Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Causes, assessment, and treatment of stent thrombosis—intravascular imaging insights

Key Points

  • Stent thrombosis is a rare, but serious, complication of percutaneous coronary intervention and is associated with severe morbidity and mortality

  • Intravascular imaging has furthered our understanding of the mechanisms underlying stent thrombosis

  • Stent underexpansion and malapposition can be assessed and optimized at the time of stent implantation with the use of intravascular imaging

  • During follow-up imaging, strut coverage and neoatherosclerosis are best evaluated in vivo using optical coherence tomography

  • Optical coherence tomography might be particularly useful during evaluation of stent thrombosis events to determine specific underlying mechanisms and to guide therapy

  • Intravascular imaging has been crucial to the development and assessment of new bioresorbable stent technologies, although the risk of stent thrombosis associated with these devices requires further investigation

Abstract

Stent thrombosis is a rare, but serious, complication of percutaneous coronary intervention and is associated with severe morbidity and mortality. In addition to clinical and pathological studies, intravascular imaging has advanced our understanding of the mechanisms underlying stent thrombosis. In particular, intravascular imaging has been used to study stent underexpansion, malapposition, uncovered struts, and neoatherosclerosis as risk factors for stent thrombosis. Intravascular ultrasonography and optical coherence tomography can be used to guide stent implantation and minimize the risk of stent thrombosis. Additionally, optical coherence tomography offers the unique potential to tailor treatment of stent thrombosis to address the specific mechanism underlying the thrombotic event. Bioresorbable stent technologies have been introduced with the goal of further reducing the incidence of stent thrombosis, and intravascular imaging has had an integral role in the development and assessment of these new devices. In this Review, we present insights gained through intravascular imaging into the causes of stent thrombosis, and the potential utility of intravascular imaging in the optimization of stent deployment and treatment of stent thrombosis events.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Malapposition evaluated with intravascular ultrasonography and optical coherence tomography.132
Figure 2: Strut apposition and coverage.
Figure 3: Neoatherosclerosis, assessed with VH-IVUS.74
Figure 4: Neointimal features identified with optical coherence tomography.
Figure 5: Bioresorbable vascular scaffold apposition and strut coverage.115

References

  1. 1

    Sigwart, U., Puel, J., Mirkovitch, V., Joffre, F. & Kappenberger, L. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N. Engl. J. Med. 316, 701–706 (1987).

    CAS  PubMed  Google Scholar 

  2. 2

    Roguin, A. Stent: the man and word behind the coronary metal prosthesis. Circ. Cardiovasc. Interv. 4, 206–209 (2011).

    CAS  PubMed  Google Scholar 

  3. 3

    Serruys, P. W. et al. Angiographic follow-up after placement of a self-expanding coronary-artery stent. N. Engl. J. Med. 324, 13–17 (1991).

    CAS  PubMed  Google Scholar 

  4. 4

    Colombo, A. et al. Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation 91, 1676–1688 (1995).

    CAS  PubMed  Google Scholar 

  5. 5

    Serruys, P. W. et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N. Engl. J. Med. 331, 489–495 (1994).

    CAS  PubMed  Google Scholar 

  6. 6

    Fischman, D. L. et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N. Engl. J. Med. 331, 496–501 (1994).

    CAS  PubMed  Google Scholar 

  7. 7

    Morice, M. C. et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med. 346, 1773–1780 (2002).

    CAS  PubMed  Google Scholar 

  8. 8

    Grube, E. et al. TAXUS I: six- and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. Circulation 107, 38–42 (2003).

    CAS  PubMed  Google Scholar 

  9. 9

    Moses, J. W. et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349, 1315–1323 (2003).

    CAS  PubMed  Google Scholar 

  10. 10

    Stone, G. W. et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N. Engl. J. Med. 350, 221–231 (2004).

    CAS  PubMed  Google Scholar 

  11. 11

    Muni, N. I. & Gross, T. P. Problems with drug-eluting coronary stents—the FDA perspective. N. Engl. J. Med. 351, 1593–1595 (2004).

    CAS  PubMed  Google Scholar 

  12. 12

    Moreno, R. et al. Drug-eluting stent thrombosis: results from a pooled analysis including 10 randomized studies. J. Am. Coll. Cardiol. 45, 954–959 (2005).

    CAS  PubMed  Google Scholar 

  13. 13

    Bavry, A. A., Kumbhani, D. J., Helton, T. J. & Bhatt, D. L. What is the risk of stent thrombosis associated with the use of paclitaxel-eluting stents for percutaneous coronary intervention? A meta-analysis. J. Am. Coll. Cardiol. 45, 941–946 (2005).

    PubMed  Google Scholar 

  14. 14

    Iakovou, I. et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 293, 2126–2130 (2005).

    CAS  PubMed  Google Scholar 

  15. 15

    Ong, A. T. et al. Thirty-day incidence and six-month clinical outcome of thrombotic stent occlusion after bare-metal, sirolimus, or paclitaxel stent implantation. J. Am. Coll. Cardiol. 45, 947–953 (2005).

    CAS  PubMed  Google Scholar 

  16. 16

    Wenaweser, P. et al. Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study. J. Am. Coll. Cardiol. 52, 1134–1140 (2008).

    CAS  PubMed  Google Scholar 

  17. 17

    Stone, G. W. et al. Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N. Engl. J. Med. 356, 998–1008 (2007).

    CAS  PubMed  Google Scholar 

  18. 18

    Lagerqvist, B. et al. Long-term outcomes with drug-eluting stents versus bare-metal stents in Sweden. N. Engl. J. Med. 356, 1009–1019 (2007).

    CAS  PubMed  Google Scholar 

  19. 19

    Eisenstein, E. L. et al. Clopidogrel use and long-term clinical outcomes after drug-eluting stent implantation. JAMA 297, 159–168 (2007).

    CAS  PubMed  Google Scholar 

  20. 20

    King, S. B. et al. 2007 focused update of the ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: 2007 Writing Group to Review New Evidence and Update the ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention, writing on behalf of the 2005 Writing Committee. Circulation 117, 261–295 (2008).

    PubMed  Google Scholar 

  21. 21

    Wijns, W. et al. Guidelines on myocardial revascularization. Eur. Heart J. 31, 2501–2555 (2010).

    PubMed  Google Scholar 

  22. 22

    Windecker, S. et al. 2014 ESC/EACTS guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS): developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. 35, 2541–2619 (2014).

    Google Scholar 

  23. 23

    Cutlip, D. E. et al. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation 115, 2344–2351 (2007).

    PubMed  Google Scholar 

  24. 24

    Mauri, L. et al. Stent thrombosis in randomized clinical trials of drug-eluting stents. N. Engl. J. Med. 356, 1020–1029 (2007).

    CAS  PubMed  Google Scholar 

  25. 25

    Stettler, C. et al. Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet 370, 937–948 (2007).

    CAS  PubMed  Google Scholar 

  26. 26

    Tada, T. et al. Risk of stent thrombosis among bare-metal stents, first-generation drug-eluting stents, and second-generation drug-eluting stents: results from a registry of 18,334 patients. JACC Cardiovasc. Interv. 6, 1267–1274 (2013).

    PubMed  Google Scholar 

  27. 27

    Cutlip, D. E. et al. Stent thrombosis in the modern era: a pooled analysis of multicenter coronary stent clinical trials. Circulation 103, 967–1971 (2001).

    Google Scholar 

  28. 28

    Armstrong, E. J. et al. Clinical presentation, management, and outcomes of angiographically documented early, late, and very late stent thrombosis. JACC Cardiovasc. Interv. 5, 131–140 (2012).

    PubMed  Google Scholar 

  29. 29

    Brodie, B. et al. Predictors of early, late, and very late stent thrombosis after primary percutaneous coronary intervention with bare-metal and drug-eluting stents for ST-segment elevation myocardial infarction. JACC Cardiovasc. Interv. 5, 1043–1051 (2012).

    PubMed  Google Scholar 

  30. 30

    Uren, N. G. et al. Predictors and outcomes of stent thrombosis: an intravascular ultrasound registry. Eur. Heart J. 23, 124–132 (2002).

    PubMed  Google Scholar 

  31. 31

    Schiele, F. et al. Impact of intravascular ultrasound guidance in stent deployment on 6-month restenosis rate: a multicenter, randomized study comparing two strategies—with and without intravascular ultrasound guidance. RESIST Study Group. REStenosis after Ivus guided STenting. J. Am. Coll. Cardiol. 32, 320–328 (1998).

    CAS  PubMed  Google Scholar 

  32. 32

    Oemrawsingh, P. V. et al. Intravascular ultrasound guidance improves angiographic and clinical outcome of stent implantation for long coronary artery stenoses: final results of a randomized comparison with angiographic guidance (TULIP study). Circulation 107, 62–67 (2003).

    PubMed  Google Scholar 

  33. 33

    Cook, S. et al. Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation 115, 2426–2434 (2007).

    CAS  PubMed  Google Scholar 

  34. 34

    Russo, R. J. et al. A randomized controlled trial of angiography versus intravascular ultrasound-directed bare-metal coronary stent placement (the AVID trial). Circ. Cardiovasc. Interv. 2, 113–123 (2009).

    PubMed  Google Scholar 

  35. 35

    Cheneau, E. et al. Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study. Circulation 108, 43–47 (2003).

    PubMed  Google Scholar 

  36. 36

    Fujii, K. et al. Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: an intravascular ultrasound study. J. Am. Coll. Cardiol. 45, 995–998 (2005).

    CAS  PubMed  Google Scholar 

  37. 37

    Nakano, M. et al. Causes of early stent thrombosis in patients presenting with acute coronary syndrome: an ex vivo human autopsy study. J. Am. Coll. Cardiol. 63, 2510–2520 (2014).

    PubMed  Google Scholar 

  38. 38

    Kobayashi, Y. et al. Long-term vessel response to a self-expanding coronary stent: a serial volumetric intravascular ultrasound analysis from the ASSURE Trial: A Stent vs. Stent Ultrasound Remodeling Evaluation. J. Am. Coll. Cardiol. 37, 1329–1334 (2001).

    CAS  PubMed  Google Scholar 

  39. 39

    Gonzalo, N. et al. Incomplete stent apposition and delayed tissue coverage are more frequent in drug-eluting stents implanted during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction than in drug-eluting stents implanted for stable/unstable angina: insights from optical coherence tomography. JACC Cardiovasc. Interv. 2, 445–452 (2009).

    PubMed  Google Scholar 

  40. 40

    Tanigawa, J., Barlis, P. & Di Mario, C. Intravascular optical coherence tomography: optimisation of image acquisition and quantitative assessment of stent strut apposition. EuroIntervention 3, 128–136 (2007).

    PubMed  Google Scholar 

  41. 41

    Bezerra, H. G. et al. Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention. JACC Cardiovasc. Interv. 6, 228–236 (2013).

    PubMed  Google Scholar 

  42. 42

    Ozaki, Y. et al. The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study. Eur. Heart J. 31, 1470–1476 (2010).

    PubMed  Google Scholar 

  43. 43

    Foin, N. et al. Incomplete stent apposition causes high shear flow disturbances and delay in neointimal coverage as a function of strut to wall detachment distance: implications for the management of incomplete stent apposition. Circ. Cardiovasc. Interv. 7, 180–189 (2014).

    PubMed  Google Scholar 

  44. 44

    Tanabe, K. et al. Incomplete stent apposition after implantation of paclitaxel-eluting stents or bare metal stents: insights from the randomized TAXUS II trial. Circulation 111, 900–905 (2005).

    CAS  PubMed  Google Scholar 

  45. 45

    Shah, V. M., Mintz, G. S., Apple, S. & Weissman, N. J. Background incidence of late malapposition after bare-metal stent implantation. Circulation 106, 1753–1755 (2002).

    CAS  PubMed  Google Scholar 

  46. 46

    Hong, M. K. et al. Intravascular ultrasound comparison of chronic recoil among different stent designs. Am. J. Cardiol. 84, 1247–1250 (1999).

    CAS  PubMed  Google Scholar 

  47. 47

    Fujino, Y., Attizzani, G. F., Nakamura, S., Costa, M. A. & Bezerra, H. G. Frequency-domain optical coherence tomography assessment of stent constriction 9 months after sirolimus-eluting stent implantation in a highly calcified plaque. JACC Cardiovasc. Interv. 6, 204–205 (2013).

    PubMed  Google Scholar 

  48. 48

    Mintz, G. S., Shah, V. M. & Weissman, N. J. Regional remodeling as the cause of late stent malapposition. Circulation 107, 2660–2663 (2003).

    PubMed  Google Scholar 

  49. 49

    Ako, J. et al. Late incomplete stent apposition after sirolimus-eluting stent implantation: a serial intravascular ultrasound analysis. J. Am. Coll. Cardiol. 46, 1002–1005 (2005).

    CAS  PubMed  Google Scholar 

  50. 50

    Hong, M. K. et al. Late stent malapposition after drug-eluting stent implantation: an intravascular ultrasound analysis with long-term follow-up. Circulation 113, 414–419 (2006).

    CAS  PubMed  Google Scholar 

  51. 51

    Hoffmann, R. et al. Impact of late incomplete stent apposition after sirolimus-eluting stent implantation on 4-year clinical events: intravascular ultrasound analysis from the multicentre, randomised, RAVEL, E-SIRIUS and SIRIUS trials. Heart 94, 322–328 (2008).

    CAS  PubMed  Google Scholar 

  52. 52

    Guo, N. et al. Incidence, mechanisms, predictors, and clinical impact of acute and late stent malapposition after primary intervention in patients with acute myocardial infarction: an intravascular ultrasound substudy of the Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) trial. Circulation 122, 1077–1084 (2010).

    PubMed  Google Scholar 

  53. 53

    Hassan, A. K. et al. Late stent malapposition risk is higher after drug-eluting stent compared with bare-metal stent implantation and associates with late stent thrombosis. Eur. Heart J. 31, 1172–1180 (2010).

    CAS  PubMed  Google Scholar 

  54. 54

    Hong, M. K. et al. Incidence, mechanism, predictors, and long-term prognosis of late stent malapposition after bare-metal stent implantation. Circulation 109, 881–886 (2004).

    PubMed  Google Scholar 

  55. 55

    Virmani, R. et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation 109, 701–705 (2004).

    PubMed  Google Scholar 

  56. 56

    Cook, S. et al. Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis. Circulation 120, 391–399 (2009).

    PubMed  Google Scholar 

  57. 57

    Guagliumi, G. et al. Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging. JACC Cardiovasc. Interv. 5, 12–20 (2012).

    PubMed  Google Scholar 

  58. 58

    Otsuka, F. et al. Pathology of second-generation everolimus-eluting stents versus first-generation sirolimus- and paclitaxel-eluting stents in humans. Circulation 129, 211–223 (2014).

    CAS  PubMed  Google Scholar 

  59. 59

    Kim, J. S. et al. Optical coherence tomography evaluation of zotarolimus-eluting stents at 9-month follow-up: comparison with sirolimus-eluting stents. Heart 95, 1907–1912 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Kim, B. K. et al. Comparison of optical coherence tomographic assessment between first- and second-generation drug-eluting stents. Yonsei Med. J. 53, 524–529 (2012).

    PubMed  PubMed Central  Google Scholar 

  61. 61

    Kim, J. S. et al. Optical coherence tomographic comparison of neointimal coverage between sirolimus- and resolute zotarolimus-eluting stents at 9 months after stent implantation. Int. J. Cardiovasc. Imaging 28, 1281–1287 (2012).

    PubMed  Google Scholar 

  62. 62

    Serruys, P. W. et al. Intravascular ultrasound findings in the multicenter, randomized, double-blind RAVEL (RAndomized study with the sirolimus-eluting VElocity balloon-expandable stent in the treatment of patients with de novo native coronary artery Lesions) trial. Circulation 106, 798–803 (2002).

    CAS  PubMed  Google Scholar 

  63. 63

    Im, E. et al. Incidences, predictors, and clinical outcomes of acute and late stent malapposition detected by optical coherence tomography after drug-eluting stent implantation. Circ. Cardiovasc. Interv. 7, 88–96 (2014).

    CAS  PubMed  Google Scholar 

  64. 64

    Farb, A., Burke, A. P., Kolodgie, F. D. & Virmani, R. Pathological mechanisms of fatal late coronary stent thrombosis in humans. Circulation 108, 1701–1706 (2003).

    PubMed  Google Scholar 

  65. 65

    Finn, A. V. et al. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation 115, 2435–2441 (2007).

    PubMed  Google Scholar 

  66. 66

    Kotani, J. et al. Incomplete neointimal coverage of sirolimus-eluting stents: angioscopic findings. J. Am. Coll. Cardiol. 47, 2108–2111 (2006).

    CAS  PubMed  Google Scholar 

  67. 67

    Takano, M. et al. Evaluation by optical coherence tomography of neointimal coverage of sirolimus-eluting stent three months after implantation. Am. J. Cardiol. 99, 1033–1038 (2007).

    CAS  PubMed  Google Scholar 

  68. 68

    Takano, M. et al. Long-term follow-up evaluation after sirolimus-eluting stent implantation by optical coherence tomography: do uncovered struts persist? J. Am. Coll. Cardiol. 51, 968–969 (2008).

    PubMed  Google Scholar 

  69. 69

    Takano, M. et al. Late vascular responses from 2 to 4 years after implantation of sirolimus-eluting stents: serial observations by intracoronary optical coherence tomography. Circ. Cardiovasc. Interv. 3, 476–483 (2010).

    CAS  PubMed  Google Scholar 

  70. 70

    Malle, C. et al. Tissue characterization after drug-eluting stent implantation using optical coherence tomography. Arterioscler Thromb. Vasc Biol. 33, 1376–1383 (2013).

    CAS  PubMed  Google Scholar 

  71. 71

    Walters, D. L. et al. Acute coronary syndrome is a common clinical presentation of in-stent restenosis. Am. J. Cardiol. 89, 491–494 (2002).

    PubMed  Google Scholar 

  72. 72

    Nakazawa, G., Vorpahl, M., Finn, A. V., Narula, J. & Virmani, R. One step forward and two steps back with drug-eluting-stents: from preventing restenosis to causing late thrombosis and nouveau atherosclerosis. JACC Cardiovasc. Imaging 2, 625–628 (2009).

    PubMed  Google Scholar 

  73. 73

    Nakazawa, G. et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J. Am. Coll. Cardiol. 57, 1314–1322 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Kang, S. J. et al. Tissue characterization of in-stent neointima using intravascular ultrasound radiofrequency data analysis. Am. J. Cardiol. 106, 1561–1565 (2010).

    PubMed  Google Scholar 

  75. 75

    Habara, M., Terashima, M. & Suzuki, T. Detection of atherosclerotic progression with rupture of degenerated in-stent intima five years after bare-metal stent implantation using optical coherence tomography. J. Invasive Cardiol. 21, 552–553 (2009).

    PubMed  Google Scholar 

  76. 76

    Bennett, J., Coosemans, M. & Adriaenssens, T. Very late bare metal stent thrombosis due to neoatherosclerotic plaque rupture: an optical coherence tomography finding. Heart 98, 1470 (2012).

    PubMed  Google Scholar 

  77. 77

    Abtahian, F. & Jang, I. K. Optical coherence tomography: basics, current application and future potential. Curr. Opin. Pharmacol. 12, 583–591 (2012).

    CAS  PubMed  Google Scholar 

  78. 78

    Hou, J. et al. Development of lipid-rich plaque inside bare metal stent: possible mechanism of late stent thrombosis? An optical coherence tomography study. Heart 96, 1187–1190 (2010).

    PubMed  Google Scholar 

  79. 79

    Takano, M. et al. Appearance of lipid-laden intima and neovascularization after implantation of bare-metal stents extended late-phase observation by intracoronary optical coherence tomography. J. Am. Coll. Cardiol. 55, 26–32 (2009).

    PubMed  Google Scholar 

  80. 80

    Kim, J. S. et al. Quantitative and qualitative changes in DES-related neointimal tissue based on serial OCT. JACC Cardiovasc. Imaging 5, 1147–1155 (2012).

    PubMed  Google Scholar 

  81. 81

    Yonetsu, T. et al. Comparison of incidence and time course of neoatherosclerosis between bare metal stents and drug-eluting stents using optical coherence tomography. Am. J. Cardiol. 110, 933–939 (2012).

    CAS  PubMed  Google Scholar 

  82. 82

    Amioka, M. et al. Causes of very late stent thrombosis investigated using optical coherence tomography. Intern. Med. 53, 2031–2039 (2014).

    PubMed  Google Scholar 

  83. 83

    Kang, S. J. et al. OCT analysis in patients with very late stent thrombosis. JACC Cardiovasc. Imaging 6, 695–703 (2013).

    PubMed  Google Scholar 

  84. 84

    Klersy, C. et al. Use of IVUS guided coronary stenting with drug eluting stent: a systematic review and meta-analysis of randomized controlled clinical trials and high quality observational studies. Int. J. Cardiol. 170, 54–63 (2013).

    PubMed  Google Scholar 

  85. 85

    Witzenbichler, B. et al. Relationship between intravascular ultrasound guidance and clinical outcomes after drug-eluting stents: the assessment of dual antiplatelet therapy with drug-eluting stents (ADAPT-DES) study. Circulation 129, 463–470 (2014).

    CAS  PubMed  Google Scholar 

  86. 86

    Prati, F. et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l'Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention 8, 823–829 (2012).

    PubMed  PubMed Central  Google Scholar 

  87. 87

    Chieffo, A. et al. A prospective, randomized trial of intravascular-ultrasound guided compared to angiography guided stent implantation in complex coronary lesions: the AVIO trial. Am. Heart J. 165, 65–72 (2013).

    PubMed  Google Scholar 

  88. 88

    Rogacka, R., Latib, A. & Colombo, A. IVUS-guided stent implantation to improve outcome: a promise waiting to be fulfilled. Curr. Cardiol. Rev. 5, 78–86 (2009).

    PubMed  PubMed Central  Google Scholar 

  89. 89

    Yamaguchi, T. et al. Safety and feasibility of an intravascular optical coherence tomography image wire system in the clinical setting. Am. J. Cardiol. 101, 562–567 (2008).

    PubMed  Google Scholar 

  90. 90

    Gonzalo, N. et al. Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries. Rev. Esp. Cardiol. 62, 615–624 (2009).

    PubMed  Google Scholar 

  91. 91

    Kato, K. et al. Intracoronary imaging modalities for vulnerable plaques. J. Nippon. Med. Sch. 78, 340–351 (2011).

    PubMed  Google Scholar 

  92. 92

    Nakamura, S. et al. Relationship between cholesterol crystals and culprit lesion characteristics in patients with stable coronary artery disease: an optical coherence tomography study. Clin. Res. Cardiol. 103, 1015–1021 (2014).

    CAS  PubMed  Google Scholar 

  93. 93

    Sambu, N. et al. Personalised antiplatelet therapy in stent thrombosis: observations from the Clopidogrel Resistance in Stent Thrombosis (CREST) registry. Heart 98, 706–711 (2012).

    CAS  PubMed  Google Scholar 

  94. 94

    Kimura, T. et al. Comparisons of baseline demographics, clinical presentation, and long-term outcome among patients with early, late, and very late stent thrombosis of sirolimus-eluting stents: observations from the Registry of Stent Thrombosis for Review and Reevaluation (RESTART). Circulation 122, 52–61 (2010).

    PubMed  Google Scholar 

  95. 95

    Kubo, T. et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J. Am. Coll. Cardiol. 50, 933–939 (2007).

    Google Scholar 

  96. 96

    Wong, D. T., Soh, S. Y. & Malaiapan, Y. In-stent thrombosis due to neoatherosclerosis: insight from optical coherence tomography. J. Invasive Cardiol. 25, 304 (2013).

    PubMed  Google Scholar 

  97. 97

    PRESTIGE Consortium. PREvention of late Stent Thrombosis by an Interdisciplinary Global European effort: PRESTIGE. Eur. Heart J. 35, 2128–2129 (2014).

  98. 98

    Nebeker, J. R. et al. Hypersensitivity cases associated with drug-eluting coronary stents: a review of available cases from the Research on Adverse Drug Events and Reports (RADAR) project. J. Am. Coll. Cardiol. 47, 175–181 (2006).

    PubMed  Google Scholar 

  99. 99

    Stefanini, G. G. et al. Biodegradable polymer drug-eluting stents reduce the risk of stent thrombosis at 4 years in patients undergoing percutaneous coronary intervention: a pooled analysis of individual patient data from the ISAR-TEST 3, ISAR-TEST 4, and LEADERS randomized trials. Eur. Heart J. 33, 1214–1222 (2012).

    CAS  Google Scholar 

  100. 100

    Barlis, P. et al. An optical coherence tomography study of a biodegradable vs. durable polymer-coated limus-eluting stent: a LEADERS trial sub-study. Eur. Heart J. 31, 165–176 (2010).

    CAS  PubMed  Google Scholar 

  101. 101

    Navarese, E. P. et al. Safety and efficacy outcomes of first and second generation durable polymer drug eluting stents and biodegradable polymer biolimus eluting stents in clinical practice: comprehensive network meta-analysis. BMJ 347, f6530 (2013).

    PubMed  PubMed Central  Google Scholar 

  102. 102

    Palmerini, T. et al. Clinical outcomes with bioabsorbable polymer- versus durable polymer-based drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. J. Am. Coll. Cardiol. 63, 299–307 (2014).

    CAS  PubMed  Google Scholar 

  103. 103

    Bangalore, S. et al. Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: mixed treatment comparison meta-analysis. BMJ 347, f6625 (2013).

    PubMed  PubMed Central  Google Scholar 

  104. 104

    Garcia-Garcia, H. M. et al. Assessing bioresorbable coronary devices: methods and parameters. JACC Cardiovasc. Imaging 7, 1130–1148 (2014).

    PubMed  Google Scholar 

  105. 105

    Wiebe, J., Nef, H. M. & Hamm, C. W. Current status of bioresorbable scaffolds in the treatment of coronary artery disease. J. Am. Coll. Cardiol. 64, 2541–2551 (2014).

    CAS  PubMed  Google Scholar 

  106. 106

    Serruys, P. W. et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet 373, 897–910 (2009).

    CAS  PubMed  Google Scholar 

  107. 107

    García-García, H. M. et al. Assessment of the absorption process following bioabsorbable everolimus-eluting stent implantation: temporal changes in strain values and tissue composition using intravascular ultrasound radiofrequency data analysis: a substudy of the ABSORB clinical trial. EuroIntervention 4, 443–448 (2009).

    PubMed  Google Scholar 

  108. 108

    Gomez-Lara, J. et al. A comparative assessment by optical coherence tomography of the performance of the first and second generation of the everolimus-eluting bioresorbable vascular scaffolds. Eur. Heart J. 32, 294–304 (2011).

    CAS  PubMed  Google Scholar 

  109. 109

    Serruys, P. W. et al. Dynamics of vessel wall changes following the implantation of the absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months. EuroIntervention 9, 1271–1284 (2014).

    PubMed  Google Scholar 

  110. 110

    Ormiston, J. A. et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet 371, 899–907 (2008).

    CAS  PubMed  Google Scholar 

  111. 111

    Simsek, C. et al. Long-term invasive follow-up of the everolimus-eluting bioresorbable vascular scaffold: five-year results of multiple invasive imaging modalities. EuroIntervention http://dx.doi.org/10.4244/EIJY14M10_12.

  112. 112

    Karanasos, A. et al. OCT Assessment of the long-term vascular healing response 5 years after everolimus-eluting bioresorbable vascular scaffold. J. Am. Coll. Cardiol. 64, 2343–2356 (2014).

    PubMed  Google Scholar 

  113. 113

    Serruys, P. W. et al. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes. Circulation 122, 2301–2312 (2010).

    CAS  PubMed  Google Scholar 

  114. 114

    Allahwala, U. K., et al. Clinical utility of optical coherence tomography (OCT) in the optimisation of Absorb bioresorbable vascular scaffold deployment during percutaneous coronary intervention. EuroIntervention 10, 1154–1159 (2015).

    PubMed  Google Scholar 

  115. 115

    Gomez-Lara, J. et al. Serial analysis of the malapposed and uncovered struts of the new generation of everolimus-eluting bioresorbable scaffold with optical coherence tomography. JACC Cardiovasc. Interv. 4, 992–1001 (2011).

    PubMed  Google Scholar 

  116. 116

    Serruys, P. W. et al. Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes. J. Am. Coll. Cardiol. 58, 1578–1588 (2011).

    CAS  PubMed  Google Scholar 

  117. 117

    Ormiston, J. A. et al. First serial assessment at 6 months and 2 years of the second generation of absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study. Circ. Cardiovasc. Interv. 5, 620–632 (2012).

    CAS  PubMed  Google Scholar 

  118. 118

    Bourantas, C. V. et al. Bioresorbable vascular scaffold treatment induces the formation of neointimal cap that seals the underlying plaque without compromising the luminal dimensions: a concept based on serial optical coherence tomography data. EuroIntervention http://dx.doi.org/10.4244/EIJY14M10_06.

  119. 119

    Onuma, Y. et al. Incidence and imaging outcomes of acute scaffold disruption and late structural discontinuity after implantation of the absorb everolimus-eluting fully bioresorbable vascular scaffold: optical coherence tomography assessment in the ABSORB Cohort B trial (a clinical evaluation of the bioabsorbable everolimus eluting coronary stent system in the treatment of patients with de novo native coronary artery lesions). JACC Cardiovasc. Interv. 7, 1400–1411 (2014).

    PubMed  Google Scholar 

  120. 120

    Verheye, S. et al. A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results. JACC Cardiovasc. Interv. 7, 89–99 (2014).

    PubMed  Google Scholar 

  121. 121

    Capodanno, D. et al. Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention 10, 1144–1153 (2015).

    PubMed  Google Scholar 

  122. 122

    van Werkum, J. W. et al. Predictors of coronary stent thrombosis: the Dutch Stent Thrombosis Registry. J. Am. Coll. Cardiol. 53, 1399–1409 (2009).

    PubMed  Google Scholar 

  123. 123

    Waksman, R. et al. Correlates and outcomes of late and very late drug-eluting stent thrombosis: results from DESERT (International Drug-Eluting Stent Event Registry of Thrombosis). JACC Cardiovasc. Interv. 7, 1093–1102 (2014).

    PubMed  Google Scholar 

  124. 124

    Moussa, I. et al. Subacute stent thrombosis in the era of intravascular ultrasound-guided coronary stenting without anticoagulation: frequency, predictors and clinical outcome. J. Am. Coll. Cardiol. 29, 6–12 (1997).

    CAS  PubMed  Google Scholar 

  125. 125

    Park, D. W. et al. Frequency of and risk factors for stent thrombosis after drug-eluting stent implantation during long-term follow-up. Am. J. Cardiol. 98, 352–356 (2006).

    PubMed  Google Scholar 

  126. 126

    Rabinovitz, A. et al. Association between off-label use of drug-eluting stents and subsequent stent thrombosis: a case-control analysis. J. Invasive Cardiol. 22, 15–19 (2010).

    PubMed  Google Scholar 

  127. 127

    Wiviott, S. D. et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 357, 2001–2015 (2007).

    CAS  Google Scholar 

  128. 128

    Steg, P. G. et al. Stent thrombosis with ticagrelor versus clopidogrel in patients with acute coronary syndromes: an analysis from the prospective, randomized PLATO trial. Circulation 128, 1055–1065 (2013).

    CAS  PubMed  Google Scholar 

  129. 129

    Matetzky, S. et al. Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction. Circulation 109, 3171–3175 (2004).

    CAS  PubMed  Google Scholar 

  130. 130

    Wenaweser, P. & Hess, O. Stent thrombosis is associated with an impaired response to antiplatelet therapy. J. Am. Coll. Cardiol. 46, CS5–CS6 (2005).

    PubMed  Google Scholar 

  131. 131

    Ferrari, E., Benhamou, M., Cerboni, P. & Marcel, B. Coronary syndromes following aspirin withdrawal: a special risk for late stent thrombosis. J. Am. Coll. Cardiol. 45, 456–459 (2005).

    CAS  PubMed  Google Scholar 

  132. 132

    Attizzani, G. F., Capodanno, D., Ohno, Y. & Tamburino, C. Mechanisms, pathophysiology, and clinical aspects of incomplete stent apposition. J. Am. Coll. Cardiol. 63, 1355–1367 (2014).

    PubMed  Google Scholar 

  133. 133

    Kim, S. et al. Comparison of early strut coverage between zotarolimus- and everolimus-eluting stents using optical coherence tomography. Am. J. Cardiol. 111, 1–5 (2013).

    CAS  PubMed  Google Scholar 

  134. 134

    Kim, J. S. et al. ComparisOn of neointimal coVerage betwEen zotaRolimus-eluting stent and everolimus-eluting stent using Optical Coherence Tomography (COVER OCT). Am. Heart J. 163, 601–607 (2012).

    PubMed  Google Scholar 

  135. 135

    Kim, J. S. et al. Comparison of neointimal coverage of sirolimus-eluting stents and paclitaxel-eluting stents using optical coherence tomography at 9 months after implantation. Circ. J. 74, 320–326 (2010).

    PubMed  Google Scholar 

  136. 136

    Kim, T. H. et al. Long-term (≥2 years) follow-up optical coherence tomographic study after sirolimus- and paclitaxel-eluting stent implantation: comparison to 9-month follow-up results. Int. J. Cardiovasc. Imaging 27, 875–881 (2011).

    PubMed  Google Scholar 

  137. 137

    Adriaenssens, T. et al. Optical coherence tomography study of healing characteristics of paclitaxel-eluting balloons vs. everolimus-eluting stents for in-stent restenosis: the SEDUCE (Safety and Efficacy of a Drug elUting balloon in Coronary artery rEstenosis) randomised clinical trial. EuroIntervention 10, 439–448 (2014).

    PubMed  Google Scholar 

  138. 138

    Kim, S. J. et al. Comparison of zotarolimus-eluting stent and everolimus-eluting stent for vascular healing response: serial 3-month and 12-month optical coherence tomography study. Coron. Artery Dis. 24, 431–439 (2013).

    PubMed  Google Scholar 

  139. 139

    Li, S. et al. Evaluation of neointimal coverage and apposition with various drug-eluting stents over 12 months after implantation by optical coherence tomography. Int. J. Cardiol. 162, 166–171 (2013).

    PubMed  Google Scholar 

  140. 140

    Räber, L. et al. Long-term vascular healing in response to sirolimus- and paclitaxel-eluting stents: an optical coherence tomography study. JACC Cardiovasc. Interv. 5, 946–957 (2012).

    PubMed  Google Scholar 

Download references

Acknowledgements

I.-K.J. is also affiliated with the Division of Cardiology, Kyung Hee University, Seoul, South Korea.

Author information

Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Ik-Kyung Jang.

Ethics declarations

Competing interests

I.-K.J. declares that he has received a research grant and honorarium from St. Jude Medical and research grants from Boston Scientific and Medtronic. D.S.O. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ong, D., Jang, IK. Causes, assessment, and treatment of stent thrombosis—intravascular imaging insights. Nat Rev Cardiol 12, 325–336 (2015). https://doi.org/10.1038/nrcardio.2015.32

Download citation

Further reading

Search

Quick links