Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dysfunctional HDL and atherosclerotic cardiovascular disease

Key Points

  • HDL protects against atherosclerosis through multiple mechanisms that include amelioration of endothelial dysfunction, removal of excess cholesterol from macrophages, and antioxidative, anti-inflammatory, and antiapoptotic effects

  • Under particular circumstances, HDL loses its atheroprotective properties, resulting in the formation of dysfunctional HDL particles

  • Dysfunctional HDL particles increase proinflammatory signalling and reduce the efflux of cholesterol from macrophages by the ATP-binding cassette transporter A1

  • In prospective studies, myeloperoxidase-mediated oxidation of particular residues on apolipoprotein A-I creates a dysfunctional HDL particle that is associated with an increased incidence of cardiovascular events

Abstract

High-density lipoproteins (HDLs) protect against atherosclerosis by removing excess cholesterol from macrophages through the ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1) pathways involved in reverse cholesterol transport. Factors that impair the availability of functional apolipoproteins or the activities of ABCA1 and ABCG1 could, therefore, strongly influence atherogenesis. HDL also inhibits lipid oxidation, restores endothelial function, exerts anti-inflammatory and antiapoptotic actions, and exerts anti-inflammatory actions in animal models. Such properties could contribute considerably to the capacity of HDL to inhibit atherosclerosis. Systemic and vascular inflammation has been proposed to convert HDL to a dysfunctional form that has impaired antiatherogenic effects. A loss of anti-inflammatory and antioxidative proteins, perhaps in combination with a gain of proinflammatory proteins, might be another important component in rendering HDL dysfunctional. The proinflammatory enzyme myeloperoxidase induces both oxidative modification and nitrosylation of specific residues on plasma and arterial apolipoprotein A-I to render HDL dysfunctional, which results in impaired ABCA1 macrophage transport, the activation of inflammatory pathways, and an increased risk of coronary artery disease. Understanding the features of dysfunctional HDL or apolipoprotein A-I in clinical practice might lead to new diagnostic and therapeutic approaches to atherosclerosis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Particles of HDL and/or its main protein constituent, apolipoprotein A-I, have diverse antiatherosclerotic influences.
Figure 2: Role of HDL in the modulation of coronary atherosclerosis.
Figure 3: Myeloperoxidase-mediated modification of apoA-I and sterol efflux.
Figure 4: Acute-phase HDL.

References

  1. 1

    Rosenson, R. S. et al. Translation of high-density lipoprotein function into clinical practice: current prospects and future challenges. Circulation 128, 1256–1267 (2013).

    Article  PubMed  Google Scholar 

  2. 2

    Rosenson, R. S. et al. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin. Chem. 57, 392–410 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Rosenson, R. S. et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 125, 1905–1919 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Du, X. et al. HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export. Circ. Res. 116, 1133–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Riwanto, M. et al. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling. Circulation 127, 891–904 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Huang, Y. et al. An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat. Med. 20, 193–203 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Rosenson, R. S., Brewer, H. B. & Rader, D. J. Lipoproteins as biomarkers and therapeutic targets in the setting of acute coronary syndrome. Circ. Res. 114, 1880–1889 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Camont, L. et al. Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities. Arterioscler. Thromb. Vasc. Biol. 33, 2715–2723 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Patel, S. et al. Acute hypertriglyceridaemia in humans increases the triglyceride content and decreases the anti-inflammatory capacity of high density lipoproteins. Atherosclerosis 204, 424–428 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Rohatgi, A. et al. HDL cholesterol efflux capacity and incident cardiovascular events. N. Engl. J. Med. 371, 2383–2393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Saleheen, D. et al. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case–control study. Lancet Diabetes Endocrinol. 3, 507–513 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    DiDonato, J. A. et al. Site-specific nitration of apolipoprotein A-I at tyrosine 166 is both abundant within human atherosclerotic plaque and dysfunctional. J. Biol. Chem. 289, 10276–10292 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Shao, B. et al. Humans with atherosclerosis have impaired ABCA1 cholesterol efflux and enhanced high-density lipoprotein oxidation by myeloperoxidase. Circ. Res. 114, 1733–1742 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Van Lenten, B. J. et al. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J. Clin. Invest. 96, 2758–2767 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Navab, M. et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3. J. Lipid Res. 41, 1495–1508 (2000).

    CAS  PubMed  Google Scholar 

  16. 16

    Ansell, B. J. et al. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation 108, 2751–2756 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Berard, A. M. et al. High plasma HDL concentrations associated with enhanced atherosclerosis in transgenic mice overexpressing lecithin-cholesteryl acyltransferase. Nat. Med. 3, 744–749 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Vaisman, B. L. et al. Overexpression of human lecithin cholesterol acyltransferase leads to hyperalphalipoproteinemia in transgenic mice. J. Biol. Chem. 270, 12269–12275 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Foger, B. et al. Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. J. Biol. Chem. 274, 36912–36920 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Dugi, K. A. et al. Adenovirus-mediated expression of hepatic lipase in LCAT transgenic mice. J. Lipid Res. 38, 1822–1832 (1997).

    CAS  PubMed  Google Scholar 

  21. 21

    Persegol, L., Verges, B., Foissac, M., Gambert, P. & Duvillard, L. Inability of HDL from type 2 diabetic patients to counteract the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia 49, 1380–1386 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Persegol, L. et al. HDL particles from type 1 diabetic patients are unable to reverse the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia 50, 2384–2387 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Sorrentino, S. A. et al. Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation 121, 110–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Besler, C. et al. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J. Clin. Invest. 121, 2693–2708 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Speer, T. et al. Abnormal high-density lipoprotein induces endothelial dysfunction via activation of Toll-like receptor-2. Immunity 38, 754–768 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Kontush, A. & Chapman, M. J. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr. Opin. Lipidol. 21, 312–318 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Hansel, B. et al. Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity. J. Clin. Endocrinol. Metab. 89, 4963–4971 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Nobecourt, E. et al. Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycaemia. Diabetologia 48, 529–538 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Kontush, A., de Faria, E. C., Chantepie, S. & Chapman, M. J. Antioxidative activity of HDL particle subspecies is impaired in hyperalphalipoproteinemia: relevance of enzymatic and physicochemical properties. Arterioscler. Thromb. Vasc. Biol. 24, 526–533 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Kontush, A., de Faria, E. C., Chantepie, S. & Chapman, M. J. A normotriglyceridemic, low HDL-cholesterol phenotype is characterised by elevated oxidative stress and HDL particles with attenuated antioxidative activity. Atherosclerosis 182, 277–285 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Banka, C. L. et al. Serum amyloid A (SAA): influence on HDL-mediated cellular cholesterol efflux. J. Lipid Res. 36, 1058–1065 (1995).

    CAS  PubMed  Google Scholar 

  32. 32

    Cavallero, E. et al. Abnormal reverse cholesterol transport in controlled type II diabetic patients. Studies on fasting and postprandial LpA-I particles. Arterioscler. Thromb. Vasc. Biol. 15, 2130–2135 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Brites, F. D. et al. Alterations in the main steps of reverse cholesterol transport in male patients with primary hypertriglyceridemia and low HDL-cholesterol levels. Atherosclerosis 152, 181–192 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Pennathur, S. et al. Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species. J. Biol. Chem. 279, 42977–42983 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Voight, B. F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet 380, 572–580 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Global Lipids Genetics, C. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

    Article  CAS  Google Scholar 

  38. 38

    Do, R. et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat. Genet. 45, 1345–1352 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Rosenson, R. S., Davidson, M. H., Hirsh, B. J., Kathiresan, S. & Gaudet, D. Genetics and causality of triglyceride-rich lipoproteins in atherosclerotic cardiovascular disease. J. Am. Coll. Cardiol. 64, 2525–2540 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Holmes, M. V. et al. Mendelian randomization of blood lipids for coronary heart disease. Eur. Heart J. 36, 539–550 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Harrison, S. C., Holmes, M. V. & Humphries, S. E. Mendelian randomisation, lipids, and cardiovascular disease. Lancet 380, 543–545 (2012).

    Article  PubMed  Google Scholar 

  42. 42

    The CARDIoGRAMplusC4D Consortium. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet. 45, 25–33 (2013).

  43. 43

    Westerterp, M. et al. ATP-binding cassette transporters, atherosclerosis, and inflammation. Circ. Res. 114, 157–170 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Pirillo, A., Uboldi, P., Bolego, C., Kuhn, H. & Catapano, A. L. The 15-lipoxygenase-modified high density lipoproteins 3 fail to inhibit the TNF-alpha-induced inflammatory response in human endothelial cells. J. Immunol. 181, 2821–2830 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Cabana, V. G., Lukens, J. R., Rice, K. S., Hawkins, T. J. & Getz, G. S. HDL content and composition in acute phase response in three species: triglyceride enrichment of HDL a factor in its decrease. J. Lipid Res. 37, 2662–2674 (1996).

    CAS  PubMed  Google Scholar 

  46. 46

    Fisher, E. A., Feig, J. E., Hewing, B., Hazen, S. L. & Smith, J. D. High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler. Thromb. Vasc. Biol. 32, 2813–2820 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Alwaili, K. et al. The HDL proteome in acute coronary syndromes shifts to an inflammatory profile. Biochim. Biophys. Acta 1821, 405–415 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Rached, F. et al. Defective functionality of small, dense HDL3 subpopulations in ST segment elevation myocardial infarction: relevance of enrichment in lysophosphatidylcholine, phosphatidic acid and serum amyloid A. Biochim. Biophys. Acta 1851, 1254–1261 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Kawakami, A. et al. Apolipoprotein CIII in apolipoprotein B lipoproteins enhances the adhesion of human monocytic cells to endothelial cells. Circulation 113, 691–700 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Jensen, M. K., Rimm, E. B., Furtado, J. D. & Sacks, F. M. Apolipoprotein C-III as a potential modulator of the association between HDL-cholesterol and incident coronary heart disease. J. Am. Heart Assoc. 1, e000232 (2012).

    Article  CAS  Google Scholar 

  51. 51

    Daugherty, A., Dunn, J. L., Rateri, D. L. & Heinecke, J. W. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J. Clin. Invest. 94, 437–444 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Zheng, L. et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J. Clin. Invest. 114, 529–541 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Shao, B., Oda, M. N., Oram, J. F. & Heinecke, J. W. Myeloperoxidase: an oxidative pathway for generating dysfunctional high-density lipoprotein. Chem. Res. Toxicol. 23, 447–454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Heinecke, J. W. Pathways for oxidation of low density lipoprotein by myeloperoxidase: tyrosyl radical, reactive aldehydes, hypochlorous acid and molecular chlorine. Biofactors 6, 145–155 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Undurti, A. et al. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J. Biol. Chem. 284, 30825–30835 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Takeshita, J. et al. Myeloperoxidase generates 5-chlorouracil in human atherosclerotic tissue: a potential pathway for somatic mutagenesis by macrophages. J. Biol. Chem. 281, 3096–3104 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. 57

    Baldus, S. et al. Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration. J. Clin. Invest. 108, 1759–1770 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Shao, B. et al. Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J. Biol. Chem. 280, 5983–5993 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Bergt, C., Fu, X., Huq, N. P., Kao, J. & Heinecke, J. W. Lysine residues direct the chlorination of tyrosines in YXXK motifs of apolipoprotein A-I when hypochlorous acid oxidizes high density lipoprotein. J. Biol. Chem. 279, 7856–7866 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Bergt, C. et al. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc. Natl Acad. Sci. USA 101, 13032–13037 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Hewing, B. et al. Effects of native and myeloperoxidase-modified apolipoprotein A-I on reverse cholesterol transport and atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 34, 779–789 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Shao, B., Tang, C., Heinecke, J. W. & Oram, J. F. Oxidation of apolipoprotein A-I by myeloperoxidase impairs the initial interactions with ABCA1 required for signaling and cholesterol export. J. Lipid Res. 51, 1849–1858 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Shao, B., Cavigiolio, G., Brot, N., Oda, M. N. & Heinecke, J. W. Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-I. Proc. Natl Acad. Sci. USA 105, 12224–12229 (2008).

    Article  PubMed  Google Scholar 

  64. 64

    Peng, D. Q. et al. Apolipoprotein A-I tryptophan substitution leads to resistance to myeloperoxidase-mediated loss of function. Arterioscler. Thromb. Vasc. Biol. 28, 2063–2070 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Van Lenten, B. J. et al. High-density lipoprotein loses its anti-inflammatory properties during acute influenza A infection. Circulation 103, 2283–2288 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Coetzee, G. A. et al. Serum amyloid A-containing human high density lipoprotein 3. Density, size, and apolipoprotein composition. J. Biol. Chem. 261, 9644–9651 (1986).

    CAS  PubMed  Google Scholar 

  67. 67

    Wroblewski, J. M. et al. Nascent HDL formation by hepatocytes is reduced by the concerted action of serum amyloid A and endothelial lipase. J. Lipid Res. 52, 2255–2261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Han, C. Y. et al. Reciprocal and coordinate regulation of serum amyloid A versus apolipoprotein A-I and paraoxonase-1 by inflammation in murine hepatocytes. Arterioscler. Thromb. Vasc. Biol. 26, 1806–1813 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Vaisar, T. et al. Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity. J. Lipid Res. 56, 1519–1530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Zhang, C. et al. Studies on protective effects of human paraoxonases 1 and 3 on atherosclerosis in apolipoprotein E knockout mice. Gene Ther. 17, 626–633 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. 71

    Birjmohun, R. S. et al. Both paraoxonase-1 genotype and activity do not predict the risk of future coronary artery disease; the EPIC-Norfolk Prospective Population Study. PLoS ONE 4, e6809 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Marsillach, J. et al. Paraoxonase-3 is depleted from the high-density lipoproteins of autoimmune disease patients with subclinical atherosclerosis. J. Proteome Res. 14, 2046–2054 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Marathe, G. K., Zimmerman, G. A. & McIntyre, T. M. Platelet-activating factor acetylhydrolase, and not paraoxonase-1, is the oxidized phospholipid hydrolase of high density lipoprotein particles. J. Biol. Chem. 278, 3937–3947 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. 74

    Kriska, T., Marathe, G. K., Schmidt, J. C., McIntyre, T. M. & Girotti, A. W. Phospholipase action of platelet-activating factor acetylhydrolase, but not paraoxonase-1, on long fatty acyl chain phospholipid hydroperoxides. J. Biol. Chem. 282, 100–108 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Rosenson, R. S. & Gelb, M. H. Secretory phospholipase A2: a multifaceted family of proatherogenic enzymes. Curr. Cardiol. Rep. 11, 445–451 (2009).

    Article  PubMed  Google Scholar 

  76. 76

    de Beer, F. C. et al. HDL modification by secretory phospholipase A2 promotes scavenger receptor class B type I interaction and accelerates HDL catabolism. J. Lipid Res. 41, 1849–1857 (2000).

    CAS  PubMed  Google Scholar 

  77. 77

    de Beer, F. C. et al. Secretory non-pancreatic phospholipase A2: influence on lipoprotein metabolism. J. Lipid Res. 38, 2232–2239 (1997).

    CAS  PubMed  Google Scholar 

  78. 78

    Tietge, U. J. et al. Overexpression of secretory phospholipase A2 causes rapid catabolism and altered tissue uptake of high density lipoprotein cholesteryl ester and apolipoprotein A-I. J. Biol. Chem. 275, 10077–10084 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. 79

    McGillicuddy, F. C. et al. Inflammation impairs reverse cholesterol transport in vivo. Circulation 119, 1135–1145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Kar, S. et al. Oxidized phospholipid content destabilizes the structure of reconstituted high density lipoprotein particles and changes their function. Biochim. Biophys. Acta 1821, 1200–1210 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Khera, A. V. et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364, 127–135 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Li, X. M. et al. Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks. Arterioscler. Thromb. Vasc. Biol. 33, 1696–1705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Patel, P. J., Khera, A. V., Wilensky, R. L. & Rader, D. J. Anti-oxidative and cholesterol efflux capacities of high-density lipoprotein are reduced in ischaemic cardiomyopathy. Eur. J. Heart Fail. 15, 1215–1219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Miyazaki, O., Ogihara, J., Fukamachi, I. & Kasumi, T. Evidence for the presence of lipid-free monomolecular apolipoprotein A-1 in plasma. J. Lipid Res. 55, 214–225 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Spieker, L. E. et al. High-density lipoprotein restores endothelial function in hypercholesterolemic men. Circulation 105, 1399–1402 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Bisoendial, R. J. et al. Restoration of endothelial function by increasing high-density lipoprotein in subjects with isolated low high-density lipoprotein. Circulation 107, 2944–2948 (2003).

    Article  PubMed  Google Scholar 

  87. 87

    Yuhanna, I. S. et al. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat. Med. 7, 853–857 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. 88

    Zhao, Y., Sparks, D. L. & Marcel, Y. L. Specific phospholipid association with apolipoprotein A-I stimulates cholesterol efflux from human fibroblasts. Studies with reconstituted sonicated lipoproteins. J. Biol. Chem. 271, 25145–25151 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Carvalho, L. S. et al. HDL levels and oxidizability during myocardial infarction are associated with reduced endothelial-mediated vasodilation and nitric oxide bioavailability. Atherosclerosis 237, 840–846 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    McMillen, T. S., Heinecke, J. W. & LeBoeuf, R. C. Expression of human myeloperoxidase by macrophages promotes atherosclerosis in mice. Circulation 111, 2798–2804 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    Kaysen, G. A. Disorders in high-density metabolism with insulin resistance and chronic kidney disease. J. Ren. Nutr. 17, 4–8 (2007).

    Article  PubMed  Google Scholar 

  92. 92

    Morgantini, C. et al. Anti-inflammatory and antioxidant properties of HDLs are impaired in type 2 diabetes. Diabetes 60, 2617–2623 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Kontush, A. & Chapman, M. J. Why is HDL functionally deficient in type 2 diabetes? Curr. Diab. Rep. 8, 51–59 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. 94

    Choudhury, R. P. & Leyva, F. C-Reactive protein, serum amyloid A protein, and coronary events. Circulation 100, e65–e66 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Bagdade, J. D., Buchanan, W. E., Kuusi, T. & Taskinen, M. R. Persistent abnormalities in lipoprotein composition in noninsulin-dependent diabetes after intensive insulin therapy. Arteriosclerosis 10, 232–239 (1990).

    Article  CAS  PubMed  Google Scholar 

  96. 96

    de Souza, J. A. et al. Metabolic syndrome features small, apolipoprotein A-I-poor, triglyceride-rich HDL3 particles with defective anti-apoptotic activity. Atherosclerosis 197, 84–94 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. 97

    Zerrad-Saadi, A. et al. HDL3-mediated inactivation of LDL-associated phospholipid hydroperoxides is determined by the redox status of apolipoprotein A-I and HDL particle surface lipid rigidity: relevance to inflammation and atherogenesis. Arterioscler. Thromb. Vasc. Biol. 29, 2169–2175 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. 98

    Roberts, C. K., Ng, C., Hama, S., Eliseo, A. J. & Barnard, R. J. Effect of a short-term diet and exercise intervention on inflammatory/anti-inflammatory properties of HDL in overweight/obese men with cardiovascular risk factors. J. Appl. Physiol. 101, 1727–1732 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. 99

    Hoofnagle, A. N. et al. Low clusterin levels in high-density lipoprotein associate with insulin resistance, obesity, and dyslipoproteinemia. Arterioscler. Thromb. Vasc. Biol. 30, 2528–2534 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Li, S. et al. Reduction of cold ischemia-reperfusion injury by graft-expressing clusterin in heart transplantation. J. Heart Lung Transplant. 30, 819–826 (2011).

    Article  PubMed  Google Scholar 

  101. 101

    Beauchamp, A. et al. Associations among smoking status, lifestyle and lipoprotein subclasses. J. Clin. Lipidol. 4, 522–530 (2010).

    Article  PubMed  Google Scholar 

  102. 102

    Park, K. H., Shin, D. G. & Cho, K. H. Dysfunctional lipoproteins from young smokers exacerbate cellular senescence and atherogenesis with smaller particle size and severe oxidation and glycation. Toxicol. Sci. 140, 16–25 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    He, B. M., Zhao, S. P. & Peng, Z. Y. Effects of cigarette smoking on HDL quantity and function: implications for atherosclerosis. J. Cell. Biochem. 114, 2431–2436 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. 104

    Song, W. et al. The implication of cigarette smoking and cessation on macrophage cholesterol efflux in coronary artery disease patients. J. Lipid Res. 56, 682–691 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Lüscher, T. F., Landmesser, U., von Eckardstein, A. & Fogelman, A. M. High-density lipoprotein: vascular protective effects, dysfunction, and potential as therapeutic target. Circ. Res. 114, 171–182 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. 106

    Nicholls, S. J. et al. Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. J. Am. Coll. Cardiol. 48, 715–720 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. 107

    Aron-Wisnewsky, J. et al. Effect of bariatric surgery-induced weight loss on SR-BI-, ABCG1-, and ABCA1-mediated cellular cholesterol efflux in obese women. J. Clin. Endocrinol. Metab. 96, 1151–1159 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. 108

    Miyamoto-Sasaki, M. et al. Pitavastatin increases HDL particles functionally preserved with cholesterol efflux capacity and antioxidative actions in dyslipidemic patients. J. Atheroscler. Thromb. 20, 708–716 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. 109

    Guerin, M. et al. Dose-dependent action of atorvastatin in type IIB hyperlipidemia: preferential and progressive reduction of atherogenic apoB-containing lipoprotein subclasses (VLDL-2, IDL, small dense LDL) and stimulation of cellular cholesterol efflux. Atherosclerosis 163, 287–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. 110

    Niesor, E. J. et al. Statin-induced decrease in ATP-binding cassette transporter A1 expression via microRNA33 induction may counteract cholesterol efflux to high-density lipoprotein. Cardiovasc. Drugs Ther. 29, 7–14 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. 111

    Yvan-Charvet, L. et al. Cholesterol efflux potential and antiinflammatory properties of high-density lipoprotein after treatment with niacin or anacetrapib. Arterioscler. Thromb. Vasc. Biol. 30, 1430–1438 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Khera, A. V., Patel, P. J., Reilly, M. P. & Rader, D. J. The addition of niacin to statin therapy improves high-density lipoprotein cholesterol levels but not metrics of functionality. J. Am. Coll. Cardiol. 62, 1909–1910 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    The AIM-HIGH Investigators. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).

  114. 114

    The HPS2-THRIVE Collaborative Group. Effects of extended-release niacin with laropiprant in high-risk patients. N. Engl. J. Med. 371, 203–212 (2014).

  115. 115

    Bays, H., Giezek, H., McKenney, J. M., O'Neill, E. A. & Tershakovec, A. M. Extended-release niacin/laropiprant effects on lipoprotein subfractions in patients with type 2 diabetes mellitus. Metab. Syndr. Relat. Disord. 10, 260–266 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. 116

    Airan-Javia, S. L. et al. Atheroprotective lipoprotein effects of a niacin-simvastatin combination compared to low- and high-dose simvastatin monotherapy. Am. Heart J. 157, 687. e1–e8 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. 118

    Ballantyne, C. M. et al. Effect of dalcetrapib plus pravastatin on lipoprotein metabolism and high-density lipoprotein composition and function in dyslipidemic patients: results of a phase IIb dose-ranging study. Am. Heart J. 163, 515–521.e3 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. 119

    Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. 120

    Nicholls, S. J. et al. Effects of the CETP inhibitor evacetrapib administered as monotherapy or in combination with statins on HDL and LDL cholesterol: a randomized controlled trial. JAMA 306, 2099–2109 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. 121

    Tardif, J. C. et al. Pharmacogenomic determinants of the cardiovascular effects of dalcetrapib. Circ. Cardiovasc. Genet. 8, 372–383 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. 122

    Ray, K. K. et al. The effect of cholesteryl ester transfer protein inhibition on lipids, lipoproteins, and markers of HDL function after an acute coronary syndrome: the dal-ACUTE randomized trial. Eur. Heart J. 35, 1792–1800 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. 123

    Cannon, C. P. et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N. Engl. J. Med. 363, 2406–2415 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. 124

    US National Library of Medicine. ClinicalTrials.gov [online]. (2015).

  125. 125

    US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  126. 126

    Catalano, G. et al. Torcetrapib differentially modulates the biological activities of HDL2 and HDL3 particles in the reverse cholesterol transport pathway. Arterioscler. Thromb. Vasc. Biol. 29, 268–275 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. 127

    Castro-Perez, J. et al. Anacetrapib promotes reverse cholesterol transport and bulk cholesterol excretion in Syrian golden hamsters. J. Lipid Res. 52, 1965–1973 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Nahrendorf, M. et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117, 379–387 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. 129

    Nahrendorf, M. et al. Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 117, 1153–1160 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Ronald, J. A. et al. Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation 120, 592–599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Kelesidis, T. et al. Effects of lipid-probe interactions in biochemical fluorometric methods that assess HDL redox activity. Lipids Health Dis. 11, 87 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Kelesidis, T. et al. A high throughput biochemical fluorometric method for measuring lipid peroxidation in HDL. PLoS ONE 9, e111716 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All the authors researched data for the article, substantially contributed to discussion of content, wrote the manuscript, and reviewed/edited it before submission.

Corresponding author

Correspondence to Robert S. Rosenson.

Ethics declarations

Competing interests

R.S.R. has served as a member of advisory boards for Amgen, AstraZeneca, Eli Lilly, Genzyme, GlaxoSmithKline, Novartis, Regeneron, and Sanofi; received honoraria from Kowa, travel support from LipoScience, and royalties from UpToDate, Inc.; and participates in clinical trials sponsored by Amgen, AstraZeneca, and Sanofi. H.B.B. has served as a member of advisory boards for Amgen, AstraZeneca, CSL, Eli Lilly, Merck, Pifzer, and Roche; received honoraria from Amgen, AstraZeneca, CSL, Eli Lilly, Merck, Pfizer, and Roche; received travel support from Amgen, AstraZeneca, Eli Lilly, Merck, and Roche; participates in clinical trials sponsored by Eli Lilly and Roche; is a patent holder for HDL Therapeutics; and receives royalties from AstraZeneca. B.J.A. is a member of an advisory board for Amgen; receives honoraria from Kowa; and is a shareholder in Amgen and Bruin Pharma. P.B. is a member of advisory boards for AstraZeneca, CSL, Merck, Novartis, Pfizer, and Roche; has received honoraria form Abbott, AstraZeneca, Merck, Novartis, Pfizer, and Roche; and participates in clinical trials sponsored by AstraZeneca, Merck, Pfizer, and Roche. J.C. receives research funding from CSL, Kowa, and Pfizer; is a member of advisory boards for Amgen, CSL, Danone, Merck, and Sanofi-Regeneron; has received honoraria from Amgen, Danone, Merck, Sanofi-Regeneron, and Unilever; participates in a clinical trial sponsored by AstraZeneca; and is a patent holder on the use of negatively charged phospholipids to optimize the biological function of recombinant HDL. J.W.H. is a member of advisory boards for Amgen, Bristol Myers Squibb, GlaxoSmithKline, Insilicos, and Merck; and is a patent holder for the use of oxidation markers to predict the risk of cardiovascular disease. A.K. participates in a clinical trial sponsored by CSL; and is a patent holder for the use of negatively charged phospholipids to optimize the biological function of recombinant HDL. A.R.T. is a member of advisory boards for Amgen, Arisaph, CSL, Eli Lilly, and Pfizer. N.R.W. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosenson, R., Brewer, H., Ansell, B. et al. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol 13, 48–60 (2016). https://doi.org/10.1038/nrcardio.2015.124

Download citation

Further reading

Search

Quick links