Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Iron deficiency and cardiovascular disease

Key Points

  • Iron deficiency has detrimental effects in patients with coronary artery disease, heart failure (HF), pulmonary hypertension, and possibly in patients undergoing cardiac surgery

  • One-third of all patients with HF and more than one-half of patients with pulmonary hypertension present with iron deficiency

  • Improved exercise capacity, quality of life, or both have been shown after iron administration in patients with iron deficiency and HF or pulmonary hypertension

  • Recipients of cardiac transplantations should probably not be treated with intravenous iron preparations

Abstract

Iron deficiency affects up to one-third of the world's population, and is particularly common in elderly individuals and those with certain chronic diseases. Iron excess can be detrimental in cardiovascular illness, and research has now also brought anaemia and iron deficiency into the focus of cardiovascular medicine. Data indicate that iron deficiency has detrimental effects in patients with coronary artery disease, heart failure (HF), and pulmonary hypertension, and possibly in patients undergoing cardiac surgery. Around one-third of all patients with HF, and more than one-half of patients with pulmonary hypertension, are affected by iron deficiency. Patients with HF and iron deficiency have shown symptomatic improvements from intravenous iron administration, and some evidence suggests that these improvements occur irrespective of the presence of anaemia. Improved exercise capacity has been demonstrated after iron administration in patients with pulmonary hypertension. However, to avoid iron overload and T-cell activation, it seems that recipients of cardiac transplantations should not be treated with intravenous iron preparations.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Iron absorption in the gut mucosa and iron storage inside cells of the reticuloendothelial system.
Figure 2: Comparison of different levels of iron storage and their effects on serum markers and haematopoiesis.

References

  1. 1

    DeMaeyer, E. & Adiels-Tegman, M. The prevalence of anaemia in the world. World Health Stat. Q. 38, 302–316 (1985).

    CAS  PubMed  Google Scholar 

  2. 2

    Stoltzfus, R. Defining iron-deficiency anemia in public health terms: a time for reflection. J. Nutr. 131, 565S–567S (2001).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Lundqvist, H. & Sjöberg, F. Food interaction of oral uptake of iron / a clinical trial using 59Fe. Arzneimittelforschung 57, 401–416 (2007).

    CAS  PubMed  Google Scholar 

  4. 4

    Andrews, N. C. & Schmidt, P. J. Iron homeostasis. Annu. Rev. Physiol. 69, 69–85 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Andrews, N. C. Disorders of iron metabolism. N. Engl. J. Med. 341, 1986–1995 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Zimmermann, M. B. The influence of iron status on iodine utilization and thyroid function. Annu. Rev. Nutr. 26, 367–389 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Moos, T. Brain iron homeostasis. Dan. Med. Bull. 49, 279–301 (2002).

    CAS  PubMed  Google Scholar 

  8. 8

    Christian, P. et al. Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in Nepal. JAMA 304, 2716–2723 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Fairweather-Tait, S. J., Wawer, A. A., Gillings, R., Jennings, A. & Myint, P. K. Iron status in the elderly. Mech. Ageing Dev. 136–137, 22–28 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Finch, C. A. et al. Iron deficiency in the rat. Physiological and biochemical studies of muscle dysfunction. J. Clin. Invest. 58, 447–453 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Beard, J. L. Iron biology in immune function, muscle metabolism and neuronal functioning. J. Nutr. 131, 568S–579S (2001).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Silverberg, D. S. et al. The use of subcutaneous erythropoietin and intravenous iron for the treatment of the anemia of severe, resistant congestive heart failure improves cardiac and renal function and functional cardiac class, and markedly reduces hospitalizations. J. Am. Coll. Cardiol. 35, 1737–1744 (2000).

    Article  CAS  Google Scholar 

  13. 13

    van Veldhuisen, D. J., Anker, S. D., Ponikowski, P. & Macdougall, I. C. Anemia and iron deficiency in heart failure: mechanisms and therapeutic approaches. Nat. Rev. Cardiol. 8, 485–493 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Sullivan, J. L. Iron and the sex difference in heart disease risk. Lancet 317, 1293–1294 (1981).

    Article  Google Scholar 

  15. 15

    Ganz, T. & Nemeth, E. Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G199–G203 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Jankowska, E. A, von Haehling, S., Anker, S. D., Macdougall, I. C. & Ponikowski, P. P. Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives. Eur. Heart J. 34, 816–829 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Monsen, E. R. Iron and absorption: dietary factors which impact iron bioavailability. J. Am. Diet. Assoc. 88, 786–790 (1988).

    CAS  PubMed  Google Scholar 

  18. 18

    Nemeth, E. & Ganz, T. The role of hepcidin in iron metabolism. Acta Haematol. 122, 78–86 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Schaefer, B., Effenberger, M. & Zoller, H. Iron metabolism in transplantation. Transpl. Int. 27, 1109–1117 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Cook, J. D. Diagnosis and management of iron-deficiency anaemia. Best Pract. Res. Clin. Haematol. 18, 319–332 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Geisser, P. Safety and efficacy of iron(III)-hydroxide polymaltose complex / a review of over 25 years experience. Arzneimittelforschung 57, 439–452 (2007).

    CAS  PubMed  Google Scholar 

  22. 22

    von Haehling, S & Anker, S. D. in Iron Deficiency and Anaemia in Heart Failure 2nd edn (Anker, S. D. & von Haehling, S.) 68–83 (UNI-MED, 2012).

    Google Scholar 

  23. 23

    Auerbach, M. & Ballard, H. Clinical use of intravenous iron: administration, efficacy, and safety. Hematology Am. Soc. Hematol. Educ. Program 2010, 338–347 (2010).

    Article  PubMed  Google Scholar 

  24. 24

    Lauffer, R. B. Iron depletion and coronary disease. Am. Heart J. 119, 1448–1449 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Salonen, J. T. et al. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation 86, 803–811 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    de Valk, B. & Marx, J. J. Iron, atherosclerosis, and ischemic heart disease. Arch. Intern. Med. 159, 1542–1548 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Ma, J. & Stampfer, M. J. Body iron stores and coronary heart disease. Clin. Chem. 48, 601–603 (2002).

    CAS  PubMed  Google Scholar 

  28. 28

    Danesh, J. & Appleby, P. Coronary heart disease and iron status: meta-analyses of prospective studies. Circulation 99, 852–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Wood, R. J. The iron-heart disease connection: is it dead or just hiding? Ageing Res. Rev. 3, 355–367 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Das De, S., Krishna, S. & Jethwa, A. Iron status and its association with coronary heart disease: systematic review and meta-analysis of prospective studies. Atherosclerosis 238, 296–303 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Kang, P., Liu, T., Tian, C., Zhou, Y. & Jia, C. Association of total iron binding capacity with coronary artery disease. Clin. Chim. Acta 413, 1424–1429 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Ascherio, A., Rimm, E. B., Giovannucci, E., Willett, W. C. & Stampfer, M. J. Blood donations and risk of coronary heart disease in men. Circulation 103, 52–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Grammer, T. B. et al. Hemoglobin, iron metabolism and angiographic coronary artery disease (The Ludwigshafen Risk and Cardiovascular Health Study). Atherosclerosis 236, 292–300 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Ponikowska, B. et al. Iron status and survival in diabetic patients with coronary artery disease. Diabetes Care 36, 4147–4156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Jankowska, E. A. et al. Bone marrow iron depletion is common in patients with coronary artery disease. Int. J. Cardiol. 182, 517–522 (2015).

    Article  PubMed  Google Scholar 

  36. 36

    Anand, I. S. et al. Anemia and change in hemoglobin over time related to mortality and morbidity in patients with chronic heart failure: results from Val-HeFT. Circulation 112, 1121–1127 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Felker, G. M., Shaw, L. K., Stough, W. G. & O'Connor, C. M. Anemia in patients with heart failure and preserved systolic function. Am. Heart J. 151, 457–462 (2006).

    Article  PubMed  Google Scholar 

  38. 38

    Go, A. S. et al. Hemoglobin level, chronic kidney disease, and the risks of death and hospitalization in adults with chronic heart failure: the Anemia in Chronic Heart Failure: Outcomes and Resource Utilization (ANCHOR) Study. Circulation 113, 2713–2723 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Komajda, M. et al. The impact of new onset anaemia on morbidity and mortality in chronic heart failure: results from COMET. Eur. Heart J. 27, 1440–1446 (2006).

    Article  PubMed  Google Scholar 

  40. 40

    O'Meara, E. et al. Clinical correlates and consequences of anemia in a broad spectrum of patients with heart failure: results of the Candesartan in Heart Failure: assessment of Reduction in Mortality and Morbidity (CHARM) Program. Circulation 113, 986–994 (2006).

    Article  PubMed  Google Scholar 

  41. 41

    von Haehling, S. et al. Anaemia among patients with heart failure and preserved or reduced ejection fraction: results from the SENIORS study. Eur. J. Heart Fail. 13, 656–663 (2011).

    Article  PubMed  Google Scholar 

  42. 42

    Anker, S. D. et al. Prevalence, incidence, and prognostic value of anaemia in patients after an acute myocardial infarction: data from the OPTIMAAL trial. Eur. Heart J. 30, 1331–1339 (2009).

    Article  PubMed  Google Scholar 

  43. 43

    von Haehling, S., Anker, M. S., Jankowska, E. A., Ponikowski, P. & Anker, S. D. Anemia in chronic heart failure: can we treat? What to treat? Heart Fail. Rev. 17, 203–210 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Anand, I. S. Anemia and chronic heart failure implications and treatment options. J. Am. Coll. Cardiol. 52, 501–511 (2008).

    Article  PubMed  Google Scholar 

  45. 45

    Westenbrink, B. D. et al. Anaemia in chronic heart failure is not only related to impaired renal perfusion and blunted erythropoietin production, but to fluid retention as well. Eur. Heart J. 28, 166–171 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Weiss, G. & Goodnough, L. T. Anemia of chronic disease. N. Engl. J. Med. 352, 1011–1023 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Ebner, N. & von Haehling, S. Iron deficiency in heart failure: a practical guide. Nutrients 5, 3730–3739 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Ezekowitz, J. A., McAlister, F. A. & Armstrong, P. W. Anemia is common in heart failure and is associated with poor outcomes: insights from a cohort of 12 065 patients with new-onset heart failure. Circulation 107, 223–225 (2003).

    Article  PubMed  Google Scholar 

  49. 49

    Nanas, J. N. et al. Etiology of anemia in patients with advanced heart failure. J. Am. Coll. Cardiol. 48, 2485–2489 (2006).

    Article  PubMed  Google Scholar 

  50. 50

    Jankowska, E. A. et al. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur. Heart J. 31, 1872–1880 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Parikh, A., Natarajan, S., Lipsitz, S. R. & Katz, S. D. Iron deficiency in community-dwelling US adults with self-reported heart failure in the National Health and Nutrition Examination Survey III: prevalence and associations with anemia and inflammation. Circ. Heart Fail. 4, 599–606 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Silverberg, D. S. et al. The effect of correction of mild anemia in severe, resistant congestive heart failure using subcutaneous erythropoietin and intravenous iron: a randomized controlled study. J. Am. Coll. Cardiol. 37, 1775–1780 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Silverberg, D. S. et al. The effect of correction of anaemia in diabetics and non-diabetics with severe resistant congestive heart failure and chronic renal failure by subcutaneous erythropoietin and intravenous iron. Nephrol. Dial. Transplant. 18, 141–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Mancini, D. M. et al. Effect of erythropoietin on exercise capacity in patients with moderate to severe chronic heart failure. Circulation 107, 294–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Palazzuoli, A. et al. Erythropoietin improves anemia exercise tolerance and renal function and reduces B-type natriuretic peptide and hospitalization in patients with heart failure and anemia. Am. Heart J. 152, 1096.e9–1096.e15 (2006).

    Article  CAS  Google Scholar 

  56. 56

    Ponikowski, P. et al. Effect of darbepoetin alfa on exercise tolerance in anemic patients with symptomatic chronic heart failure: a randomized, double-blind, placebo-controlled trial. J. Am. Coll. Cardiol. 49, 753–762 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. 57

    van Veldhuisen, D. J. et al. Randomized, double-blind, placebo-controlled study to evaluate the effect of two dosing regimens of darbepoetin alfa in patients with heart failure and anaemia. Eur. Heart J. 28, 2208–2216 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. 58

    Ghali, J. K. et al. Randomized double-blind trial of darbepoetin alfa in patients with symptomatic heart failure and anemia. Circulation 117, 526–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Swedberg, K. et al. Treatment of anemia with darbepoetin alfa in systolic heart failure. N. Engl. J. Med. 368, 1210–1219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Bolger, A. P. et al. Intravenous iron alone for the treatment of anemia in patients with chronic heart failure. J. Am. Coll. Cardiol. 48, 1225–1227 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Toblli, J. E., Lombraña, A., Duarte, P. & Di Gennaro, F. Intravenous iron reduces NT-pro-brain natriuretic peptide in anemic patients with chronic heart failure and renal insufficiency. J. Am. Coll. Cardiol. 50, 1657–1665 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Okonko, D. O. et al. Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency FERRIC-HF: a randomized, controlled, observer-blinded trial. J. Am. Coll. Cardiol. 51, 103–112 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Anker, S. D. et al. Rationale and design of Ferinject assessment in patients with IRon deficiency and chronic Heart Failure (FAIR-HF) study: a randomized, placebo-controlled study of intravenous iron supplementation in patients with and without anaemia. Eur. J. Heart Fail. 11, 1084–1091 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Anker, S. D. et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 361, 2436–2448 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    McMurray, J. J. et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 14, 803–869 (2012).

    Article  CAS  Google Scholar 

  66. 66

    Krum, H. et al. 2011 update to National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand Guidelines for the prevention, detection and management of chronic heart failure in Australia, 2006. Med. J. Aust. 194, 405–409 (2011).

    Article  PubMed  Google Scholar 

  67. 67

    Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 62, e147–e239 (2013).

    Article  Google Scholar 

  68. 68

    Ponikowski, P. et al. Rationale and design of the CONFIRM-HF study: a double-blind, randomized, placebo-controlled study to assess the effects of intravenous ferric carboxymaltose on functional capacity in patients with chronic heart failure and iron deficiency. ESC Heart Failure 1, 52–58 (2014).

    Article  PubMed  Google Scholar 

  69. 69

    Clark, A. L. & Pellicori, P. Clinical trials update from the European Society of Cardiology meeting 2014: PARADIGM-HF, CONFIRM-HF, SIGNIFY, atrial fibrillation, beta-blockers and heart failure, and vagal stimulation in heart failure. ESC Heart Failure 1, 82–86 (2014).

    Article  PubMed  Google Scholar 

  70. 70

    Ponikowski, P. et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur. Heart J. 36, 657–668 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. 71

    US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  72. 72

    von Haehling, S. Inflammation in right ventricular dysfunction due to thromboembolic pulmonary hypertension. Int. J. Cardiol. 144, 206–211 (2010).

    Article  PubMed  Google Scholar 

  73. 73

    Soon, E. et al. Unexplained iron deficiency in idiopathic and heritable pulmonary arterial hypertension. Thorax 66, 326–332 (2011).

    Article  PubMed  Google Scholar 

  74. 74

    Ruiter, G. et al. Iron deficiency is common in idiopathic pulmonary arterial hypertension. Eur. Respir. J. 37, 1386–1391 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    van Empel, V. P., Lee, J., Williams, T. J. & Kaye, D. M. Iron deficiency in patients with idiopathic pulmonary arterial hypertension. Heart Lung Circ. 23, 287–292 (2014).

    Article  PubMed  Google Scholar 

  76. 76

    Rhodes, C. J. et al. Iron deficiency and raised hepcidin in idiopathic pulmonary arterial hypertension: clinical prevalence, outcomes, and mechanistic insights. J. Am. Coll. Cardiol. 58, 300–309 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Viethen, T. et al. Ferric carboxymaltose improves exercise capacity and quality of life in patients with pulmonary arterial hypertension and iron deficiency: a pilot study. Int. J. Cardiol. 175, 233–239 (2014).

    Article  PubMed  Google Scholar 

  78. 78

    Gleissner, C. A. et al. Reduced hemoglobin after heart transplantation is no independent risk factor for survival but is associated closely with impaired renal function. Transplantation 77, 710–717 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. 79

    Przybylowski, P., Malyszko, J. & Malyszko, J. Anemia is a predictor of outcome in heart transplant recipients. Transplant. Proc. 41, 3228–3231 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Taegtmeyer, A. B. et al. The effects of pre- and post-transplant anemia on 1-year survival after cardiac transplantation. J. Heart Lung Transplant. 27, 394–399 (2008).

    Article  PubMed  Google Scholar 

  81. 81

    Przybylowski, P. et al. Prevalence of iron deficiency in heart and kidney allograft recipients. Transplant. Proc. 43, 3885–3887 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. 82

    Schaefer, B., Effenberger, M. & Zoller, H. Iron metabolism in transplantation. Transpl. Int. 27, 1109–1117 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. 83

    Menasché, P., Grousset, C., Mouas, C. & Piwnica, A. A promising approach for improving the recovery of heart transplants. Prevention of free radical injury through iron chelation by deferoxamine. J. Thorac. Cardiovasc. Surg. 100, 13–21 (1990).

    PubMed  Google Scholar 

  84. 84

    Macedo, M. F. et al. Transferrin is required for early T-cell differentiation. Immunology 112, 543–549 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Zheng, Y. et al. A role for mammalian target of rapamycin in regulating T cell activation versus anergy. J. Immunol. 178, 2163–2170 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Brekelmans, P., Van Soest, P., Leenen, P. J. & Van Ewijk, W. Inhibition of proliferation and differentiation during early T cell development by anti-transferrin receptor antibody. Eur. J. Immunol. 24, 2896–2902 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. 87

    David, O., Sinha, R., Robinson, K. & Cardone, D. The prevalence of anaemia, hypochromia and microcytosis in preoperative cardiac surgical patients. Anaesth. Intensive Care 41, 316–321 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. 88

    Hung, M. et al. A prospective observational cohort study to identify the causes of anaemia and association with outcome in cardiac surgical patients. Heart 101, 107–112 (2015).

    Article  PubMed  Google Scholar 

  89. 89

    Piednoir, P. et al. Preoperative iron deficiency increases transfusion requirements and fatigue in cardiac surgery patients: a prospective observational study. Eur. J. Anaesthesiol. 28, 796–801 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Madi-Jebara, S. N. et al. Postoperative intravenous iron used alone or in combination with low-dose erythropoietin is not effective for correction of anemia after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 18, 59–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    Garrido-Martín, P. et al. The effect of intravenous and oral iron administration on perioperative anaemia and transfusion requirements in patients undergoing elective cardiac surgery: a randomized clinical trial. Interact. Cardiovasc. Thorac. Surg. 15, 1013–1018 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Wish, J. B. Assessing iron status: beyond serum ferritin and transferrin saturation. Clin. J. Am. Soc. Nephrol. 1 (Suppl. 1), S4–S8 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Usmanov, R. I., Zueva, E. B., Silverberg, D. S. & Shaked, M. Intravenous iron without erythropoietin for the treatment of iron deficiency anemia in patients with moderate to severe congestive heart failure and chronic kidney insufficiency. J. Nephrol. 21, 236–242 (2008).

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

S.v.H. determined the content of the article, and wrote the first draft of the article. E.A.J., D.J.v.V., P.P., and S.D.A. contributed to the review and editing of the manuscript before submission.

Corresponding author

Correspondence to Stephan von Haehling.

Ethics declarations

Competing interests

S.v.H. has received consulting honoraria from Novartis, Pfizer, Respicardia, Thermo Fisher Scientific, and Vifor Pharma, as well as lecture fees from Amgen and Sorin. E.A.J. has received honoraria for lectures and participation in advisory boards from Vifor Pharma. D.J.v.V. has received board membership fees from Amgen and Vifor Pharma. P.P. is a consultant for, and has received honoraria for speaking from, Amgen and Vifor Pharma, as well as research grants from Vifor Pharma. S.D.A. has received consulting fees and honoraria from Bayer, BRAHMS, Novartis, and Vifor Pharma, consulting fees from Keryx, and research support from Abbott Vascular and Vifor Pharma.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

von Haehling, S., Jankowska, E., van Veldhuisen, D. et al. Iron deficiency and cardiovascular disease. Nat Rev Cardiol 12, 659–669 (2015). https://doi.org/10.1038/nrcardio.2015.109

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing