Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulatory T cells in cardiovascular diseases

Key Points

  • Regulatory T (TREG) cells are involved in immune homeostasis and tolerance, and regulate the progression of autoimmune diseases

  • A reduced number and impaired function of TREG cells might be present in a variety of cardiovascular diseases, including atherosclerosis, hypertension, abdominal aortic aneurysm, myocardial infarction, and heart failure

  • Adoptive transfer of exogenous TREG cells or expansion of endogenous TREG cells effectively attenuates the progression of many cardiovascular diseases

  • The molecular mechanisms mediating the role of TREG cells in the pathogenesis of cardiovascular diseases are still incompletely understood

  • TREG cells might be a promising therapeutic target for cardiovascular disease, and can improve our understanding of the immunomodulatory mechanisms involved in the disease

Abstract

Inflammation is essential in the initial development and progression of many cardiovascular diseases involving innate and adaptive immune responses. The role of CD4+CD25+FOXP3+ regulatory T (TREG) cells in the modulation of inflammation and immunity has received increasing attention. Given the important role of TREG cells in the induction and maintenance of immune homeostasis and tolerance, dysregulation in the generation or function of TREG cells can trigger abnormal immune responses and lead to pathology. A wealth of evidence from experimental and clinical studies has indicated that TREG cells might have an important role in protecting against cardiovascular disease, in particular atherosclerosis and abdominal aortic aneurysm. In this Review, we provide an overview of the roles of TREG cells in the pathogenesis of a number of cardiovascular diseases, including atherosclerosis, hypertension, ischaemic stroke, abdominal aortic aneurysm, Kawasaki disease, pulmonary arterial hypertension, myocardial infarction and remodelling, postischaemic neovascularization, myocarditis and dilated cardiomyopathy, and heart failure. Although the exact molecular mechanisms underlying the cardioprotective effects of TREG cells are still to be elucidated, targeted therapies with TREG cells might provide a promising and novel future approach to the prevention and treatment of cardiovascular diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differentiation of naive T cells into T cell subpopulations.
Figure 2: Mechanisms of TREG cell-mediated suppression and the implicative pathways.
Figure 3: Underlying mechanisms of TREG cells in atherosclerosis.
Figure 4: Underlying mechanisms of TREG cells in AAA.

Similar content being viewed by others

References

  1. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Libby, P., Lichtman, A. H. & Hansson, G. K. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 38, 1092–1104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6, 345–352 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Fahlen, L. et al. T cells that cannot respond to TGF-beta escape control by CD4(+)CD25(+) regulatory T cells. J. Exp. Med. 201, 737–746 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Green, E. A., Gorelik, L., McGregor, C. M., Tran, E. H. & Flavell, R. A. CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-beta-TGF-beta receptor interactions in type 1 diabetes. Proc. Natl Acad. Sci. USA 100, 10878–10883 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meng, X. et al. Regulatory T cells prevent angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E knockout mice. Hypertension 64, 875–882 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Li, M. O., Wan, Y. Y. & Flavell, R. A. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26, 579–591 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Nakamura, K., Kitani, A. & Strober, W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J. Exp. Med. 194, 629–644 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, W. & Wahl, S. M. TGF-beta: the missing link in CD4+CD25+ regulatory T cell-mediated immunosuppression. Cytokine Growth Factor Rev. 14, 85–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, H. J., Hwang, S. J., Kim, B. K., Jung, K. C. & Chung, D. H. NKT cells play critical roles in the induction of oral tolerance by inducing regulatory T cells producing IL-10 and transforming growth factor beta, and by clonally deleting antigen-specific T cells. Immunology 118, 101–111 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mallat, Z. et al. Protective role of interleukin-10 in atherosclerosis. Circ. Res. 85, e17–e24 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Pinderski Oslund, L. J. et al. Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 19, 2847–2853 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Meng, X. et al. Regulatory T cells prevent plaque disruption in apolipoprotein E-knockout mice. Int. J. Cardiol. 168, 2684–2692 (2013).

    Article  PubMed  Google Scholar 

  16. Collison, L. W. et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450, 566–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Collison, L. W. et al. IL-35-mediated induction of a potent regulatory T cell population. Nat. Immunol. 11, 1093–1101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Misra, N., Bayry, J., Lacroix-Desmazes, S., Kazatchkine, M. D. & Kaveri, S. V. Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J. Immunol. 172, 4676–4680 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Serra, P. et al. CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells. Immunity 19, 877–889 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600–603 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liang, B. et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J. Immunol. 180, 5916–5926 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Grohmann, U. et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat. Immunol. 3, 1097–1101 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4, 1206–1212 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Borsellino, G. et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110, 1225–1232 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zarek, P. E. et al. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood 111, 251–259 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pandiyan, P., Zheng, L., Ishihara, S., Reed, J. & Lenardo, M. J. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat. Immunol. 8, 1353–1362 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Thornton, A. M. & Shevach, E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haas, J. et al. Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur. J. Immunol. 35, 3343–3352 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Nolte-'t Hoen, E. N. et al. Identification and monitoring of effector and regulatory T cells during experimental arthritis based on differential expression of CD25 and CD134. J. Leukoc. Biol. 83, 112–121 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, F. Perforin: more than just a pore-forming protein. Int. Rev. Immunol 29, 56–76 (2010).

    Article  PubMed  Google Scholar 

  33. Gondek, D. C., Lu, L. F., Quezada, S. A., Sakaguchi, S. & Noelle, R. J. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol. 174, 1783–1786 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Cao, X. et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27, 635–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Bystry, R. S., Aluvihare, V., Welch, K. A., Kallikourdis, M. & Betz, A. G. B cells and professional APCs recruit regulatory T cells via CCL4. Nat. Immunol. 2, 1126–1132 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Seo, S. J. et al. The impact of T helper and T regulatory cells on the regulation of anti-double-stranded DNA B cells. Immunity 16, 535–546 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Lim, H. W., Hillsamer, P., Banham, A. H. & Kim, C. H. Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells. J. Immunol. 175, 4180–4183 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Iikuni, N., Lourenco, E. V., Hahn, B. H. & La Cava, A. Cutting edge: regulatory T cells directly suppress B cells in systemic lupus erythematosus. J. Immunol. 183, 1518–1522 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Gotot, J. et al. Regulatory T cells use programmed death 1 ligands to directly suppress autoreactive B cells in vivo. Proc. Natl Acad. Sci. USA 109, 10468–10473 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rader, D. J. & Daugherty, A. Translating molecular discoveries into new therapies for atherosclerosis. Nature 451, 904–913 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Chaudhry, A. & Rudensky, A. Y. Control of inflammation by integration of environmental cues by regulatory T cells. J. Clin. Invest. 123, 939–944 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, W. Regulatory T cells use “Itch” to control asthma. J. Clin. Invest. 123, 4576–4578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. He, S., Li, M., Ma, X., Lin, J. & Li, D. CD4+CD25+Foxp3+ regulatory T cells protect the proinflammatory activation of human umbilical vein endothelial cells. Arterioscler. Thromb. Vasc. Biol. 30, 2621–2630 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Pastrana, J. L. et al. Regulatory T cells and atherosclerosis. J. Clin. Exp. Cardiolog. 2012, 2 (2012).

    PubMed  Google Scholar 

  45. Wang, Z. et al. Effect of hyperlipidemia on Foxp3 expression in apolipoprotein E-knockout mice. J. Cardiovasc. Med. (Hagerstown) 15, 273–279 (2014).

    Article  CAS  Google Scholar 

  46. Mor, A. et al. Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27, 893–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12, 178–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Mallat, Z. et al. Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation 108, 1232–1237 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Feng, J. et al. Regulatory T cells ameliorate hyperhomocysteinaemia-accelerated atherosclerosis in apoE-/- mice. Cardiovasc. Res. 84, 155–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Zhong, Y. et al. CD4+LAP+ and CD4+CD25+Foxp3+ regulatory T cells induced by nasal oxidized low-density lipoprotein suppress effector T cells response and attenuate atherosclerosis in ApoE-/- mice. J. Clin. Immunol. 32, 1104–1117 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Meng, X. et al. Statins induce the accumulation of regulatory T cells in atherosclerotic plaque. Mol. Med. 18, 598–605 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mausner-Fainberg, K. et al. The effect of HMG-CoA reductase inhibitors on naturally occurring CD4+CD25+ T cells. Atherosclerosis 197, 829–839 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Sokolov, V. O., Krasnikova, T. L., Prokofieva, L. V., Kukhtina, N. B. & Arefieva, T. I. Expression of markers of regulatory CD4+CD25+foxp3+ cells in atherosclerotic plaques of human coronary arteries. Bull. Exp. Biol. Med. 147, 726–729 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. de Boer, O. J., van der Meer, J. J., Teeling, P., van der Loos, C. M. & van der Wal, A. C. Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions. PLoS ONE 2, e779 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Liu, Z. D. et al. Increased Th17 cell frequency concomitant with decreased Foxp3+ Treg cell frequency in the peripheral circulation of patients with carotid artery plaques. Inflamm. Res. 61, 1155–1165 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Dietel, B. et al. Decreased numbers of regulatory T cells are associated with human atherosclerotic lesion vulnerability and inversely correlate with infiltrated mature dendritic cells. Atherosclerosis 230, 92–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Rohm, I. et al. Decreased regulatory T cells in vulnerable atherosclerotic lesions: imbalance between pro- and anti-inflammatory cells in atherosclerosis. Mediators Inflamm. 2015, 364710 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. George, J. et al. Regulatory T cells and IL-10 levels are reduced in patients with vulnerable coronary plaques. Atherosclerosis 222, 519–523 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Cheng, X. et al. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin. Immunol. 127, 89–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Mor, A., Luboshits, G., Planer, D., Keren, G. & George, J. Altered status of CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndromes. Eur. Heart J. 27, 2530–2537 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Emoto, T. et al. Regulatory/effector T-cell ratio is reduced in coronary artery disease. Circ. J. 78, 2935–2941 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, W. C. et al. Impaired thymic export and increased apoptosis account for regulatory T cell defects in patients with non-ST segment elevation acute coronary syndrome. J. Biol. Chem. 287, 34157–34166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ammirati, E. et al. Circulating CD4+CD25hiCD127lo regulatory T-Cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30, 1832–1841 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Libby, P., Ridker, P. M. & Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Klingenberg, R. et al. Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J. Clin. Invest. 123, 1323–1334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Foks, A. C. et al. Differential effects of regulatory T cells on the initiation and regression of atherosclerosis. Atherosclerosis 218, 53–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Lin, J. et al. The role of CD4+CD25+ regulatory T cells in macrophage-derived foam-cell formation. J. Lipid Res. 51, 1208–1217 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Tiemessen, M. M. et al. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc. Natl Acad. Sci. USA 104, 19446–19451 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Subramanian, M., Thorp, E., Hansson, G. K. & Tabas, I. Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. J. Clin. Invest. 123, 179–188 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Mallat, Z. et al. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ. Res. 89, 930–934 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Robertson, A. K. et al. Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J. Clin. Invest. 112, 1342–1350 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Caligiuri, G. et al. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol. Med. 9, 10–17 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu, Y. et al. Inhibition of atherogenesis in LDLR knockout mice by systemic delivery of adeno-associated virus type 2-hIL-10. Atherosclerosis 188, 19–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Bobryshev, Y. V., Sobenin, I. A., Orekhov, A. N. & Chistiakov, D. A. Novel anti-inflammatory interleukin-35 as an emerging target for antiatherosclerotic therapy. Curr. Pharm. Des. 21, 1147–1151 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Ait-Oufella, H. et al. B cell depletion reduces the development of atherosclerosis in mice. J. Exp. Med. 207, 1579–1587 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kyaw, T. et al. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J. Immunol. 185, 4410–4419 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Tsiantoulas, D., Sage, A. P., Mallat, Z. & Binder, C. J. Targeting B cells in atherosclerosis: closing the gap from bench to bedside. Arterioscler. Thromb. Vasc. Biol. 35, 296–302 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Viel, E. C., Lemarie, C. A., Benkirane, K., Paradis, P. & Schiffrin, E. L. Immune regulation and vascular inflammation in genetic hypertension. Am. J. Physiol. Heart Circ. Physiol. 298, H938–H944 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Guzik, T. J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Matrougui, K. et al. Natural regulatory T cells control coronary arteriolar endothelial dysfunction in hypertensive mice. Am. J. Pathol. 178, 434–441 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kassan, M., Wecker, A., Kadowitz, P., Trebak, M. & Matrougui, K. CD4+CD25+Foxp3 regulatory T cells and vascular dysfunction in hypertension. J. Hypertens. 31, 1939–1943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, M. et al. CD4+CD25+Foxp3+ regulatory T cells protect endothelial function impaired by oxidized low density lipoprotein via the KLF-2 transcription factor. Cell Physiol. Biochem. 28, 639–648 (2011).

    Article  PubMed  CAS  Google Scholar 

  83. Chiasson, V. L. et al. FK506 binding protein 12 deficiency in endothelial and hematopoietic cells decreases regulatory T cells and causes hypertension. Hypertension 57, 1167–1175 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Kasal, D. A. et al. T regulatory lymphocytes prevent aldosterone-induced vascular injury. Hypertension 59, 324–330 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Barhoumi, T. et al. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension 57, 469–476 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Kassan, M., Galan, M., Partyka, M., Trebak, M. & Matrougui, K. Interleukin-10 released by CD4(+)CD25(+) natural regulatory T cells improves microvascular endothelial function through inhibition of NADPH oxidase activity in hypertensive mice. Arterioscler. Thromb. Vasc. Biol. 31, 2534–2542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, Z. et al. Treatment with telmisartan/rosuvastatin combination has a beneficial synergistic effect on ameliorating Th17/Treg functional imbalance in hypertensive patients with carotid atherosclerosis. Atherosclerosis 233, 291–299 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Kvakan, H. et al. Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation 119, 2904–2912 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Kanellakis, P., Dinh, T. N., Agrotis, A. & Bobik, A. CD4(+)CD25(+)Foxp3(+) regulatory T cells suppress cardiac fibrosis in the hypertensive heart. J. Hypertens. 29, 1820–1828 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Ait-Oufella, H. et al. Natural regulatory T cells limit angiotensin II-induced aneurysm formation and rupture in mice. Arterioscler. Thromb. Vasc. Biol. 33, 2374–2379 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Leibowitz, A., Rehman, A., Paradis, P. & Schiffrin, E. L. Role of T regulatory lymphocytes in the pathogenesis of high-fructose diet-induced metabolic syndrome. Hypertension 61, 1316–1321 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Yodoi, K. et al. Foxp3+ Regulatory T Cells play a protective role in angiotensin II-induced aortic aneurysm formation in mice. Hypertension 65, 889–895 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Golledge, J., Muller, J., Daugherty, A. & Norman, P. Abdominal aortic aneurysm: pathogenesis and implications for management. Arterioscler. Thromb. Vasc. Biol. 26, 2605–2613 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Yin, M. et al. Deficient CD4+CD25+ T regulatory cell function in patients with abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 30, 1825–1831 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Tamosiuniene, R. et al. Regulatory T cells limit vascular endothelial injury and prevent pulmonary hypertension. Circ. Res. 109, 867–879 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Miyata, M. et al. Athymic nude rats develop severe pulmonary hypertension following monocrotaline administration. Int. Arch. Allergy Immunol. 121, 246–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Rabieyousefi, M. et al. Indispensable roles of OX40L-derived signal and epistatic genetic effect in immune-mediated pathogenesis of spontaneous pulmonary hypertension. BMC Immunol. 12, 67 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nicolls, M. R. et al. New models of pulmonary hypertension based on VEGF receptor blockade-induced endothelial cell apoptosis. Pulm. Circ. 2, 434–442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tamosiuniene, R. & Nicolls, M. R. Regulatory T cells and pulmonary hypertension. Trends Cardiovasc. Med. 21, 166–171 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, B., Calvert, A. E., Meng, X. & Nelin, L. D. Pharmacologic agents elevating cAMP prevent arginase II expression and proliferation of pulmonary artery smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 47, 218–226 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chu, Y., Xiangli, X. & Xiao, W. Regulatory T cells protect against hypoxia-induced pulmonary arterial hypertension in mice. Mol. Med. Rep. 11, 3181–3187 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Ulrich, S., Nicolls, M. R., Taraseviciene, L., Speich, R. & Voelkel, N. Increased regulatory and decreased CD8+ cytotoxic T cells in the blood of patients with idiopathic pulmonary arterial hypertension. Respiration 75, 272–280 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Austin, E. D. et al. T lymphocyte subset abnormalities in the blood and lung in pulmonary arterial hypertension. Respir. Med. 104, 454–462 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Perros, F., Cohen-Kaminsky, S. & Humbert, M. Understanding the role of CD4+CD25 (high) (so-called regulatory) T cells in idiopathic pulmonary arterial hypertension. Respiration 75, 253–256 (2008).

    Article  PubMed  Google Scholar 

  105. Huertas, A. et al. Leptin and regulatory T-lymphocytes in idiopathic pulmonary arterial hypertension. Eur. Respir. J. 40, 895–904 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Martinez, H. G. et al. Important role of CCR2 in a murine model of coronary vasculitis. BMC Immunol. 13, 56 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Burns, J. C. Kawasaki disease update. Indian J. Pediatr. 76, 71–76 (2009).

    Article  PubMed  Google Scholar 

  108. Jia, S., Li, C., Wang, G., Yang, J. & Zu, Y. The T helper type 17/regulatory T cell imbalance in patients with acute Kawasaki disease. Clin. Exp. Immunol. 162, 131–137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ni, F. F. et al. Regulatory T cell microRNA expression changes in children with acute Kawasaki disease. Clin. Exp. Immunol. 178, 384–393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hirabayashi, Y. et al. Lack of CD4(+)CD25(+)FOXP3(+) regulatory T cells is associated with resistance to intravenous immunoglobulin therapy in patients with Kawasaki disease. Eur. J. Pediatr. 172, 833–837 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Kimura, J. et al. Th1 and Th2 cytokine production is suppressed at the level of transcriptional regulation in Kawasaki disease. Clin. Exp. Immunol. 137, 444–449 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Furuno, K. et al. CD25+CD4+ regulatory T cells in patients with Kawasaki disease. J. Pediatr. 145, 385–390 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Kessel, A. et al. Intravenous immunoglobulin therapy affects T regulatory cells by increasing their suppressive function. J. Immunol. 179, 5571–5575 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Sharir, R. et al. Experimental myocardial infarction induces altered regulatory T cell hemostasis, and adoptive transfer attenuates subsequent remodeling. PLoS ONE 9, e113653 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Saxena, A. et al. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am. J. Physiol. Heart Circ. Physiol. 307, H1233–H1242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ghourbani Gazar, S., Andalib, A., Hashemi, M. & Rezaei, A. CD4(+)Foxp3(+) Treg and its ICOS(+) subsets in patients with myocardial infarction. Iran J. Immunol. 9, 53–60 (2012).

    PubMed  Google Scholar 

  117. Wigren, M. et al. Low levels of circulating CD4+FoxP3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arterioscler. Thromb. Vasc. Biol. 32, 2000–2004 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Hofmann, U. & Frantz, S. Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction. Circ. Res. 116, 354–367 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Tang, T. T. et al. Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res. Cardiol. 107, 232 (2012).

    Article  PubMed  Google Scholar 

  120. Weirather, J. et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115, 55–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Dobaczewski, M., Xia, Y., Bujak, M., Gonzalez-Quesada, C. & Frangogiannis, N. G. CCR5 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart, mediating recruitment of regulatory T cells. Am. J. Pathol. 176, 2177–2187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Matsumoto, K. et al. Regulatory T lymphocytes attenuate myocardial infarction-induced ventricular remodeling in mice. Int. Heart J. 52, 382–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Xia, N. et al. Activated regulatory T cells attenuate myocardial ischemia/reperfusion injury through a CD39-dependent mechanism. Clin. Sci. 128, 679–693 (2015).

    Article  CAS  Google Scholar 

  124. Zouggari, Y. et al. Regulatory T cells modulate postischemic neovascularization. Circulation 120, 1415–1425 (2009).

    Article  PubMed  Google Scholar 

  125. Sharir, R. et al. Regulatory T cells influence blood flow recovery in experimental hindlimb ischaemia in an IL-10-dependent manner. Cardiovasc. Res. 103, 585–596 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Hellingman, A. A. et al. A limited role for regulatory T cells in post-ischemic neovascularization. J. Cell. Mol. Med. 16, 328–336 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Stabile, E. et al. Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation 108, 205–210 (2003).

    Article  PubMed  Google Scholar 

  128. Niiyama, H. et al. Roles of endogenous monocyte chemoattractant protein-1 in ischemia-induced neovascularization. J. Am. Coll. Cardiol. 44, 661–666 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Sasaki, K. et al. Evidence for the importance of angiotensin II type 1 receptor in ischemia-induced angiogenesis. J. Clin. Invest. 109, 603–611 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Silvestre, J. S. et al. Antiangiogenic effect of interleukin-10 in ischemia-induced angiogenesis in mice hindlimb. Circ. Res. 87, 448–452 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Mahrholdt, H. et al. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114, 1581–1590 (2006).

    Article  PubMed  Google Scholar 

  132. Tam, P. E. Coxsackievirus myocarditis: interplay between virus and host in the pathogenesis of heart disease. Viral Immunol. 19, 133–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Watanabe, K. et al. Regulation of inflammation and myocardial fibrosis in experimental autoimmune myocarditis. Inflamm. Allergy Drug Targets 10, 218–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Cihakova, D. & Rose, N. R. Pathogenesis of myocarditis and dilated cardiomyopathy. Adv. Immunol. 99, 95–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Afanasyeva, M., Georgakopoulos, D. & Rose, N. R. Autoimmune myocarditis: cellular mediators of cardiac dysfunction. Autoimmun. Rev. 3, 476–486 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Lee, J. H. et al. Myosin-primed tolerogenic dendritic cells ameliorate experimental autoimmune myocarditis. Cardiovasc. Res. 101, 203–210 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Woodruff, J. F. & Woodruff, J. J. Involvement of T lymphocytes in the pathogenesis of coxsackie virus B3 heart disease. J. Immunol. 113, 1726–1734 (1974).

    CAS  PubMed  Google Scholar 

  138. Rouse, B. T., Sarangi, P. P. & Suvas, S. Regulatory T cells in virus infections. Immunol. Rev. 212, 272–286 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Wei, L., Wei-Min, L., Cheng, G. & Bao-Guo, Z. Upregulation of CD4+CD25+ T lymphocyte by adenovirus-mediated gene transfer of CTLA4Ig fusion protein in experimental autoimmune myocarditis. Autoimmunity 39, 289–298 (2006).

    Article  PubMed  CAS  Google Scholar 

  140. Miteva, K. et al. Human cardiac-derived adherent proliferating cells reduce murine acute Coxsackievirus B3-induced myocarditis. PLoS ONE 6, e28513 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chen, P. et al. Susceptibility to autoimmune myocarditis is associated with intrinsic differences in CD4(+) T cells. Clin. Exp. Immunol. 169, 79–88 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shi, Y. et al. Regulatory T cells protect mice against coxsackievirus-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway. Circulation 121, 2624–2634 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Huber, S. A., Feldman, A. M. & Sartini, D. Coxsackievirus B3 induces T regulatory cells, which inhibit cardiomyopathy in tumor necrosis factor-alpha transgenic mice. Circ. Res. 99, 1109–1116 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Ono, M., Shimizu, J., Miyachi, Y. & Sakaguchi, S. Control of autoimmune myocarditis and multiorgan inflammation by glucocorticoid-induced TNF receptor family-related protein(high), Foxp3-expressing CD25+ and CD25- regulatory T cells. J. Immunol. 176, 4748–4756 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Papageorgiou, A. P. et al. Thrombospondin-2 prevents cardiac injury and dysfunction in viral myocarditis through the activation of regulatory T-cells. Cardiovasc. Res. 94, 115–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Vasconcelos, J. F. et al. Administration of granulocyte colony-stimulating factor induces immunomodulation, recruitment of T regulatory cells, reduction of myocarditis and decrease of parasite load in a mouse model of chronic Chagas disease cardiomyopathy. FASEB J. 27, 4691–4702 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Tajiri, K. et al. Endothelin receptor antagonist exacerbates autoimmune myocarditis in mice. Life Sci. 118, 288–296 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Xie, Y. et al. The role of Th17 cells and regulatory T cells in Coxsackievirus B3-induced myocarditis. Virology 421, 78–84 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Okura, Y. et al. Recombinant murine interleukin-12 facilitates induction of cardiac myosin-specific type 1 helper T cells in rats. Circ. Res. 82, 1035–1042 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Noutsias, M. et al. Expression of functional T-cell markers and T-cell receptor Vbeta repertoire in endomyocardial biopsies from patients presenting with acute myocarditis and dilated cardiomyopathy. Eur. J. Heart Fail. 13, 611–618 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Kubota, T. et al. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ. Res. 81, 627–635 (1997).

    Article  CAS  PubMed  Google Scholar 

  152. Tang, Z. et al. Gene expression profiling during the transition to failure in TNF-alpha over-expressing mice demonstrates the development of autoimmune myocarditis. J. Mol. Cell. Cardiol. 36, 515–530 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Li, N. et al. The Th17/Treg imbalance exists in patients with heart failure with normal ejection fraction and heart failure with reduced ejection fraction. Clin. Chim. Acta 411, 1963–1968 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Tang, H. et al. Low responder T cell susceptibility to the suppressive function of regulatory T cells in patients with dilated cardiomyopathy. Heart 96, 765–771 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Bulut, D., Creutzenberg, G. & Mugge, A. The number of regulatory T cells correlates with hemodynamic improvement in patients with inflammatory dilated cardiomyopathy after immunoadsorption therapy. Scand. J. Immunol. 77, 54–61 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Pistulli, R. et al. Decrease in dendritic cells in endomyocardial biopsies of human dilated cardiomyopathy. Eur. J. Heart Fail. 15, 974–985 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Barsheshet, A. et al. Time-dependent benefit of preventive cardiac resynchronization therapy after myocardial infarction. Eur. Heart J. 32, 1614–1621 (2011).

    Article  PubMed  Google Scholar 

  158. Cao, Y., Xu, W. & Xiong, S. Adoptive transfer of regulatory T cells protects against Coxsackievirus B3-induced cardiac fibrosis. PLoS ONE 8, e74955 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tang, T. T. et al. Defective circulating CD4CD25+Foxp3+CD127(low) regulatory T-cells in patients with chronic heart failure. Cell Physiol. Biochem. 25, 451–458 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Tang, T. T. et al. Impaired thymic export and apoptosis contribute to regulatory T-cell defects in patients with chronic heart failure. PLoS ONE 6, e24272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Okamoto, N. et al. Prognostic value of circulating regulatory T cells for worsening heart failure in heart failure patients with reduced ejection fraction. Int. Heart J. 55, 271–277 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Guilherme, L. & Kalil, J. Rheumatic fever and rheumatic heart disease: cellular mechanisms leading autoimmune reactivity and disease. J. Clin. Immunol. 30, 17–23 (2010).

    Article  PubMed  Google Scholar 

  163. Mukhopadhyay, S. et al. Regulatory T-cell deficiency in rheumatic heart disease: a preliminary observational study. J. Heart Valve Dis. 22, 118–125 (2013).

    PubMed  Google Scholar 

  164. Bas, H. D. et al. A shift in the balance of regulatory T and T helper 17 cells in rheumatic heart disease. J. Investig. Med. 62, 78–83 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Yildiz, A. et al. Circulating CD4+CD25+ T cells in rheumatic mitral stenosis. J. Heart Valve Dis. 16, 461–467 (2007).

    PubMed  Google Scholar 

  166. Brea, D. et al. Regulatory T cells modulate inflammation and reduce infarct volume in experimental brain ischaemia. J. Cell. Mol. Med. 18, 1571–1579 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yilmaz, G. & Granger, D. N. Leukocyte recruitment and ischemic brain injury. Neuromolecular Med. 12, 193–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Kleinschnitz, C. et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood 121, 679–691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Li, Q. et al. Peripheral Th17/Treg imbalance in patients with atherosclerotic cerebral infarction. Int. J. Clin. Exp. Pathol. 6, 1015–1027 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Hu, Y., Zheng, Y., Wu, Y., Ni, B. & Shi, S. Imbalance between IL-17A-producing cells and regulatory T cells during ischemic stroke. Mediators Inflamm. 2014, 813045 (2014).

    PubMed  PubMed Central  Google Scholar 

  171. Yan, J. et al. Frequency and function of regulatory T cells after ischaemic stroke in humans. J. Neuroimmunol. 243, 89–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Yan, J. et al. Immune activation in the peripheral blood of patients with acute ischemic stroke. J. Neuroimmunol. 206, 112–117 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Offner, H. et al. Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J. Immunol. 176, 6523–6531 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Li, P. et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann. Neurol. 74, 458–471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Trzonkowski, P. et al. First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127 T regulatory cells. Clin. Immunol. 133, 22–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Brunstein, C. G. et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 117, 1061–1070 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Marek-Trzonkowska, N. et al. Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets—results of one year follow-up. Clin. Immunol. 153, 23–30 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

X.M, J.Y., M.D, K.Z., C.Z. and Y.Z. are supported by the National 973 Basic Research Program of China (2011CB503906, 2012CB518603, 2013CB530703), the National High-Tech Research and Development Program of China (2012AA02A510), the Program of Introducing Talents of Discipline to Universities (B07035), the State Program of National Natural Science Foundation of China for Innovative Research Group (81321061), the State Key Program of National Natural Science of China (61331001), the International Collaboration and Exchange Program of China (81320108004), and research grants from the National Natural Science Foundation of China (81100207, 81173251, 81270350, and 81300234). E.T. and W.C. are supported by the Intramural Research Program of NIH, NIDCR.

Author information

Authors and Affiliations

Authors

Contributions

Q.G. researched the data for the article and provided substantial contribution to discussions of the content. M.D., K.Z., and E.T. researched data for the article, provided substantial contribution to discussions of the content, and contributed to writing the article. C.Z., X.M., J.Y., W.C., and Y.Z. researched data for the article, discussed its content, wrote the manuscript, and reviewed/edited it before submission.

Corresponding author

Correspondence to Cheng Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Yang, J., Dong, M. et al. Regulatory T cells in cardiovascular diseases. Nat Rev Cardiol 13, 167–179 (2016). https://doi.org/10.1038/nrcardio.2015.169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing