Mutation detection rate and spectrum in familial hypercholesterolaemia patients in the UK pilot cascade project. Clin. Genet. 77, 572–580 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Whittall, R. A. et al. Development of a high-resolution melting method for mutation detection in familial hypercholesterolaemia patients. Ann. Clin. Biochem. 47, 44–55 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Pec´in, I. et al. Mutation detection in Croatian patients with familial hypercholesterolemia. Ann. Hum. Genet. 77, 22–30 (2013).

    Article  CAS  Google Scholar 

  22. Benn, M. et al. Familial hypercholesterolemia in the Danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication. J. Clin. Endocrinol. Metab. 97, 3956–3964 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Cuchel, M. et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 35, 2146–2157 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Widhalm, K. et al. Sudden death in a 4-year-old boy: a near-complete occlusion of the coronary artery caused by an aggressive lipoprotein receptor mutation (W556R) in homozygous familial hypercholesterolemia. J. Pediatr. 158, 167 (2011).

    Article  PubMed  Google Scholar 

  25. De Backer, G. et al. Prevalence and management of familial hypercholesterolaemia in coronary patients: an analysis of EUROASPIRE IV. Atherosclerosis 241, 169–175 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Mundal, L. et al. Mortality among patients with familial hypercholesterolemia: a registry-based study in Norway, 1992–2010. J. Am. Heart Assoc. 3, e001236 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Reiner, Ž. et al. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 32, 1769–1818 (2011).

    Article  PubMed  Google Scholar 

  28. Reiner, Ž. New ESC/EAS Guidelines for the management of dyslipidaemias—any controversies behind the consensus? Eur. J. Cardiovasc. Prev. Rehabil. 18, 724–727 (2011).

    Article  PubMed  Google Scholar 

  29. Perk, J. et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). Eur. Heart J. 33, 1635–1701 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Stone, N. J. et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129, S1–S45 (2014).

    Article  PubMed  Google Scholar 

  31. Reiner, Ž. A comparison of European and US guidelines for familial hypercholesterolemia. Curr. Opin. Lipidol. 26, 215–220 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Jansen, A. C. et al. The contribution of classical risk factors to cardiovascular disease in familial hypercholesterolaemia: data in 2400 patients. J. Intern. Med. 256, 482–490 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Reiner, Ž. Statins in the primary prevention of cardiovascular disease. Nat. Rev. Cardiol. 10, 453–464 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Versmissen, J. et al. Efficacy of statins in familial hypercholesterolaemia: a long term cohort study. BMJ 337, a2423 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Neil, A. et al. Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolaemia: a prospective registry study. Eur. Heart J. 29, 2625–2633 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Elis, A., Zhou, R. & Stein, E. A. Effect of lipid-lowering treatment on natural history of heterozygous familial hypercholesterolemia in past three decades. Am. J. Cardiol. 108, 223–226 (2011).

    Article  PubMed  Google Scholar 

  37. Smilde, T. J. et al. Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial. Lancet 357, 577–581 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Raal, F. J. et al. Reduction in mortality in subjects with homozygous familial hypercholesterolemia associated with advances in lipid-lowering therapy. Circulation 124, 2202–2207 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Marais, A. D., Firth, J. C. & Blom, D. J. Homozygous familial hypercholesterolemia and its management. Semin. Vasc. Med. 4, 43–50 (2004).

    Article  PubMed  Google Scholar 

  40. Reiner, Ž. Managing the residual cardiovascular disease risk associated with HDL-cholesterol and triglycerides in statin-treated patients: a clinical update. Nutr. Metab. Cardiovasc. Dis. 23, 799–807 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Šimic´, I. & Reiner, Ž. Adverse effects of statins—myths and reality. Curr. Pharm. Des. 21, 218–225 (2015).

    Article  CAS  Google Scholar 

  42. Preiss, D. et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA 305, 2556–2564 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Skoumas, J. et al. Statin therapy and risk of diabetes in patients with heterozygous familial hypercholesterolemia or familial combined hyperlipidemia. Atherosclerosis 237, 140–145 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Pijlman, A. H. et al. Evaluation of cholesterol lowering treatment of patients with familial hypercholesterolemia: a large cross-sectional study in The Netherlands. Atherosclerosis 209, 189–194 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Galema-Boers, J. M. et al. Predicting non-adherence in patients with familial hypercholesterolemia. Eur. J. Clin. Pharmacol. 70, 391–397 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Reiner, Ž., Sonicki, Z. & Tedeschi-Reiner, E. Public perceptions of cardiovascular risk factors in Croatia: the PERCRO survey. Prev. Med. 51, 494–496 (2010).

    Article  PubMed  Google Scholar 

  47. Reiner, Ž., Sonicki, Z. & Tedeschi-Reiner, E. Physicians' perception, knowledge and awareness of cardiovascular risk factors and adherence to prevention guidelines: the PERCRO-DOC survey. Atherosclerosis 213, 598–603 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Reiner, Ž. & Tedeschi-Reiner, E. Prevalence and types of persistent dyslipidemia in patients treated with statins. Croat. Med. J. 54, 339–345 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reiner, Ž. Resistance and intolerance to statins. Nutr. Metab. Cardiovasc. Dis. 24, 1057–1066 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Reiner, Ž. Combined therapy in the treatment of dyslipidemia. Fundam. Clin. Pharmacol. 24, 19–28 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Blazing, M. A. et al. Evaluating cardiovascular event reduction with ezetimibe as an adjunct to simvastatin in 18,144 patients after acute coronary syndromes: final baseline characteristics of the IMPROVE-IT study population. Am. Heart J. 168, 205–212 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Cannon, C. P. et al. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med. http://dx.doi.org/10.1056/NEJMoa1410489.

  53. Kastelein, J. J. et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N. Engl. J. Med. 358, 1431–1443 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Gagne, C., Gaudet, D. & Bruckert E. Efficacy and safety of ezetimibe coadministered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia. Circulation 105, 2469–2475 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Tuteja, S. et al. Simvastatin-ezetimibe-induced hepatic failure necessitating liver transplantation. Pharmacotherapy 28, 1188–1193 (2008).

    Article  PubMed  Google Scholar 

  56. Castellote, J. et al. Serious drug-induced liver disease secondary to ezetimibe. World J. Gastroenterol. 14, 5098–5099 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Witztum, J. L. et al. Intensive combination drug therapy of familial hypercholesterolemia with lovastatin, probucol, and colestipol hydrochloride. Circulation 79, 16–28 (1989).

    Article  CAS  PubMed  Google Scholar 

  58. Wendelhag, I., Wiklund, O. & Wikstrand, J. Intima-media thickness after cholesterol lowering in familial hypercholesterolemia. A three-year ultrasound study of common carotid and femoral arteries. Atherosclerosis 117, 225–236 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Kajinami, K. et al. Low-density lipoprotein receptor genotype-dependent response to cholesterol lowering by combined pravastatin and cholestyramine in familial hypercholesterolemia. Am. J. Cardiol. 82, 113–117 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Kawashiri, M. A. et al. Efficacy of colestimide coadministered with atorvastatin in japanese patients with heterozygous familial hypercholesterolemia (FH). Circ. J. 69, 515–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Davidson M. The efficacy of colesevelam HCl in the treatment of heterozygous familial hypercholesterolemia in pediatric and adult patients. Clin. Ther. 35, 1247–1252 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Huijgen, R. et al. Colesevelam added to combination therapy with a statin and ezetimibe in patients with familial hypercholesterolemia: a 12-week, multicenter, randomized, double-blind, controlled trial. Clin Ther. 32, 615–625 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Stein, E. A. et al. Colesevelam hydrochloride: efficacy and safety in pediatric subjects with heterozygous familial hypercholesterolemia. J. Pediatr. 156, 231–236 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Thompson, G. R. et al. Recommendations for the use of LDL apheresis. Atherosclerosis 98, 247–255 (2008).

    Article  CAS  Google Scholar 

  65. Koga, N. The retardation of progression, stabilization, and regression of coronary and carotid atherosclerosis by low-density lipoprotein apheresis in patients with familial hypercholesterolemia. J. Intern. Med. 246, 35–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. van Buuren, F. et al. HELP apheresis in hypercholesterolemia and cardiovascular disease: efficacy and adverse events after 8,500 procedures. Clin. Res. Cardiol. 7, 24–30 (2012).

    Google Scholar 

  67. Thompson, G. R. The evidence-base for the efficacy of lipoprotein apheresis in combating cardiovascular disease. Atheroscler. Suppl. 14, 67–70 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Schuff-Werner, P., Fenger, S. & Kohlschein, P. Role of lipid apheresis in changing times. Clin. Res. Cardiol. Suppl. 7, 7–14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dumic´, M. et al. Three-year-old boy—a homozygote for familiar hypercholesterolemia [Croatian]. Lijec. Vjesn. 129, 130–133 (2007).

    PubMed  Google Scholar 

  70. Hudgins, L. C. et al. Long-term safety and efficacy of low-density lipoprotein apheresis in childhood for homozygous familial hypercholesterolemia. Am. J. Cardiol. 102, 1199–1204 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Stefanutti, C. & Julius, U. Lipoprotein apheresis: state of the art and novelties. Atheroscler. Suppl. 14, 19–27 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Raal, F. J. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375, 998–1006 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. McGowan, M. P. et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS ONE 7, e49006 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thomas, G. S. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, reduces atherogenic lipoproteins in patients with severe hypercholesterolemia at high cardiovascular risk: a randomized, double-blind, placebo-controlled trial. J. Am. Coll. Cardiol. 62, 2178–2184 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Stein, E. A. et al. Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, double-blind, placebo-controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease. Circulation 126, 2283–2292 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Cuchel, M. et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N. Engl. J. Med. 356, 148–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Cuchel, M. et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet 381, 40–46 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Raal, F. J. Lomitapide for homozygous familial hypercholesterolaemia. Lancet 381, 7–8 (2013).

    Article  PubMed  Google Scholar 

  79. Tuteja, S. et al. Pharmacokinetic interactions of the microsomal triglyceride transfer protein inhibitor, lomitapide, with drugs commonly used in the management of hypercholesterolemia. Pharmacotherapy 34, 227–239 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr . & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. McKenney, J. M. et al. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J. Am. Coll. Cardiol. 59, 2344–2353 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Stein, E. A. et al. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet 380, 29–36 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Gaudet, D. et al. Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am. J. Cardiol. 114, 711–715 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Koren, M. J. et al. Safety and efficacy of alirocumab 150 mg every 2 weeks, a fully human proprotein convertase subtilisin/kexin type 9 monoclonal antibody: a phase II pooled analysis. Postgrad. Med. 22, 1–8 (2015).

    Google Scholar 

  85. Kastelein, J. J. et al. Efficacy and safety of alirocumab in patients with heterozygous familial hypercholesterolemia not adequately controlled with current lipid-lowering therapy: design and rationale of the ODYSSEY FH studies. Cardiovasc. Drugs Ther. 28, 281–289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Robinson, J. G. et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 372, 1489–1499 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Dias, C. S. et al. Effects of AMG 145 on low-density lipoprotein cholesterol levels: results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J. Am. Coll. Cardiol. 60, 1888–1898 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Raal, F. et al. Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the Reduction of LDL-C with PCSK9 Inhibition in Heterozygous Familial Hypercholesterolemia Disorder (RUTHERFORD) randomized trial. Circulation 126, 2408–2417 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Stein, E. A. et al. Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation 128, 2113–2120 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Raal, F. J. et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet 385, 331–340 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Raal, F. J. et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet 385, 341–350 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Sabatine, M. S. et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 372, 1500–1509 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. US National Institutes of Health. ClinicalTrials.gov [online], (2015).

  94. Ballantyne, C. M. et al. Results of bococizumab, a monoclonal antibody against proprotein convertase subtilisin/kexin type 9, from a randomized, placebo-controlled, dose-ranging study in statin-treated subjects with hypercholesterolemia. Am. J. Cardiol. 115, 1212–1221 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Schwartz, G. G. et al. Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial. Am. Heart J. 168, 682–689 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. US National Institutes of Health. ClinicalTrials.gov [online], (2015).

  97. Bilheimer, D. W. et al. Liver transplantation to provide low-density-lipoprotein receptors and lower plasma cholesterol in a child with homozygous familial hypercholesterolemia. N. Engl. J. Med. 311, 1658–1664 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Starzl, T. E. et al. Heart-liver transplantation in a patient with familial hypercholesterolaemia. Lancet 1, 1382–1383 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hoeg, J. M., Starzl, T. E. & Brewer, H. B. Jr. Liver transplantation for treatment of cardiovascular disease: comparison with medication and plasma exchange in homozygous familial hypercholesterolemia. Am. J. Cardiol. 59, 705–707 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Maiorana, A. et al. Preemptive liver transplantation in a child with familial hypercholesterolemia. Pediatr. Transplant. 15, E25–E29 (2011).

    Google Scholar 

  101. Al-Allaf, F. A. et al. LDLR-gene therapy for familial hypercholesterolaemia: problems, progress, and perspectives. Int. Arch. Med. 3, 36 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Grossman, M. et al. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nat. Genet. 6, 335–341 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Grossman, M. et al. A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia. Nat. Med. 1, 1148–1154 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Nomura, S. et al. Low-density lipoprotein receptor gene therapy using helper-dependent adenovirus produces long-term protection against atherosclerosis in a mouse model of familial hypercholesterolemia. Gene Ther. 11, 1540–1548 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Oka, K. et al. Gene therapy for rhesus monkeys heterozygous for LDL receptor deficiency by balloon catheter hepatic delivery of helper-dependent adenoviral vector. Gene Ther. 22, 87–95 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Berenson, G. S. et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N. Engl. J. Med. 338, 1650–1656 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics 128, S213–S256 (2011).

  108. Reiner, Ž. The impact of early evidence of atherosclerotic changes on early treatment in children with familial hypercholesterolemia. Circ. Res. 114, 233–235 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Kusters, D. M. et al. Design and baseline data of a pediatric study with rosuvastatin in familial hypercholesterolemia. J. Clin. Lipidol. 7, 408–413 (2013).

    Article  PubMed  Google Scholar 

  110. Pang, J. et al. Significant gaps in awareness of familial hypercholesterolemia among physicians in selected Asia-Pacific countries: a pilot study. J. Clin. Lipidol. 9, 42–48 (2015).

    Article  PubMed  Google Scholar 

  111. WHO Human Genetics Programme. Familial hypercholesterolaemia (FH): report of a second WHO consultation [online], (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Željko Reiner.

Ethics declarations

Competing interests

Ž.R. has received honoraria and is an advisory board member for Sanofi Aventis.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiner, Ž. Management of patients with familial hypercholesterolaemia. Nat Rev Cardiol 12, 565–575 (2015). https://doi.org/10.1038/nrcardio.2015.92

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.92

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing