Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis

An Erratum to this article was published on 03 December 2015

This article has been updated

Key Points

  • Atherosclerosis develops mainly at branching points of large-sized and medium-sized arteries, where flow turbulence triggers chronic endothelial injury

  • MicroRNAs (miRNAs) regulate endothelial regeneration at athero-susceptible sites by linking proliferative and inflammatory responses

  • The endothelial proliferative reserve is controlled by flow-regulated miRNAs and determines endothelial regeneration processes in response to additional injuries (such as hyperlipidaemia or oxidative stress)

  • miRNA expression in macrophages drives the switch from anti-inflammatory to proinflammatory phenotypes and contributes to chronic inflammation in atherosclerotic plaques

  • Inhibition or overexpression of specific miRNAs is a promising treatment strategy for atherosclerosis

Abstract

Atherosclerosis is characterised by the accumulation of lipid-laden macrophages in atherosclerotic lesions and occurs preferentially at arterial branching points, which are prone to inflammation during hyperlipidaemic stress. The increased susceptibility at branching sites of arteries is attributable to poor adaptation of arterial endothelial cells to disturbed blood flow. In the past 5 years, several studies have provided mechanistic insights into the regulatory roles of microRNAs (miRNAs) in inflammatory activation, proliferation, and regeneration of endothelial cells during this maladaptive process. The intercellular transfer of vesicle-bound miRNAs contributes to arterial homeostasis, and the combinatorial effect of multiple miRNAs controls the unresolved inflammation orchestrated by macrophages in atherosclerotic lesions. In this Review, we highlight the miRNA-dependent regulation of the endothelial phenotype and the proliferative reserve that occurs in response to altered haemodynamic conditions as a prerequisite for atherogenic inflammation. In particular, we discuss the regulation of transcriptional modules by miRNAs and the protective role of complementary strand pairs, which encompasses remote miRNA signalling. In addition, we review the roles of miRNA tandems and describe the relevance of RNA target selection and competition to the behaviour of lesional macrophages. Elucidating miRNA-mediated regulatory mechanisms can aid the development of novel diagnostic and therapeutic strategies for atherosclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Important signalling pathways in the maladaptive response of endothelial cells to disturbed flow.
Figure 2: The two-hit model of endothelial damage and repair in atherosclerosis.
Figure 3: miRNA interactome in endothelial cells exposed to disturbed flow.
Figure 4: miRNAs control the inflammatory response and cholesterol metabolism in macrophages.

Similar content being viewed by others

Change history

  • 03 December 2015

    In the version of this article initially published online and in print, the mechanisms by which microRNA 146a modulates post-transcriptional proinflammatory pathways were incorrectly described on page 368. The error has been corrected for the print, HTML, and PDF versions of the article.

References

  1. Strong, J. P. et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 281, 727–735 (1999).

    CAS  PubMed  Google Scholar 

  2. Stary, H. C. The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life. Eur. Heart J. 11 (Suppl. E), 3–19 (1990).

    PubMed  Google Scholar 

  3. Zarins, C. K. et al. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53, 502–514 (1983).

    CAS  PubMed  Google Scholar 

  4. Kwak, B. R. et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur. Heart J. 35, 3013–3020 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bjorkerud, S. & Bondjers, G. Endothelial integrity and viability in the aorta of the normal rabbit and rat as evaluated with dye exclusion tests and interference contrast microscopy. Atherosclerosis 15, 285–300 (1972).

    CAS  PubMed  Google Scholar 

  6. Hansson, G. K. & Schwartz, S. M. Evidence for cell death in the vascular endothelium in vivo and in vitro. Am. J. Pathol. 112, 278–286 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sakao, S. et al. Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. FASEB J. 19, 1178–1180 (2005).

    CAS  PubMed  Google Scholar 

  8. Tardy, Y., Resnick, N., Nagel, T., Gimbrone, M. A. Jr & Dewey, C. F. Jr. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler. Thromb. Vasc. Biol. 17, 3102–3106 (1997).

    CAS  PubMed  Google Scholar 

  9. Hajra, L. et al. The NF-κB signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc. Natl Acad. Sci. USA 97, 9052–9057 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jongstra-Bilen, J. et al. Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J. Exp. Med. 203, 2073–2083 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Warboys, C. M. et al. Disturbed flow promotes endothelial senescence via a p53-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 34, 985–995 (2014).

    CAS  PubMed  Google Scholar 

  12. Lin, S. J., Jan, K. M. & Chien, S. Role of dying endothelial cells in transendothelial macromolecular transport. Arteriosclerosis 10, 703–709 (1990).

    CAS  PubMed  Google Scholar 

  13. Foteinos, G., Hu, Y., Xiao, Q., Metzler, B. & Xu, Q. Rapid endothelial turnover in atherosclerosis-prone areas coincides with stem cell repair in apolipoprotein E-deficient mice. Circulation 117, 1856–1863 (2008).

    PubMed  Google Scholar 

  14. Sata, M. & Walsh, K. Oxidized LDL activates fas-mediated endothelial cell apoptosis. J. Clin. Invest. 102, 1682–1689 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dimmeler, S., Haendeler, J., Galle, J. & Zeiher, A. M. Oxidized low-density lipoprotein induces apoptosis of human endothelial cells by activation of CPP32-like proteases. A mechanistic clue to the 'response to injury' hypothesis. Circulation 95, 1760–1763 (1997).

    CAS  PubMed  Google Scholar 

  16. Chen, C. H. et al. Oxidized low-density lipoproteins inhibit endothelial cell proliferation by suppressing basic fibroblast growth factor expression. Circulation 101, 171–177 (2000).

    CAS  PubMed  Google Scholar 

  17. Rong, J. X. et al. Arterial injury by cholesterol oxidation products causes endothelial dysfunction and arterial wall cholesterol accumulation. Arterioscler. Thromb. Vasc. Biol. 18, 1885–1894 (1998).

    CAS  PubMed  Google Scholar 

  18. Robbins, C. S. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 19, 1166–1172 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, S. C. et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 15, 846–855 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J. & Glass, C. K. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391, 79–82 (1998).

    CAS  PubMed  Google Scholar 

  21. Nagy, L., Tontonoz, P., Alvarez, J. G., Chen, H. & Evans, R. M. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell 93, 229–240 (1998).

    CAS  PubMed  Google Scholar 

  22. Zhou, J., Lhotak, S., Hilditch, B. A. & Austin, R. C. Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 111, 1814–1821 (2005).

    CAS  PubMed  Google Scholar 

  23. Sun, Y. et al. Free cholesterol accumulation in macrophage membranes activates Toll-like receptors and p38 mitogen-activated protein kinase and induces cathepsin K. Circ. Res. 104, 455–465 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fessler, M. B. & Parks, J. S. Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling. J. Immunol. 187, 1529–1535 (2011).

    CAS  PubMed  Google Scholar 

  25. Yvan-Charvet, L. et al. Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation 118, 1837–1847 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu, X. et al. Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages. J. Biol. Chem. 283, 22930–22941 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu, X. et al. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J. Lipid Res. 51, 3196–3206 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shenderov, K. et al. Cutting edge: Endoplasmic reticulum stress licenses macrophages to produce mature IL-1β in response to TLR4 stimulation through a caspase-8- and TRIF-dependent pathway. J. Immunol. 192, 2029–2033 (2014).

    CAS  PubMed  Google Scholar 

  29. Seimon, T. A. et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab. 12, 467–482 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10, 36–46 (2010).

    CAS  PubMed  Google Scholar 

  31. Nazari-Jahantigh, M., Wei, Y. & Schober, A. The role of microRNAs in arterial remodelling. Thromb. Haemost. 107, 611–618 (2012).

    CAS  PubMed  Google Scholar 

  32. Fernandez-Hernando, C., Ramirez, C. M., Goedeke, L. & Suarez, Y. MicroRNAs in metabolic disease. Arterioscler. Thromb. Vasc. Biol. 33, 178–185 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Norata, G. D., Sala, F., Catapano, A. L. & Fernandez-Hernando, C. MicroRNAs and lipoproteins: a connection beyond atherosclerosis? Atherosclerosis 227, 209–215 (2013).

    CAS  PubMed  Google Scholar 

  34. Rayner, K. J. & Hennessy, E. J. Extracellular communication via microRNA: lipid particles have a new message. J. Lipid Res. 54, 1174–1181 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wei, Y., Schober, A. & Weber, C. Pathogenic arterial remodeling: the good and bad of microRNAs. Am. J. Physiol. Heart Circ. Physiol. 304, H1050–H1059 (2013).

    CAS  PubMed  Google Scholar 

  36. Parmar, K. M. et al. Integration of flow-dependent endothelial phenotypes by Krüppel-like factor 2. J. Clin. Invest. 116, 49–58 (2006).

    CAS  PubMed  Google Scholar 

  37. Atkins, G. B. & Jain, M. K. Role of Krüppel-like transcription factors in endothelial biology. Circ. Res. 100, 1686–1695 (2007).

    CAS  PubMed  Google Scholar 

  38. Dai, G. et al. Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelial redox balance via phosphoinositol 3-kinase/Akt-dependent activation of Nrf2. Circ. Res. 101, 723–733 (2007).

    CAS  PubMed  Google Scholar 

  39. Zakkar, M. et al. Activation of Nrf2 in endothelial cells protects arteries from exhibiting a proinflammatory state. Arterioscler. Thromb. Vasc. Biol. 29, 1851–1857 (2009).

    CAS  PubMed  Google Scholar 

  40. Abe, J. & Berk, B. C. Novel mechanisms of endothelial mechanotransduction. Arterioscler. Thromb. Vasc. Biol. 34, 2378–2386 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Doddaballapur, A. et al. Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler. Thromb. Vasc. Biol. 35, 137–145 (2015).

    CAS  PubMed  Google Scholar 

  42. Le, N. T. et al. A crucial role for p90RSK-mediated reduction of ERK5 transcriptional activity in endothelial dysfunction and atherosclerosis. Circulation 127, 486–499 (2013).

    CAS  PubMed  Google Scholar 

  43. Ohnesorge, N. et al. Erk5 activation elicits a vasoprotective endothelial phenotype via induction of Krüppel-like factor 4 (KLF4). J. Biol. Chem. 285, 26199–26210 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou, G. et al. Endothelial Krüppel-like factor 4 protects against atherothrombosis in mice. J. Clin. Invest. 122, 4727–4731 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hamik, A. et al. Krüppel-like factor 4 regulates endothelial inflammation. J. Biol. Chem. 282, 13769–13779 (2007).

    CAS  PubMed  Google Scholar 

  46. Dimmeler, S., Assmus, B., Hermann, C., Haendeler, J. & Zeiher, A. M. Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells: involvement in suppression of apoptosis. Circ. Res. 83, 334–341 (1998).

    CAS  PubMed  Google Scholar 

  47. Shay-Salit, A. et al. VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc. Natl Acad. Sci. USA 99, 9462–9467 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Iurlaro, M. et al. VE-cadherin expression and clustering maintain low levels of survivin in endothelial cells. Am. J. Pathol. 165, 181–189 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gelfand, B. D. et al. Hemodynamic activation of β-catenin and T-cell-specific transcription factor signaling in vascular endothelium regulates fibronectin expression. Arterioscler. Thromb. Vasc. Biol. 31, 1625–1633 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Grazia Lampugnani, M. et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, β-catenin, and the phosphatase DEP-1/CD148. J. Cell Biol. 161, 793–804 (2003).

    PubMed  Google Scholar 

  51. Akimoto, S., Mitsumata, M., Sasaguri, T. & Yoshida, Y. Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21 (Sdi1/Cip1/Waf1). Circ. Res. 86, 185–190 (2000).

    CAS  PubMed  Google Scholar 

  52. Lin, K. et al. Molecular mechanism of endothelial growth arrest by laminar shear stress. Proc. Natl Acad. Sci. USA 97, 9385–9389 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ando, J., Nomura, H. & Kamiya, A. The effect of fluid shear stress on the migration and proliferation of cultured endothelial cells. Microvasc. Res. 33, 62–70 (1987).

    CAS  PubMed  Google Scholar 

  54. Vyalov, S., Langille, B. L. & Gotlieb, A. I. Decreased blood flow rate disrupts endothelial repair in vivo. Am. J. Pathol. 149, 2107–2118 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hansson, G. K., Chao, S., Schwartz, S. M. & Reidy, M. A. Aortic endothelial cell death and replication in normal and lipopolysaccharide-treated rats. Am. J. Pathol. 121, 123–127 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Civelek, M., Manduchi, E., Riley, R. J., Stoeckert, C. J. Jr & Davies, P. F. Chronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis. Circ. Res. 105, 453–461 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Feaver, R. E., Hastings, N. E., Pryor, A. & Blackman, B. R. GRP78 upregulation by atheroprone shear stress via p38-, α2β1-dependent mechanism in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28, 1534–1541 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zeng, L. et al. Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow. Proc. Natl Acad. Sci. USA 106, 8326–8331 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chaudhury, H. et al. c-Jun N-terminal kinase primes endothelial cells at atheroprone sites for apoptosis. Arterioscler. Thromb. Vasc. Biol. 30, 546–553 (2010).

    CAS  PubMed  Google Scholar 

  60. Cuhlmann, S. et al. Disturbed blood flow induces RelA expression via c-Jun N-terminal kinase 1: a novel mode of NF-κB regulation that promotes arterial inflammation. Circ. Res. 108, 950–959 (2011).

    CAS  PubMed  Google Scholar 

  61. Tzima, E. et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426–431 (2005).

    CAS  PubMed  Google Scholar 

  62. Partridge, J. et al. Laminar shear stress acts as a switch to regulate divergent functions of NF-κB in endothelial cells. FASEB J. 21, 3553–3561 (2007).

    CAS  PubMed  Google Scholar 

  63. Gareus, R. et al. Endothelial cell-specific NF-κB inhibition protects mice from atherosclerosis. Cell Metab. 8, 372–383 (2008).

    CAS  PubMed  Google Scholar 

  64. Hasegawa, Y. et al. Blockade of the nuclear factor-κB pathway in the endothelium prevents insulin resistance and prolongs life spans. Circulation 125, 1122–1133 (2012).

    CAS  PubMed  Google Scholar 

  65. Boekholdt, S. M. et al. Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta-analysis of statin trials. J. Am. Coll. Cardiol. 64, 485–494 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. McCullagh, K. G. Arteriosclerosis in the African elephant. I. Intimal atherosclerosis and its possible causes. Atherosclerosis 16, 307–335 (1972).

    CAS  PubMed  Google Scholar 

  67. Thompson, R. C. et al. Atherosclerosis across 4,000 years of human history: the Horus study of four ancient populations. Lancet 381, 1211–1222 (2013).

    PubMed  Google Scholar 

  68. Harris, T. A., Yamakuchi, M., Ferlito, M., Mendell, J. T. & Lowenstein, C. J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl Acad. Sci. USA 105, 1516–1521 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Qin, X. et al. MicroRNA-19a mediates the suppressive effect of laminar flow on cyclin D1 expression in human umbilical vein endothelial cells. Proc. Natl Acad. Sci. USA 107, 3240–3244 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, K. C. et al. Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. Proc. Natl Acad. Sci. USA 107, 3234–3239 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Son, D. J. et al. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat. Commun. 4, 3000 (2013).

    PubMed  Google Scholar 

  72. Hergenreider, E. et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat. Cell Biol. 14, 249–256 (2012).

    CAS  PubMed  Google Scholar 

  73. Wang, K. C. et al. MicroRNA-23b regulates cyclin-dependent kinase-activating kinase complex through cyclin H repression to modulate endothelial transcription and growth under flow. Arterioscler. Thromb. Vasc. Biol. 34, 1437–1445 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Fang, Y., Shi, C., Manduchi, E., Civelek, M. & Davies, P. F. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc. Natl Acad. Sci. USA 107, 13450–13455 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Loyer, X. et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ. Res. 114, 434–443 (2014).

    CAS  PubMed  Google Scholar 

  76. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    CAS  PubMed  Google Scholar 

  77. Spiegelman, V. S. et al. Induction of β-transducin repeat-containing protein by JNK signaling and its role in the activation of NF-κB. J. Biol. Chem. 276, 27152–27158 (2001).

    CAS  PubMed  Google Scholar 

  78. Wu, C. & Ghosh, S. β-TrCP mediates the signal-induced ubiquitination of IκBβ. J. Biol. Chem. 274, 29591–29594 (1999).

    CAS  PubMed  Google Scholar 

  79. Sun, X. et al. Systemic delivery of microRNA-181b inhibits nuclear factor-κB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circ. Res. 114, 32–40 (2014).

    CAS  PubMed  Google Scholar 

  80. Sun, X. et al. MicroRNA-181b regulates NF-κB-mediated vascular inflammation. J. Clin. Invest. 122, 1973–1990 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhou, J. et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc. Natl Acad. Sci. USA 108, 10355–10360 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu, W. et al. Flow-dependent regulation of Krüppel-like factor 2 is mediated by microRNA-92a. Circulation 124, 633–641 (2011).

    CAS  PubMed  Google Scholar 

  83. Fang, Y. & Davies, P. F. Site-specific microRNA-92a regulation of Krüppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler. Thromb. Vasc. Biol. 32, 979–987 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ni, C. W., Hsieh, H. J., Chao, Y. J. & Wang, D. L. Interleukin-6-induced JAK2/STAT3 signaling pathway in endothelial cells is suppressed by hemodynamic flow. Am. J. Physiol. Cell Physiol. 287, C771–C780 (2004).

    CAS  PubMed  Google Scholar 

  85. Schmitt, M. M. et al. Endothelial junctional adhesion molecule-a guides monocytes into flow-dependent predilection sites of atherosclerosis. Circulation 129, 66–76 (2014).

    CAS  PubMed  Google Scholar 

  86. Bosse, G. D. et al. The decapping scavenger enzyme DCS-1 controls microRNA levels in Caenorhabditis elegans. Mol. Cell 50, 281–287 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Orban, T. I. & Izaurralde, E. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA 11, 459–469 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ni, C. W., Qiu, H. & Jo, H. MicroRNA-663 upregulated by oscillatory shear stress plays a role in inflammatory response of endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 300, H1762–H1769 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Daniel, J.-M. et al. Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury. Cardiovasc. Res. 103, 564–572 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Iaconetti, C. et al. Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res. Cardiol. 107, 296 (2012).

    PubMed  Google Scholar 

  91. Fan, W. et al. Shear-sensitive microRNA-34a modulates flow-dependent regulation of endothelial inflammation. J. Cell Sci. 128, 70–80 (2015).

    CAS  PubMed  Google Scholar 

  92. Ito, T., Yagi, S. & Yamakuchi, M. MicroRNA-34a regulation of endothelial senescence. Biochem. Biophys. Res. Commun. 398, 735–740 (2010).

    CAS  PubMed  Google Scholar 

  93. Menghini, R. et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120, 1524–1532 (2009).

    CAS  PubMed  Google Scholar 

  94. Gracia-Sancho, J., Villarreal, G. Jr, Zhang, Y. & Garcia-Cardena, G. Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype. Cardiovasc. Res. 85, 514–519 (2010).

    CAS  PubMed  Google Scholar 

  95. Yeung, F. et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zu, Y. et al. SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ. Res. 106, 1384–1393 (2010).

    CAS  PubMed  Google Scholar 

  97. Cancel, L. M. & Tarbell, J. M. The role of apoptosis in LDL transport through cultured endothelial cell monolayers. Atherosclerosis 208, 335–341 (2010).

    CAS  PubMed  Google Scholar 

  98. Gardner, G., Banka, C. L., Roberts, K. A., Mullick, A. E. & Rutledge, J. C. Modified LDL-mediated increases in endothelial layer permeability are attenuated with 17β-estradiol. Arterioscler. Thromb. Vasc. Biol. 19, 854–861 (1999).

    CAS  PubMed  Google Scholar 

  99. Cominacini, L. et al. Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-κB through an increased production of intracellular reactive oxygen species. J. Biol. Chem. 275, 12633–12638 (2000).

    CAS  PubMed  Google Scholar 

  100. Hong, D. et al. Ox-LDL induces endothelial cell apoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway. Atherosclerosis 235, 310–317 (2014).

    CAS  PubMed  Google Scholar 

  101. Bao, M. H., Zhang, Y. W., Lou, X. Y., Cheng, Y. & Zhou, H. H. Protective effects of let-7a and let-7b on oxidized low-density lipoprotein induced endothelial cell injuries. PLoS ONE 9, e106540 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. Chen, K. C. et al. Negative feedback regulation between microRNA let-7g and the oxLDL receptor LOX-1. J. Cell Sci. 124, 4115–4124 (2011).

    CAS  PubMed  Google Scholar 

  103. Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    CAS  PubMed  Google Scholar 

  104. Liao, Y. C. et al. Let-7g improves multiple endothelial functions through targeting transforming growth factor-β and SIRT-1 signaling. J. Am. Coll. Cardiol. 63, 1685–1694 (2014).

    CAS  PubMed  Google Scholar 

  105. Voellenkle, C. et al. Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs. RNA 18, 472–484 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Schober, A. et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat. Med. 20, 368–376 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sul, H. S. Minireview: Pref-1: role in adipogenesis and mesenchymal cell fate. Mol. Endocrinol. 23, 1717–1725 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Falix, F. A., Aronson, D. C., Lamers, W. H. & Gaemers, I. C. Possible roles of DLK1 in the Notch pathway during development and disease. Biochim. Biophys. Acta 1822, 988–995 (2012).

    CAS  PubMed  Google Scholar 

  109. Rodriguez, P. et al. The non-canonical NOTCH ligand DLK1 exhibits a novel vascular role as a strong inhibitor of angiogenesis. Cardiovasc. Res. 93, 232–241 (2012).

    CAS  PubMed  Google Scholar 

  110. Fish, J. E. et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15, 272–284 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, S. et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15, 261–271 (2008).

    PubMed  PubMed Central  Google Scholar 

  112. Wang, Y. et al. MicroRNA-126 attenuates palmitate-induced apoptosis by targeting TRAF7 in HUVECs. Mol. Cell. Biochem. 399, 123–130 (2015).

    CAS  PubMed  Google Scholar 

  113. Zernecke, A. et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal. 2, ra81 (2009).

    PubMed  Google Scholar 

  114. Jansen, F. et al. Endothelial microparticle-mediated transfer of microRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 128, 2026–2038 (2013).

    CAS  PubMed  Google Scholar 

  115. van der Pol, E., Boing, A. N., Harrison, P., Sturk, A. & Nieuwland, R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 64, 676–705 (2012).

    CAS  PubMed  Google Scholar 

  116. Sirois, I. et al. Caspase-3-dependent export of TCTP: a novel pathway for antiapoptotic intercellular communication. Cell Death Differ. 18, 549–562 (2011).

    CAS  PubMed  Google Scholar 

  117. Villarroya-Beltri, C. et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4, 2980 (2013).

    PubMed  Google Scholar 

  118. Squadrito, M. L. et al. Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep. 8, 1432–1446 (2014).

    CAS  PubMed  Google Scholar 

  119. Zampetaki, A. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res. 107, 810–817 (2010).

    CAS  PubMed  Google Scholar 

  120. Wei, Y., Nazari-Jahantigh, M., Neth, P., Weber, C. & Schober, A. MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis? Arterioscler. Thromb. Vasc. Biol. 33, 449–454 (2013).

    CAS  PubMed  Google Scholar 

  121. Noels, H. et al. Deficiency of endothelial Cxcr4 reduces reendothelialization and enhances neointimal hyperplasia after vascular injury in atherosclerosis-prone mice. Arterioscler. Thromb. Vasc. Biol. 34, 1209–1220 (2014).

    CAS  PubMed  Google Scholar 

  122. Ceradini, D. J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858–864 (2004).

    CAS  PubMed  Google Scholar 

  123. Akhtar, S., Gremse, F., Kiessling, F., Weber, C. & Schober, A. CXCL12 promotes the stabilization of atherosclerotic lesions mediated by smooth muscle progenitor cells in Apoe-deficient mice. Arterioscler. Thromb. Vasc. Biol. 33, 679–686 (2013).

    CAS  PubMed  Google Scholar 

  124. van Solingen, C. et al. MicroRNA-126 modulates endothelial SDF-1 expression and mobilization of Sca-1+/Lin progenitor cells in ischaemia. Cardiovasc. Res. 92, 449–455 (2011).

    CAS  PubMed  Google Scholar 

  125. Zhou, J. et al. Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress. Circ. Res. 113, 40–51 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Mukai, Y. et al. Decreased vascular lesion formation in mice with inducible endothelial-specific expression of protein kinase Akt. J. Clin. Invest. 116, 334–343 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Cheng, Y. et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ. Res. 105, 158–166 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Xin, M. et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 23, 2166–2178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhao, N. et al. MicroRNA miR145 regulates TGFBR2 expression and matrix synthesis in vascular smooth muscle cells. Circ. Res. 116, 23–34 (2015).

    CAS  PubMed  Google Scholar 

  130. Boucher, J. M., Peterson, S. M., Urs, S., Zhang, C. & Liaw, L. The miR-143/145 cluster is a novel transcriptional target of Jagged-1/Notch signaling in vascular smooth muscle cells. J. Biol. Chem. 286, 28312–28321 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Vengrenyuk, Y. et al. Cholesterol loading reprograms the miR-143/145–myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler. Thromb. Vasc. Biol. 35, 535–546 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lovren, F. et al. MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation 126, S81–S90 (2012).

    CAS  PubMed  Google Scholar 

  133. Sala, F. et al. MiR-143/145 deficiency attenuates the progression of atherosclerosis in Ldlr−/− mice. Thromb. Haemost. 112, 796–802 (2014).

    PubMed  PubMed Central  Google Scholar 

  134. Chen, L. J. et al. MicroRNA mediation of endothelial inflammatory response to smooth muscle cells and its inhibition by atheroprotective shear stress. Circ. Res. http://dx.doi.org/10.1161/circresaha.116.305987.

  135. Cheng, H. S. et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol. Med. 5, 949–966 (2013).

    CAS  PubMed Central  Google Scholar 

  136. Lin, Z. et al. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ. Res. 96, e48–e57 (2005).

    CAS  PubMed  Google Scholar 

  137. Lawrence, T. & Natoli, G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11, 750–761 (2011).

    CAS  PubMed  Google Scholar 

  138. Mantovani, A., Garlanda, C. & Locati, M. Macrophage diversity and polarization in atherosclerosis: a question of balance. Arterioscler. Thromb. Vasc. Biol. 29, 1419–1423 (2009).

    CAS  PubMed  Google Scholar 

  139. Tugal, D., Liao, X. & Jain, M. K. Transcriptional control of macrophage polarization. Arterioscler. Thromb. Vasc. Biol. 33, 1135–1144 (2013).

    CAS  PubMed  Google Scholar 

  140. Murray, P. J. & Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Jenkins, S. J. et al. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J. Exp. Med. 210, 2477–2491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Lichtnekert, J., Kawakami, T., Parks, W. C. & Duffield, J. S. Changes in macrophage phenotype as the immune response evolves. Curr. Opin. Pharmacol. 13, 555–564 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Khallou-Laschet, J. et al. Macrophage plasticity in experimental atherosclerosis. PLoS ONE 5, e8852 (2010).

    PubMed  PubMed Central  Google Scholar 

  144. Nazari-Jahantigh, M. et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J. Clin. Invest. 122, 4190–4202 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Graff, J. W., Dickson, A. M., Clay, G., McCaffrey, A. P. & Wilson, M. E. Identifying functional microRNAs in macrophages with polarized phenotypes. J. Biol. Chem. 287, 21816–21825 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Dueck, A., Eichner, A., Sixt, M. & Meister, G. A miR-155-dependent microRNA hierarchy in dendritic cell maturation and macrophage activation. FEBS Lett. 588, 632–640 (2014).

    CAS  PubMed  Google Scholar 

  147. Du, F. et al. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 34, 759–767 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Androulidaki, A. et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 31, 220–231 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Arranz, A. et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc. Natl Acad. Sci. USA 109, 9517–9522 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Petrella, B. L. & Brinckerhoff, C. E. PTEN suppression of YY1 induces HIF-2 activity in von-Hippel-Lindau-null renal-cell carcinoma. Cancer Biol. Ther. 8, 1389–1401 (2009).

    CAS  PubMed  Google Scholar 

  151. Tian, F. J. et al. Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis. Cardiovasc. Res. 103, 100–110 (2014).

    CAS  PubMed  Google Scholar 

  152. Wei, Y. et al. The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis. Circulation 127, 1609–1619 (2013).

    CAS  PubMed  Google Scholar 

  153. O'Connell, R. M., Chaudhuri, A. A., Rao, D. S. & Baltimore, D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc. Natl Acad. Sci. USA 106, 7113–7118 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Barish, G. D. et al. Bcl-6 and NF-κB cistromes mediate opposing regulation of the innate immune response. Genes Dev. 24, 2760–2765 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Barish, G. D. et al. The Bcl6-SMRT/NCoR cistrome represses inflammation to attenuate atherosclerosis. Cell Metab. 15, 554–562 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Schober, A. et al. Stabilization of atherosclerotic plaques by blockade of macrophage migration inhibitory factor after vascular injury in apolipoprotein E-deficient mice. Circulation 109, 380–385 (2004).

    CAS  PubMed  Google Scholar 

  157. Qin, Z. The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature. Atherosclerosis 221, 2–11 (2012).

    CAS  PubMed  Google Scholar 

  158. Zhu, J. et al. Regulation of microRNA-155 in atherosclerotic inflammatory responses by targeting MAP3K10. PLoS ONE 7, e46551 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Kant, S. et al. TNF-stimulated MAP kinase activation mediated by a Rho family GTPase signaling pathway. Genes Dev. 25, 2069–2078 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Donners, M. M. et al. Hematopoietic miR155 deficiency enhances atherosclerosis and decreases plaque stability in hyperlipidemic mice. PLoS ONE 7, e35877 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Schreyer, S. A., Lystig, T. C., Vick, C. M. & LeBoeuf, R. C. Mice deficient in apolipoprotein E but not LDL receptors are resistant to accelerated atherosclerosis associated with obesity. Atherosclerosis 171, 49–55 (2003).

    CAS  PubMed  Google Scholar 

  162. Schreyer, S. A., Vick, C., Lystig, T. C., Mystkowski, P. & LeBoeuf, R. C. LDL receptor but not apolipoprotein E deficiency increases diet-induced obesity and diabetes in mice. Am. J. Physiol. Endocrinol. Metab. 282, E207–E214 (2002).

    CAS  PubMed  Google Scholar 

  163. Maegdefessel, L. et al. miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development. Nat. Commun. 5, 5214 (2014).

    CAS  PubMed  Google Scholar 

  164. Gong, Z., Xing, S., Zheng, F. & Xing, Q. Increased expression of chitinase 3-like 1 in aorta of patients with atherosclerosis and suppression of atherosclerosis in apolipoprotein E-knockout mice by chitinase 3-like 1 gene silencing. Mediators Inflamm. 2014, 905463 (2014).

    PubMed  PubMed Central  Google Scholar 

  165. Boot, R. G. et al. Strong induction of members of the chitinase family of proteins in atherosclerosis: chitotriosidase and human cartilage gp-39 expressed in lesion macrophages. Arterioscler. Thromb. Vasc. Biol. 19, 687–694 (1999).

    CAS  PubMed  Google Scholar 

  166. Di Gregoli, K. et al. MicroRNA-24 regulates macrophage behavior and retards atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 34, 1990–2000 (2014).

    CAS  PubMed  Google Scholar 

  167. Rosenson, R. S. et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 125, 1905–1919 (2012).

    PubMed  PubMed Central  Google Scholar 

  168. Westerterp, M. et al. ATP-binding cassette transporters, atherosclerosis, and inflammation. Circ. Res. 114, 157–170 (2014).

    CAS  PubMed  Google Scholar 

  169. Davalos, A. & Fernandez-Hernando, C. From evolution to revolution: miRNAs as pharmacological targets for modulating cholesterol efflux and reverse cholesterol transport. Pharmacol. Res. 75, 60–72 (2013).

    CAS  PubMed  Google Scholar 

  170. Rayner, K. J. et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328, 1570–1573 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Horie, T. et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc. Natl Acad. Sci. USA 107, 17321–17326 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Rayner, K. J. et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest. 121, 2921–2931 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Marquart, T. J., Wu, J., Lusis, A. J. & Baldan, A. Anti-miR-33 therapy does not alter the progression of atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 33, 455–458 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Rotllan, N., Ramirez, C. M., Aryal, B., Esau, C. C. & Fernandez-Hernando, C. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr−/− mice—brief report. Arterioscler. Thromb. Vasc. Biol. 33, 1973–1977 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Horie, T. et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in Apoe−/− mice. J. Am. Heart Assoc. 1, e003376 (2012).

    PubMed  PubMed Central  Google Scholar 

  176. Distel, E. et al. miR33 inhibition overcomes deleterious effects of diabetes mellitus on atherosclerosis plaque regression in mice. Circ. Res. 115, 759–769 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Ho, P. C., Chang, K. C., Chuang, Y. S. & Wei, L. N. Cholesterol regulation of receptor-interacting protein 140 via microRNA-33 in inflammatory cytokine production. FASEB J. 25, 1758–1766 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Nautiyal, J., Christian, M. & Parker, M. G. Distinct functions for RIP140 in development, inflammation, and metabolism. Trends Endocrinol. Metab. 24, 451–459 (2013).

    CAS  PubMed  Google Scholar 

  179. Goedeke, L. et al. A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol. Cell. Biol. 33, 2339–2352 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Hu, Y. W. et al. An agomir of miR-144-3p accelerates plaque formation through impairing reverse cholesterol transport and promoting pro-inflammatory cytokine production. PLoS ONE 9, e94997 (2014).

    PubMed  PubMed Central  Google Scholar 

  181. Zhang, M. et al. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis 234, 54–64 (2014).

    CAS  PubMed  Google Scholar 

  182. Lv, Y. C. et al. MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1. Atherosclerosis 236, 215–226 (2014).

    CAS  PubMed  Google Scholar 

  183. Ramirez, C. M. et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler. Thromb. Vasc. Biol. 31, 2707–2714 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Ramirez, C. M. et al. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ. Res. 112, 1592–1601 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang, D. et al. Coenzyme Q10 promotes macrophage cholesterol efflux by regulation of the activator protein-1/miR-378/ATP-binding cassette transporter G1-signaling pathway. Arterioscler. Thromb. Vasc. Biol. 34, 1860–1870 (2014).

    PubMed  Google Scholar 

  186. Vinod, M. et al. miR-206 controls LXRα expression and promotes LXR-mediated cholesterol efflux in macrophages. Biochim. Biophys. Acta 1841, 827–835 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. O'Brien, K. D., Gordon, D., Deeb, S., Ferguson, M. & Chait, A. Lipoprotein lipase is synthesized by macrophage-derived foam cells in human coronary atherosclerotic plaques. J. Clin. Invest. 89, 1544–1550 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Takahashi, M. et al. Macrophage lipoprotein lipase modulates the development of atherosclerosis but not adiposity. J. Lipid Res. 54, 1124–1134 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Pentikainen, M. O., Oksjoki, R., Oorni, K. & Kovanen, P. T. Lipoprotein lipase in the arterial wall: linking LDL to the arterial extracellular matrix and much more. Arterioscler. Thromb. Vasc. Biol. 22, 211–217 (2002).

    CAS  PubMed  Google Scholar 

  190. Seo, T. et al. Lipoprotein lipase-mediated selective uptake from low density lipoprotein requires cell surface proteoglycans and is independent of scavenger receptor class B type 1. J. Biol. Chem. 275, 30355–30362 (2000).

    CAS  PubMed  Google Scholar 

  191. Tian, G. P. et al. MicroRNA-467b targets LPL gene in RAW 264.7 macrophages and attenuates lipid accumulation and proinflammatory cytokine secretion. Biochimie 94, 2749–2755 (2012).

    CAS  PubMed  Google Scholar 

  192. Tian, G. P. et al. The effects of miR-467b on lipoprotein lipase (LPL) expression, pro-inflammatory cytokine, lipid levels and atherosclerotic lesions in apolipoprotein E knockout mice. Biochem. Biophys. Res. Commun. 443, 428–434 (2014).

    CAS  PubMed  Google Scholar 

  193. Helwak, A., Kudla, G., Dudnakova, T. & Tollervey, D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654–665 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.S. and C.W. acknowledge support from the Deutsche Forschungsgemeinschaft (SFB 1123-B4), the German Centre for Cardiovascular Research (MHA VD 1.2), and the German Federal Ministry of Education and Research (grant number 01KU1213A).

Author information

Authors and Affiliations

Authors

Contributions

M.N.-J. researched data for the article. All the authors wrote, reviewed, and edited the article before submission.

Corresponding author

Correspondence to Andreas Schober.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schober, A., Nazari-Jahantigh, M. & Weber, C. MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nat Rev Cardiol 12, 361–374 (2015). https://doi.org/10.1038/nrcardio.2015.38

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.38

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing