Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting BMP signalling in cardiovascular disease and anaemia

Key Points

  • Bone morphogenetic proteins (BMPs) have important roles in cardiovascular growth, homeostasis, and disease development

  • The wide repertoire of BMP ligands and receptors, coupled with numerous modifiers of BMP signalling, confer marked tissue-specific and cell-specific responses to BMPs

  • Understanding the context-specific nature of BMP signalling can help to guide the development of novel therapeutics to treat cardiovascular disease and anaemia

  • Small molecule inhibition of BMP signalling is efficacious in preclinical models of atherosclerosis, vascular calcification, and anaemia

  • Enhancement of BMP receptor-II (BMPR-II) signalling by increasing cell-surface levels of BMPR-II or by endothelial-selective BMPR-II agonists such as BMP9 shows promise in preclinical models of pulmonary arterial hypertension

Abstract

Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonic patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders including heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell-specific and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signalling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, as well as for anaemia of inflammation. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signalling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The repertoire of receptor complexes and ligands involved in cardiovascular and related metabolic responses to BMP signalling.
Figure 2: Potential approaches to target and enhance signalling or expression of BMPR-II.

Similar content being viewed by others

References

  1. Urist, M. R., Jurist, J. M. Jr, Dubuc, F. L. & Strates, B. S. Quantitation of new bone formation in intramuscular implants of bone matrix in rabbits. Clin. Orthop. Relat. Res. 68, 279–293 (1970).

    Article  CAS  PubMed  Google Scholar 

  2. Rosen, V. et al. Purification and molecular cloning of a novel group of BMPs and localization of BMP mRNA in developing bone. Connect. Tissue Res. 20, 313–319 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. David, L. et al. Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ. Res. 102, 914–922 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vukicevic, S. & Grgurevic, L. BMP-6 and mesenchymal stem cell differentiation. Cytokine Growth Factor Rev. 20, 441–448 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Laux, D. W. et al. Circulating Bmp10 acts through endothelial Alk1 to mediate flow-dependent arterial quiescence. Development 140, 3403–3412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Herrera, B. & Inman, G. J. A rapid and sensitive bioassay for the simultaneous measurement of multiple bone morphogenetic proteins. Identification and quantification of BMP4, BMP6 and BMP9 in bovine and human serum. BMC Cell Biol. 10, 20 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. ten Dijke, P. et al. Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4. J. Biol. Chem. 269, 16985–16988 (1994).

    CAS  PubMed  Google Scholar 

  8. Nohno, T. et al. Identification of a human type II receptor for bone morphogenetic protein-4 that forms differential heteromeric complexes with bone morphogenetic protein type I receptors. J. Biol. Chem. 270, 22522–22526 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Rosenzweig, B. L. et al. Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc. Natl Acad. Sci. USA 92, 7632–7636 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. David, L., Mallet, C., Mazerbourg, S., Feige, J. J. & Bailly, S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) endothelial cells. Blood 109, 1953–1961 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Little, S. C. & Mullins, M. C. Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat. Cell Biol. 11, 637–643 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jones, C. M. & Smith, J. C. Establishment of a BMP-4 morphogen gradient by long-range inhibition. Dev. Biol. 194, 12–17 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Song, K. et al. Identification of a key residue mediating bone morphogenetic protein (BMP)-6 resistance to noggin inhibition allows for engineered BMPs with superior agonist activity. J. Biol. Chem. 285, 12169–12180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yao, Y. et al. Crossveinless 2 regulates bone morphogenetic protein 9 in human and mouse vascular endothelium. Blood 119, 5037–5047 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kirkbride, K. C., Townsend, T. A., Bruinsma, M. W., Barnett, J. V. & Blobe, G. C. Bone morphogenetic proteins signal through the transforming growth factor-β type III receptor. J. Biol. Chem. 283, 7628–7637 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Scharpfenecker, M. et al. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J. Cell Sci. 120, 964–972 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Corradini, E., Babitt, J. L. & Lin, H. Y. The RGM/DRAGON family of BMP co-receptors. Cytokine Growth Factor Rev. 20, 389–398 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Venkatesha, S. et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med. 12, 642–649 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Choi, E. J. et al. Enhanced responses to angiogenic cues underlie the pathogenesis of hereditary hemorrhagic telangiectasia 2. PLoS ONE 8, e63138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Choi, E. J. et al. Minimal homozygous endothelial deletion of Eng with VEGF stimulation is sufficient to cause cerebrovascular dysplasia in the adult mouse. Cerebrovasc. Dis. 33, 540–547 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Nolan-Stevaux, O. et al. Endoglin requirement for BMP9 signaling in endothelial cells reveals new mechanism of action for selective anti-endoglin antibodies. PLoS ONE 7, e50920 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Upton, P. D., Davies, R. J., Trembath, R. C. & Morrell, N. W. Bone morphogenetic protein (BMP) and activin type II receptors balance BMP9 signals mediated by activin receptor-like kinase-1 in human pulmonary artery endothelial cells. J. Biol. Chem. 284, 15794–15804 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yao, Y. et al. High-density lipoproteins affect endothelial BMP-signaling by modulating expression of the activin-like kinase receptor 1 and 2. Arterioscler. Thromb. Vasc. Biol. 28, 2266–2274 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, X., Yang, H. Y. & Giachelli, C. M. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis 199, 271–277 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chan, M. C. et al. A novel regulatory mechanism of the bone morphogenetic protein (BMP) signaling pathway involving the carboxyl-terminal tail domain of BMP type II receptor. Mol. Cell. Biol. 27, 5776–5789 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu, P. B. et al. Bone morphogenetic protein (BMP) type ii receptor is required for BMP-mediated growth arrest and differentiation in pulmonary artery smooth muscle cells. J. Biol. Chem. 283, 3877–3888 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Yu, P. B., Beppu, H., Kawai, N., Li, E. & Bloch, K. D. Bone morphogenetic protein (BMP) type II receptor deletion reveals BMP ligand-specific gain of signaling in pulmonary artery smooth muscle cells. J. Biol. Chem. 280, 24443–24450 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Pachori, A. S. et al. Bone morphogenetic protein 4 mediates myocardial ischemic injury through JNK-dependent signaling pathway. J. Mol. Cell. Cardiol. 48, 1255–1265 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Wu, X. et al. Expression of bone morphogenetic protein 4 and its receptors in the remodeling heart. Life Sci. 97, 145–154 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Malhotra, R. et al. Inhibition of bone morphogenetic protein signal transduction prevents the medial vascular calcification associated with matrix Gla protein deficiency. PLoS ONE 10, e0117098 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Derwall, M. et al. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 613–622 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Heinke, J. et al. Antagonism and synergy between extracellular BMP modulators Tsg and BMPER balance blood vessel formation. J. Cell Sci. 126, 3082–3094 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Yoshimatsu, Y. et al. Bone morphogenetic protein-9 inhibits lymphatic vessel formation via activin receptor-like kinase 1 during development and cancer progression. Proc. Natl Acad. Sci. USA 110, 18940–18945 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Minina, E., Kreschel, C., Naski, M. C., Ornitz, D. M. & Vortkamp, A. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev. Cell 3, 439–449 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Shao, E. S., Lin, L., Yao, Y. & Bostrom, K. I. Expression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors 1 and 5 in endothelial cells. Blood 114, 2197–2206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tokuda, H. et al. p38 MAP kinase regulates BMP-4-stimulated VEGF synthesis via p70 S6 kinase in osteoblasts. Am. J. Physiol. Endocrinol. Metab. 284, E1202–E1209 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Morikawa, M. et al. ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif. Nucleic Acids Res. 39, 8712–8727 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dahlqvist, C. et al. Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation. Development 130, 6089–6099 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. de Jong, D. S. et al. Regulation of Notch signaling genes during BMP2-induced differentiation of osteoblast precursor cells. Biochem. Biophys. Res. Commun. 320, 100–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Itoh, F. et al. Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO J. 23, 541–551 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moya, I. M. et al. Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades. Dev. Cell 22, 501–514 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bai, Y. et al. Bmp signaling represses Vegfa to promote outflow tract cushion development. Development 140, 3395–3402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garside, V. C., Chang, A. C., Karsan, A. & Hoodless, P. A. Co-ordinating Notch, BMP, and TGF-β signaling during heart valve development. Cell. Mol. Life Sci. 70, 2899–2917 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Mustonen, T. et al. Lunatic fringe, FGF, and BMP regulate the Notch pathway during epithelial morphogenesis of teeth. Dev. Biol. 248, 281–293 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Tirosh-Finkel, L. et al. BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors. Development 137, 2989–3000 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Mitchell, D. et al. ALK1-Fc inhibits multiple mediators of angiogenesis and suppresses tumor growth. Mol. Cancer Ther. 9, 379–388 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Babitt, J. L. et al. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J. Clin. Invest. 117, 1933–1939 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu, P. B. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 4, 33–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Mintzer, K. A. et al. Lost-a-fin encodes a type I BMP receptor, Alk8, acting maternally and zygotically in dorsoventral pattern formation. Development 128, 859–869 (2001).

    CAS  PubMed  Google Scholar 

  50. Cuny, G. D. et al. Structure–activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors. Bioorg. Med. Chem. Lett. 18, 4388–4392 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mohedas, A. H. et al. Structure–activity relationship of 3,5-diaryl-2-aminopyridine ALK2 inhibitors reveals unaltered binding affinity for fibrodysplasia ossificans progressiva causing mutants. J. Med. Chem. 57, 7900–7915 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sanvitale, C. E. et al. A new class of small molecule inhibitor of BMP signaling. PLoS ONE 8, e62721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cai, J., Pardali, E., Sánchez-Duffhues, G. & ten Dijke, P. BMP signaling in vascular diseases. FEBS Lett. 586, 1993–2002 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Pardali, E. & ten Dijke, P. TGFβ signaling and cardiovascular diseases. Int. J. Biol. Sci. 8, 195–213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Suzuki, Y. et al. BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J. Cell Sci. 123, 1684–1692 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Cunha, S. I. et al. Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J. Exp. Med. 207, 85–100 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hawinkels, L. J., Garcia de Vinuesa, A. & Ten Dijke, P. Activin receptor-like kinase 1 as a target for anti-angiogenesis therapy. Expert Opin. Investig. Drugs 22, 1371–1383 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. ten Dijke, P., Goumans, M. J. & Pardali, E. Endoglin in angiogenesis and vascular diseases. Angiogenesis 11, 79–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Valdimarsdottir, G. et al. Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation 106, 2263–2270 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Benezra, R., Rafii, S. & Lyden, D. The Id proteins and angiogenesis. Oncogene 20, 8334–8341 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Ciumas, M. et al. Bone morphogenetic proteins protect pulmonary microvascular endothelial cells from apoptosis by upregulating α-B-crystallin. Arterioscler. Thromb. Vasc. Biol. 33, 2577–2584 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Yang, J. et al. Id proteins are critical downstream effectors of BMP signaling in human pulmonary arterial smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 305, L312–L321 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lowery, J. W. et al. ID family protein expression and regulation in hypoxic pulmonary hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R1463–R1477 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Asirvatham, A. J., Schmidt, M. A. & Chaudhary, J. Non-redundant inhibitor of differentiation (Id) gene expression and function in human prostate epithelial cells. Prostate 66, 921–935 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Kang, H. et al. Bone morphogenetic protein 4 promotes vascular smooth muscle contractility by activating microRNA-21 (miR-21), which down-regulates expression of family of dedicator of cytokinesis (DOCK) proteins. J. Biol. Chem. 287, 3976–3986 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Kim, S., Hata, A. & Kang, H. Down-regulation of miR-96 by bone morphogenetic protein signaling is critical for vascular smooth muscle cell phenotype modulation. J. Cell. Biochem. 115, 889–895 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lagna, G. et al. Control of phenotypic plasticity of smooth muscle cells by bone morphogenetic protein signaling through the myocardin-related transcription factors. J. Biol. Chem. 282, 37244–37255 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Zhou, J. et al. BMP receptor-integrin interaction mediates responses of vascular endothelial Smad1/5 and proliferation to disturbed flow. J. Thromb. Haemost. 11, 741–755 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Kim, P. G. et al. Flow-induced protein kinase A-CREB pathway acts via BMP signaling to promote HSC emergence. J. Exp. Med. 212, 633–648 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Corti, P. et al. Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development 138, 1573–1582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Massague, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Miquerol, L. & Kelly, R. G. Organogenesis of the vertebrate heart. Wiley Interdiscip. Rev. Dev. Biol. 2, 17–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Tam, P. P., Parameswaran, M., Kinder, S. J. & Weinberger, R. P. The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation. Development 124, 1631–1642 (1997).

    CAS  PubMed  Google Scholar 

  74. Wessels, A. & Markwald, R. Cardiac morphogenesis and dysmorphogenesis I. Normal development. Methods Mol. Biol. 136, 239–259 (2000).

    CAS  PubMed  Google Scholar 

  75. Srivastava, D. & Olson, E. N. A genetic blueprint for cardiac development. Nature 407, 221–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Kruithof, B. P., Duim, S. N., Moerkamp, A. T. & Goumans, M. J. TGFβ and BMP signaling in cardiac cushion formation: lessons from mice and chicken. Differentiation 84, 89–102 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. van Wijk, B., Moorman, A. F. & van den Hoff, M. J. Role of bone morphogenetic proteins in cardiac differentiation. Cardiovasc. Res. 74, 244–255 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Hao, J. et al. Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS ONE 3, e2904 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yuasa, S. et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat. Biotechnol. 23, 607–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Bernardo, A. S. et al. BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell 9, 144–155 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Faial, T. et al. Brachyury and SMAD signalling collaboratively orchestrate distinct mesoderm and endoderm gene regulatory networks in differentiating human embryonic stem cells. Development 142, 2121–2135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Noseda, M., Peterkin, T., Simoes, F. C., Patient, R. & Schneider, M. D. Cardiopoietic factors: extracellular signals for cardiac lineage commitment. Circ. Res. 108, 129–152 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Cai, W. et al. Coordinate Nodal and BMP inhibition directs Baf60c-dependent cardiomyocyte commitment. Genes Dev. 27, 2332–2344 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kattman, S. J. et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8, 228–240 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Witty, A. D. et al. Generation of the epicardial lineage from human pluripotent stem cells. Nat. Biotechnol. 32, 1026–1035 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Iyer, D. et al. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells. Development 142, 1528–1541 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gittenberger-de Groot, A. C. et al. The arterial and cardiac epicardium in development, disease and repair. Differentiation 84, 41–53 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Javier, A. L. et al. Bmp indicator mice reveal dynamic regulation of transcriptional response. PLoS ONE 7, e42566 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Monteiro, R. M., de Sousa Lopes, S. M., Korchynskyi, O., ten Dijke, P. & Mummery, C. L. Spatio-temporal activation of Smad1 and Smad5 in vivo: monitoring transcriptional activity of Smad proteins. J. Cell Sci. 117, 4653–4663 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Monteiro, R. M. et al. Real time monitoring of BMP Smads transcriptional activity during mouse development. Genesis 46, 335–346 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Klaus, A., Saga, Y., Taketo, M. M., Tzahor, E. & Birchmeier, W. Distinct roles of Wnt/β-catenin and Bmp signaling during early cardiogenesis. Proc. Natl Acad. Sci. USA 104, 18531–18536 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gaussin, V. et al. Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc. Natl Acad. Sci. USA 99, 2878–2883 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ma, L., Lu, M. F., Schwartz, R. J. & Martin, J. F. Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132, 5601–5611 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Wang, Y. et al. Endocardial to myocardial notch–wnt–bmp axis regulates early heart valve development. PLoS ONE 8, e60244 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, J. et al. Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. Dev. Biol. 286, 299–310 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen, H. et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131, 2219–2231 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Huang, J. et al. Myocardin regulates BMP10 expression and is required for heart development. J. Clin. Invest. 122, 3678–3691 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Geudens, I. & Gerhardt, H. Coordinating cell behaviour during blood vessel formation. Development 138, 4569–4583 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Rothhammer, T., Bataille, F., Spruss, T., Eissner, G. & Bosserhoff, A. K. Functional implication of BMP4 expression on angiogenesis in malignant melanoma. Oncogene 26, 4158–4170 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Nakaoka, T. et al. Inhibition of rat vascular smooth muscle proliferation in vitro and in vivo by bone morphogenetic protein-2. J. Clin. Invest. 100, 2824–2832 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Willette, R. N. et al. BMP-2 gene expression and effects on human vascular smooth muscle cells. J. Vasc. Res. 36, 120–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Dorai, H., Vukicevic, S. & Sampath, T. K. Bone morphogenetic protein-7 (osteogenic protein-1) inhibits smooth muscle cell proliferation and stimulates the expression of markers that are characteristic of SMC phenotype in vitro. J. Cell. Physiol. 184, 37–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Dorai, H. & Sampath, T. K. Bone morphogenetic protein-7 modulates genes that maintain the vascular smooth muscle cell phenotype in culture. J. Bone Joint Surg. Am. 83 (Suppl. 1), S70–S78 (2001).

    PubMed  Google Scholar 

  105. Chen, W. et al. Reduced mural cell coverage and impaired vessel integrity after angiogenic stimulation in the Alk1-deficient brain. Arterioscler. Thromb. Vasc. Biol. 33, 305–310 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Upton, P. D., Davies, R. J., Tajsic, T. & Morrell, N. W. Transforming growth factor-β1 represses bone morphogenetic protein-mediated Smad signaling in pulmonary artery smooth muscle cells via Smad3. Am. J. Respir. Cell. Mol. Biol. 49, 1135–1145 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Loeys, B. L., Mortier, G. & Dietz, H. C. Bone lessons from Marfan syndrome and related disorders: fibrillin, TGF-B and BMP at the balance of too long and too short. Pediatr. Endocrinol. Rev. 10 (Suppl. 2), S417–S423 (2013).

    Google Scholar 

  108. Quarto, N., Li, S., Renda, A. & Longaker, M. T. Exogenous activation of BMP-2 signaling overcomes TGFβ-mediated inhibition of osteogenesis in Marfan embryonic stem cells and Marfan patient-specific induced pluripotent stem cells. Stem Cells 30, 2709–2719 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Guo, W. T. & Dong, D. L. Bone morphogenetic protein-4: a novel therapeutic target for pathological cardiac hypertrophy/heart failure. Heart Fail. Rev. 19, 781–788 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Lu, J. et al. Bone morphogenetic protein-2 antagonizes bone morphogenetic protein-4 induced cardiomyocyte hypertrophy and apoptosis. J. Cell. Physiol. 229, 1503–1510 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Sun, L. et al. Bone morphogenetic protein-10 induces cardiomyocyte proliferation and improves cardiac function after myocardial infarction. J. Cell. Biochem. 115, 1868–1876 (2014).

    CAS  PubMed  Google Scholar 

  112. Ebelt, H. et al. Treatment with bone morphogenetic protein 2 limits infarct size after myocardial infarction in mice. Shock 39, 353–360 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Son, J. W. et al. Serum BMP-4 levels in relation to arterial stiffness and carotid atherosclerosis in patients with Type 2 diabetes. Biomark. Med. 5, 827–835 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Stahls, P. F. 3rd, Lightell, D. J. Jr, Moss, S. C., Goldman, C. K. & Woods, T. C. Elevated serum bone morphogenetic protein 4 in patients with chronic kidney disease and coronary artery disease. J. Cardiovasc. Transl. Res. 6, 232–238 (2013).

    Article  PubMed  Google Scholar 

  115. Hoeper, M. M. et al. Definitions and diagnosis of pulmonary hypertension. J. Am. Coll. Cardiol. 62 (Suppl.), D42–D50 (2013).

    Article  PubMed  Google Scholar 

  116. Tuder, R. M. et al. Relevant issues in the pathology and pathobiology of pulmonary hypertension. J. Am. Coll. Cardiol. 62 (Suppl.), D4–D12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  117. McLaughlin, V. V. & McGoon, M. D. Pulmonary arterial hypertension. Circulation 114, 1417–1431 (2006).

    Article  PubMed  Google Scholar 

  118. Simonneau, G. et al. Updated clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 62 (Suppl.), D34–D41 (2013).

    Article  PubMed  Google Scholar 

  119. Loyd, J. E., Primm, R. K. & Newman, J. H. Familial primary pulmonary hypertension: clinical patterns. Am. Rev. Respir. Dis. 129, 194–197 (1984).

    CAS  PubMed  Google Scholar 

  120. The International PPH Consortium. et al. Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. Nat. Genet. 26, 81–84 (2000).

  121. Deng, Z. et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am. J. Hum. Genet. 67, 737–744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Machado, R. D. et al. Mutations of the TGF-β type II receptor BMPR2 in pulmonary arterial hypertension. Hum. Mutat. 27, 121–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Thomson, J. R. et al. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-β family. J. Med. Genet. 37, 741–745 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hassel, S. et al. Proteins associated with type II bone morphogenetic protein receptor (BMPR-II) and identified by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 4, 1346–1358 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Schwappacher, R. et al. Novel crosstalk to BMP signalling: cGMP-dependent kinase I modulates BMP receptor and Smad activity. EMBO J. 28, 1537–1550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Long, L. et al. Serotonin increases susceptibility to pulmonary hypertension in BMPR2-deficient mice. Circ. Res. 98, 818–827 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Long, L. et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat. Med. 21, 777–785 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Austin, E. D. & Loyd, J. E. The genetics of pulmonary arterial hypertension. Circ. Res. 115, 189–202 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Song, Y. et al. Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation 112, 553–562 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. West, J. et al. Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPRII gene in smooth muscle. Circ. Res. 94, 1109–1114 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Yang, X. et al. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ. Res. 10, 1053–1063 (2005).

    Article  Google Scholar 

  132. Morrell, N. W. et al. Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-β1 and bone morphogenetic proteins. Circulation 104, 790–795 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Yang, J. et al. Mutations in bone morphogenetic protein type II receptor cause dysregulation of Id gene expression in pulmonary artery smooth muscle cells: implications for familial pulmonary arterial hypertension. Circ. Res. 102, 1212–1221 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Yang, J. et al. Smad-dependent and Smad-independent induction of id1 by prostacyclin analogues inhibits proliferation of pulmonary artery smooth muscle cells in vitro and in vivo. Circ. Res. 107, 252–262 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Yang, J. et al. Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension. Arterioscler. Thromb. Vasc. Biol. 33, 34–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. David, L., Mallet, C., Mazerbourg, S., Feige, J. J. & Bailly, S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109, 1953–1961 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Trembath, R. C. et al. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N. Engl. J. Med. 345, 325–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Hong, K. H. et al. Genetic ablation of the Bmpr2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation 118, 722–730 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jerkic, M. et al. Pulmonary hypertension in adult Alk1 heterozygous mice due to oxidative stress. Cardiovasc. Res. 92, 375–384 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Teichert-Kuliszewska, K. et al. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ. Res. 98, 209–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Long, L. et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat. Med. 21, 777–785 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Drake, K. M., Dunmore, B. J., McNelly, L. N., Morrell, N. W. & Aldred, M. A. Correction of nonsense BMPR2 and SMAD9 mutations by ataluren in pulmonary arterial hypertension. Am. J. Respir. Cell. Mol. Biol. 49, 403–409 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sobolewski, A. et al. Failure of bone morphogenetic protein receptor trafficking in pulmonary arterial hypertension: potential for rescue. Hum. Mol. Genet. 17, 3180–3190 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Reynolds, A. M., Holmes, M. D., Danilov, S. M. & Reynolds, P. N. Targeted gene delivery of BMPR2 attenuates pulmonary hypertension. Eur. Respir. J. 39, 329–343 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Durrington, H. J. et al. Identification of a lysosomal pathway regulating degradation of the bone morphogenetic protein receptor type II. J. Biol. Chem. 285, 37641–37649 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dunmore, B. J. et al. The lysosomal inhibitor, chloroquine, increases cell surface BMPR-II levels and restores BMP9 signalling in endothelial cells harbouring BMPR-II mutations. Hum. Mol. Genet. 22, 3667–3679 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Long, L. et al. Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type II receptor degradation. Circ. Res. 112, 1159–1170 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Ryan, J. J. Chloroquine in pulmonary arterial hypertension: a new role for an old drug? Circ. Cardiovasc. Genet. 6, 310–311 (2013).

    Article  PubMed  Google Scholar 

  149. Spiekerkoetter, E. et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J. Clin. Invest. 123, 3600–3613 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Spiekerkoetter, E. et al. Low-dose FK506 (tacrolimus) in end-stage pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 192, 254–257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shovlin, C. L. & Letarte, M. Hereditary haemorrhagic telangiectasia and pulmonary arteriovenous malformations: issues in clinical management and review of pathogenic mechanisms. Thorax 54, 714–729 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. McDonald, J., Bayrak-Toydemir, P. & Pyeritz, R. E. Hereditary hemorrhagic telangiectasia: an overview of diagnosis, management, and pathogenesis. Genet. Med. 13, 607–616 (2011).

    Article  PubMed  Google Scholar 

  153. Sorensen, L. K., Brooke, B. S., Li, D. Y. & Urness, L. D. Loss of distinct arterial and venous boundaries in mice lacking endoglin, a vascular-specific TGFβ coreceptor. Dev. Biol. 261, 235–250 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. Arthur, H. M. et al. Endoglin, an ancillary TGFβ receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev. Biol. 217, 42–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  155. Urness, L. D., Sorensen, L. K. & Li, D. Y. Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat. Genet. 26, 328–331 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Oh, S. P. et al. Activin receptor-like kinase 1 modulates transforming growth factor-β 1 signaling in the regulation of angiogenesis. Proc. Natl Acad. Sci. USA 97, 2626–2631 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Johnson, D. W. et al. A second locus for hereditary hemorrhagic telangiectasia maps to chromosome 12. Genome Res. 5, 21–28 (1995).

    Article  CAS  PubMed  Google Scholar 

  158. Abdalla, S. A. et al. Primary pulmonary hypertension in families with hereditary haemorrhagic telangiectasia. Eur. Respir. J. 23, 373–377 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Gallione, C. et al. Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP-HHT syndrome. Am. J. Med. Genet. 152A, 333–339 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Wooderchak-Donahue, W. L. et al. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am. J. Hum. Genet. 93, 530–537 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hao, J. et al. In vivo structure–activity relationship study of dorsomorphin analogues identifies selective VEGF and BMP inhibitors. ACS Chem. Biol. 5, 245–253 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Azhar, M. et al. Transforming growth factor Beta2 is required for valve remodeling during heart development. Dev. Dyn. 240, 2127–2141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lebrin, F. et al. Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat. Med. 16, 420–428 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Han, C. et al. VEGF neutralization can prevent and normalize arteriovenous malformations in an animal model for hereditary hemorrhagic telangiectasia 2. Angiogenesis 17, 823–830 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bose, P., Holter, J. L. & Selby, G. B. Bevacizumab in hereditary hemorrhagic telangiectasia. N. Engl. J. Med. 360, 2143–2144 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Bauditz, J., Lochs, H. & Voderholzer, W. Macroscopic appearance of intestinal angiodysplasias under antiangiogenic treatment with thalidomide. Endoscopy 38, 1036–1039 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Bauditz, J. & Lochs, H. Angiogenesis and vascular malformations: antiangiogenic drugs for treatment of gastrointestinal bleeding. World J. Gastroenterol. 13, 5979–5984 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chen, W., Young, W. L. & Su, H. Induction of brain arteriovenous malformation in the adult mouse. Methods Mol. Biol. 1135, 309–316 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Dupuis-Girod, S. et al. Bevacizumab in patients with hereditary hemorrhagic telangiectasia and severe hepatic vascular malformations and high cardiac output. JAMA 307, 948–955 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Azzopardi, N. et al. Dose–response relationship of bevacizumab in hereditary hemorrhagic telangiectasia. MAbs 7, 630–637 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Park, S. O. et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J. Clin. Invest. 119, 3487–3496 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Bostrom, K. et al. Bone morphogenetic protein expression in human atherosclerotic lesions. J. Clin. Invest. 91, 1800–1809 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Saeed, O. et al. Pharmacological suppression of hepcidin increases macrophage cholesterol efflux and reduces foam cell formation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 299–307 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Sucosky, P., Balachandran, K., Elhammali, A., Jo, H. & Yoganathan, A. P. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-β1-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 29, 254–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Wang, L. et al. The bone morphogenetic protein–hepcidin axis as a therapeutic target in inflammatory bowel disease. Inflamm. Bowel Dis. 18, 112–119 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Sun, B. et al. Bone morphogenetic protein-4 contributes to the down-regulation of Kv4.3 K+ channels in pathological cardiac hypertrophy. Biochem. Biophys. Res. Commun. 436, 591–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Sun, B. et al. Bone morphogenetic protein-4 mediates cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy. Hypertension 61, 352–360 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Kapur, N. K. et al. Reduced endoglin activity limits cardiac fibrosis and improves survival in heart failure. Circulation 125, 2728–2738 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kapur, N. K. et al. Reducing endoglin activity limits calcineurin and TRPC-6 expression and improves survival in a mouse model of right ventricular pressure overload. J. Am. Heart Assoc. 3, e000965 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Castonguay, R. et al. Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J. Biol. Chem. 286, 30034–30046 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Babitt, J. L. et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat. Genet. 38, 531–539 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Kim, A. et al. A mouse model of anemia of inflammation: complex pathogenesis with partial dependence on hepcidin. Blood 123, 1129–1136 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Ganz, T. Hepcidin and its role in regulating systemic iron metabolism. Hematology Am. Soc. Hematol. Educ Program 2006, 29–35 (2006).

    Article  Google Scholar 

  185. Kaiafa, G. et al. Is anemia a new cardiovascular risk factor? Int. J. Cardiol. 186, 117–124 (2015).

    Article  PubMed  Google Scholar 

  186. Steinbicker, A. U. et al. Inhibition of bone morphogenetic protein signaling attenuates anemia associated with inflammation. Blood 117, 4915–4923 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Theurl, I. et al. Pharmacologic inhibition of hepcidin expression reverses anemia of chronic inflammation in rats. Blood 118, 4977–4984 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Mayeur, C. et al. Oral administration of a bone morphogenetic protein type I receptor inhibitor prevents the development of anemia of inflammation. Haematologica 100, e68–e71 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Beppu, H. et al. BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev. Biol. 221, 249–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  190. Beppu, H. et al. BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 287, L1241–L1247 (2004).

    Article  CAS  PubMed  Google Scholar 

  191. Delot, E. C., Bahamonde, M. E., Zhao, M. & Lyons, K. M. BMP signaling is required for septation of the outflow tract of the mammalian heart. Development 130, 209–220 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Frank, D. B. et al. Increased susceptibility to hypoxic pulmonary hypertension in Bmpr2 mutant mice is associated with endothelial dysfunction in the pulmonary vasculature. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L98–L109 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Roberts, K. E. et al. BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease. Eur. Respir. J. 24, 371–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  194. The International PPH Consortium, et al. Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. Nat. Genet. 26, 81–84 (2000).

  195. Johnson, J. A. et al. Cytoskeletal defects in Bmpr2-associated pulmonary arterial hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 302, L474–L484 (2012).

    Article  CAS  PubMed  Google Scholar 

  196. West, J. et al. Mice expressing BMPR2R899X transgene in smooth muscle develop pulmonary vascular lesions. Am. J. Physiol. Lung Cell. Mol. Physiol. 295, L744–L755 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Srinivasan, S. et al. A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2. Hum. Mol. Genet. 12, 473–482 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Berg, J. N. et al. The activin receptor-like kinase 1 gene: genomic structure and mutations in hereditary hemorrhagic telangiectasia type 2. Am. J. Hum. Genet. 61, 60–67 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Harrison, R. E. et al. Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia. J. Med. Genet. 40, 865–871 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Li, D. Y. et al. Defective angiogenesis in mice lacking endoglin. Science 284, 1534–1537 (1999).

    Article  CAS  PubMed  Google Scholar 

  201. McAllister, K. A. et al. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat. Genet. 8, 345–351 (1994).

    Article  CAS  PubMed  Google Scholar 

  202. Levet, S. et al. Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. Blood 122, 598–607 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Meynard, D. et al. Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat. Genet. 41, 478–481 (2009).

    Article  CAS  PubMed  Google Scholar 

  204. Zhang, H. & Bradley, A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122, 2977–2986 (1996).

    CAS  PubMed  Google Scholar 

  205. Jiao, K. et al. An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev. 17, 2362–2367 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Mishina, Y., Suzuki, A., Ueno, N. & Behringer, R. R. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev. 9, 3027–3037 (1995).

    Article  CAS  PubMed  Google Scholar 

  207. El-Bizri, N. et al. SM22α-targeted deletion of bone morphogenetic protein receptor IA in mice impairs cardiac and vascular development, and influences organogenesis. Development 135, 2981–2991 (2008).

    Article  CAS  PubMed  Google Scholar 

  208. El-Bizri, N. et al. Smooth muscle protein 22α-mediated patchy deletion of Bmpr1a impairs cardiac contractility but protects against pulmonary vascular remodeling. Circ. Res. 102, 380–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  209. Vanderpool, R. R., El-Bizri, N., Rabinovitch, M. & Chesler, N. C. Patchy deletion of Bmpr1a potentiates proximal pulmonary artery remodeling in mice exposed to chronic hypoxia. Biomech. Model Mechanobiol. 12, 33–42 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Howe, J. R. et al. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat. Genet. 28, 184–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  211. Zhou, X. P. et al. Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of Cowden and Bannayan–Riley–Ruvalcaba syndromes. Am. J. Hum. Genet. 69, 704–711 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Yi, S. E., Daluiski, A., Pederson, R., Rosen, V. & Lyons, K. M. The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127, 621–630 (2000).

    CAS  PubMed  Google Scholar 

  213. Chida, A. et al. Missense mutations of the BMPR1B (ALK6) gene in childhood idiopathic pulmonary arterial hypertension. Circ. J. 76, 1501–1508 (2012).

    Article  CAS  PubMed  Google Scholar 

  214. Helbing, T. et al. BMP activity controlled by BMPER regulates the proinflammatory phenotype of endothelium. Blood 118, 5040–5049 (2011).

    Article  CAS  PubMed  Google Scholar 

  215. Cannon, J. E., Upton, P. D., Smith, J. C. & Morrell, N. W. Intersegmental vessel formation in zebrafish: requirement for VEGF but not BMP signalling revealed by selective and non-selective BMP antagonists. Br. J. Pharmacol. 161, 140–149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Kajimoto, H. et al. BMP type I receptor inhibition attenuates endothelial dysfunction in mice with chronic kidney disease. Kidney Int. 87, 128–136 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. van Meeteren, L. A. et al. Anti-human activin receptor-like kinase 1 (ALK1) antibody attenuates bone morphogenetic protein 9 (BMP9)-induced ALK1 signaling and interferes with endothelial cell sprouting. J. Biol. Chem. 287, 18551–18561 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, discussed its content, wrote the manuscript, and reviewed/edited it before submission.

Corresponding author

Correspondence to Nicholas W. Morrell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morrell, N., Bloch, D., ten Dijke, P. et al. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol 13, 106–120 (2016). https://doi.org/10.1038/nrcardio.2015.156

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing