Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of heat shock proteins in atherosclerosis

Key Points

  • Humoral and cellular immunity against bacterial and parasitic heat shock protein (HSP)60 is normal, but bona fide autoimmunity is also possible against chemically altered autologous HSP60 released by damaged or dying cells

  • Phylogenetically highly conserved microbial and mammalian HSP60 shows 55% sequence homology and, therefore, is potentially cross-reactive in people with pre-existing HSP60 immunity

  • In experimental models, immunization of normocholesterolaemic animals with bacterial HSP60 leads to atherosclerosis, and this process can be aggravated by increasing blood cholesterol levels

  • Lifelong arterial stress owing to higher blood pressure and different flow conditions compared with veins lowers the threshold for HSP60 expression upon exposure to any classic risk factor for atherosclerosis

  • HSP60 and adhesion molecules expressed by arterial endothelial cells can be used as a target for molecular imaging of early atherosclerotic lesions

  • Immunological tolerance induced by oral or nasal application of HSP60 protects against atherosclerosis; identification of HSP60-derived potentially atherogenic epitopes in mice and humans could lead to the development of vaccines

Abstract

Atherosclerosis is a chronic, multifactorial disease that starts in youth, manifests clinically later in life, and can lead to myocardial infarction, stroke, claudication, and death. Although inflammatory processes have long been known to be involved in atherogenesis, interest in this subject has grown in the past 30–40 years. Animal experiments and human analyses of early atherosclerotic lesions have shown that the first pathogenic event in atherogenesis is the intimal infiltration of T cells at arterial branching points. These T cells recognize heat shock protein (HSP)60, which is expressed together with adhesion molecules by endothelial cells in response to classic risk factors for atherosclerosis. Although these HSP60-reactive T cells initiate atherosclerosis, antibodies to HSP60 accelerate and perpetuate the disease. All healthy humans develop cellular and humoral immunity against microbial HSP60 by infection or vaccination. Given that prokaryotic (bacterial) and eukaryotic (for instance, human) HSP60 display substantial sequence homology, atherosclerosis might be the price we pay for this protective immunity, if risk factors stress the vascular endothelial cells beyond physiological conditions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The autoimmune concept of atherosclerosis.
Figure 2: HSP60-induced atherosclerosis.
Figure 3: Important HSP60 epitopes identified in human atherosclerosis.
Figure 4: PET–CT in vivo molecular imaging of endothelial HSP60 expression.
Figure 5: Plaque formation after immunization with mycobaterial HSP65 in mice prone to atherosclerosis.

Similar content being viewed by others

References

  1. Thompson, R. C. et al. Atherosclerosis across 4,000 years of human history: the Horus study of four ancient populations. Lancet 381, 1211–1222 (2013).

    Article  PubMed  Google Scholar 

  2. Rokitansky, C. A. A Manual of Pathological Anatomy (Blanchard and Lea, 1855).

    Google Scholar 

  3. Mayerl, C. et al. Atherosclerosis research from past to present—on the track of two pathologists with opposing views, Carl von Rokitansky and Rudolf Virchow. Virchows Arch. 449, 96–103 (2006).

    Article  PubMed  Google Scholar 

  4. Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Hansson, G. K. & Libby, P. The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol. 6, 508–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Wick, G. & Grundtman, C. Inflammation and Atherosclerosis (SpringerVerlag, 2012).

    Book  Google Scholar 

  7. Nesse, R. M. & Williams, G. Why We Get Sick: the New Science of Darwinian Medicine (Vintage Books, 1996).

    Google Scholar 

  8. Wick, G., Buhr, N., Fraedrich, G. & Grundtman, C. in Inflammation and Atherosclerosis 171–196 (SpringerVerlag, 2012).

    Book  Google Scholar 

  9. Kleindienst, R. et al. Immunology of atherosclerosis. Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am. J. Pathol. 142, 1927–1937 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Millonig, G., Malcom, G. T. & Wick, G. Early inflammatory-immunological lesions in juvenile atherosclerosis from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY)-study. Atherosclerosis 160, 441–448 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Xu, Q., Kleindienst, R., Waitz, W., Dietrich, H. & Wick, G. Increased expression of heat shock protein 65 coincides with a population of infiltrating T lymphocytes in atherosclerotic lesions of rabbits specifically responding to heat shock protein 65. J. Clin. Invest. 91, 2693–2702 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seitz, C. S., Kleindienst, R., Xu, Q. & Wick, G. Coexpression of heat-shock protein 60 and intercellular-adhesion molecule-1 is related to increased adhesion of monocytes and T cells to aortic endothelium of rats in response to endotoxin. Lab. Invest. 74, 241–252 (1996).

    CAS  PubMed  Google Scholar 

  13. Craig, E. A., Gambill, B. D. & Nelson, R. J. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol. Rev. 57, 402–414 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Young, R. A. & Elliott, T. J. Stress proteins, infection, and immune surveillance. Cell 59, 5–8 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Grundtman, C. & Wick, G. The autoimmune concept of atherosclerosis. Curr. Opin. Lipidol. 22, 327–334 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Amberger, A. et al. Co-expression of ICAM-1, VCAM-1, ELAM-1 and Hsp60 in human arterial and venous endothelial cells in response to cytokines and oxidized low-density lipoproteins. Cell Stress Chaperones 2, 94–103 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grundtman, C., Kreutmayer, S. B., Almanzar, G., Wick, M. C. & Wick, G. Heat shock protein 60 and immune inflammatory responses in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31, 960–968 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perschinka, H. et al. Cross-reactive B-cell epitopes of microbial and human heat shock protein 60/65 in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23, 1060–1065 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Kreutmayer, S. B. et al. Dynamics of heat shock protein 60 in endothelial cells exposed to cigarette smoke extract. J. Mol. Cell. Cardiol. 51, 777–780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu, Q. et al. Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation 102, 14–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Stearns, S. C. & Koella, J. C. Evolution in Health and Disease (Oxford University Press, 2008).

    Google Scholar 

  22. Wick, G., Kleindienst, R., Dietrich, H., Xu Q. Is atherosclerosis an autoimmune disease? Trends Food. Sci. Tech. 3, 114–119 (1992).

    Article  CAS  Google Scholar 

  23. Wick, G., Knoflach, M. & Xu, Q. Autoimmune and inflammatory mechanisms in atherosclerosis. Annu. Rev. Immunol. 22, 361–403 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Cybulsky, M. I. & Jongstra-Bilen, J. Resident intimal dendritic cells and the initiation of atherosclerosis. Curr. Opin. Lipidol. 21, 397–403 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Jongstra-Bilen, J. et al. Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J. Exp. Med. 203, 2073–2083 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Millonig, G., Schwentner, C., Mueller, P., Mayerl, C. & Wick, G. The vascular-associated lymphoid tissue: a new site of local immunity. Curr. Opin. Lipidol. 12, 547–553 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, P. et al. CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler. Thromb. Vasc. Biol. 28, 243–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Mullick, A. E. et al. Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events. J. Exp. Med. 205, 373–383 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choi, J. H. et al. Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J. Exp. Med. 206, 497–505 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Packard, R. R. et al. CD11c+ dendritic cells maintain antigen processing, presentation capabilities, and CD4+ T-cell priming efficacy under hypercholesterolemic conditions associated with atherosclerosis. Circ. Res. 103, 965–973 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu, S. N., Chen, M., Jongstra-Bilen, J. & Cybulsky, M. I. GM-CSF regulates intimal cell proliferation in nascent atherosclerotic lesions. J. Exp. Med. 206, 2141–2149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bobryshev, Y. V. & Lord, R. S. Vascular-associated lymphoid tissue (VALT) involvement in aortic aneurysm. Atherosclerosis 154, 15–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Shen, L. H. et al. Oxidized low-density lipoprotein induces differentiation of RAW264.7 murine macrophage cell line into dendritic-like cells. Atherosclerosis 199, 257–264 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Bobryshev, Y. V. Dendritic cells and their role in atherogenesis. Lab. Invest. 90, 970–984 (2010).

    Article  PubMed  Google Scholar 

  35. Bobryshev, Y. V. & Lord, R. S. Mapping of vascular dendritic cells in atherosclerotic arteries suggests their involvement in local immune-inflammatory reactions. Cardiovasc. Res. 37, 799–810 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Xu, Q. B., Oberhuber, G., Gruschwitz, M. & Wick, G. Immunology of atherosclerosis: cellular composition and major histocompatibility complex class II antigen expression in aortic intima, fatty streaks, and atherosclerotic plaques in young and aged human specimens. Clin. Immunol. Immunopathol. 56, 344–359 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Waltner-Romen, M., Falkensammer, G., Rabl, W. & Wick, G. A previously unrecognized site of local accumulation of mononuclear cells. The vascular-associated lymphoid tissue. J. Histochem. Cytochem. 46, 1347–1350 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Dansky, H. M., Charlton, S. A., Harper, M. M. & Smith, J. D. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc. Natl Acad. Sci. USA 94, 4642–4646 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Daugherty, A. et al. The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J. Clin. Invest. 100, 1575–1580 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wick, G. & Xu, Q. in The Molecular Pathology of Autoimmune Diseases (eds Theofilopoulos, A. N. & Bona, C. A.) 965–977 (Taylor & Francis, 2002).

    Google Scholar 

  41. Napoli, C. et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J. Clin. Invest. 100, 2680–2690 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wick, G. et al. Atherosclerosis, autoimmunity, and vascular-associated lymphoid tissue. FASEB J. 11, 1199–1207 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Millonig, G., Niederegger, H. & Wick, G. Analysis of the cellular composition of the arterial intima with modified en face techniques. Lab. Invest. 81, 639–641 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Millonig, G. et al. Network of vascular-associated dendritic cells in intima of healthy young individuals. Arterioscler. Thromb. Vasc. Biol. 21, 503–508 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Kampinga, H. H. et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14, 105–111 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Ishibashi, S. et al. Hypercholesterolemia in low-density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92, 883–893 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C. & Witztum, J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med. 320, 915–924 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Merat, S., Fruebis, J., Sutphin, M., Silvestre, M. & Reaven, P. D. Effect of aging on aortic expression of the vascular cell adhesion molecule-1 and atherosclerosis in murine models of atherosclerosis. J. Gerontol. A Biol. Sci. Med. Sci. 55, B85–B94 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Ridker, P. M., Rifai, N., Rose, L., Buring, J. E. & Cook, N. R. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N. Engl. J. Med. 347, 1557–1565 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Ridker, P. M. C-reactive protein: eighty years from discovery to emergence as a major risk marker for cardiovascular disease. Clin. Chem. 55, 209–215 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Xu, Q. et al. Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler. Thromb. 12, 789–799 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. George, J. et al. Enhanced fatty streak formation in C57BL/6J mice by immunization with heat shock protein-65. Arterioscler. Thromb. Vasc. Biol. 19, 505–510 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Metzler, B. et al. Inhibition of arteriosclerosis by T-cell depletion in normocholesterolemic rabbits immunized with heat shock protein 65. Arterioscler. Thromb. Vasc. Biol. 19, 1905–1911 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Xu, Q. et al. Regression of arteriosclerotic lesions induced by immunization with heat shock protein 65-containing material in normocholesterolemic, but not hypercholesterolemic, rabbits. Atherosclerosis 123, 145–155 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Schett, G. et al. Myocardial injury leads to a release of heat shock protein (hsp) 60 and a suppression of the anti-hsp65 immune response. Cardiovasc. Res. 42, 685–695 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Hochleitner, B. W. et al. Fluid shear stress induces heat shock protein 60 expression in endothelial cells in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 20, 617–623 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. George, J. et al. Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis 138, 147–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. George, J., Afek, A., Gilburd, B., Shoenfeld, Y. & Harats, D. Cellular and humoral immune responses to heat shock protein 65 are both involved in promoting fatty-streak formation in LDL-receptor deficient mice. J. Am. Coll. Cardiol. 38, 900–905 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Foteinos, G., Afzal, A. R., Mandal, K., Jahangiri, M. & Xu, Q. Anti-heat shock protein 60 autoantibodies induce atherosclerosis in apolipoprotein E-deficient mice via endothelial damage. Circulation 112, 1206–1213 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Harats, D., Yacov, N., Gilburd, B., Shoenfeld, Y. & George, J. Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions. J. Am. Coll. Cardiol. 40, 1333–1338 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Maron, R. et al. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 106, 1708–1715 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. van Puijvelde, G. H. et al. Induction of oral tolerance to HSP60 or an HSP60-peptide activates T cell regulation and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27, 2677–2683 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Karlin, S. & Brocchieri, L. Heat shock protein 60 sequence comparisons: duplications, lateral transfer, and mitochondrial evolution. Proc. Natl Acad. Sci. USA 97, 11348–11353 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wick, G. & Xu, Q. Autoimmunity to heat shock proteins in atherosclerosis. Atherosclerosis 134, 289–289 (1997).

    Article  Google Scholar 

  66. Schett, G. et al. Autoantibodies against heat shock protein 60 mediate endothelial cytotoxicity. J. Clin. Invest. 96, 2569–2577 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schett, G. et al. Macrophage-lysis mediated by autoantibodies to heat shock protein 65/60. Atherosclerosis 128, 27–38 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Mayr, M. et al. Endothelial cytotoxicity mediated by serum antibodies to heat shock proteins of Escherichia coli and Chlamydia pneumoniae: immune reactions to heat shock proteins as a possible link between infection and atherosclerosis. Circulation 99, 1560–1566 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Soltys, B. J. & Gupta, R. S. Cell surface localization of the 60 kDa heat shock chaperonin protein (hsp60) in mammalian cells. Cell Biol. Int. 21, 315–320 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Xu, Q. et al. Surface staining and cytotoxic activity of heat-shock protein 60 antibody in stressed aortic endothelial cells. Circ. Res. 75, 1078–1085 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Pfister, G. et al. Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J. Cell Sci. 118, 1587–1594 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Kreutmayer, S. et al. Chlamydia pneumoniae infection acts as an endothelial stressor with the potential to initiate the earliest heat shock protein 60-dependent inflammatory stage of atherosclerosis. Cell Stress Chaperones 18, 259–268 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Amberger, A. et al. Suppressive effects of anti-inflammatory agents on human endothelial cell activation and induction of heat shock proteins. Mol. Med. 5, 117–128 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Willeit, J. & Kiechl, S. Prevalence and risk factors of asymptomatic extracranial carotid artery atherosclerosis: a population-based study. Arterioscler. Thromb. 13, 661–668 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Xu, Q. et al. Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis. Lancet 341, 255–259 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Xu, Q. et al. Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis: clinical significance determined in a follow-up study. Circulation 100, 1169–1174 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Hoppichler, F. et al. Changes of serum antibodies to heat-shock protein 65 in coronary heart disease and acute myocardial infarction. Atherosclerosis 126, 333–338 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Hoppichler, F., Koch, T., Dzien, A., Gschwandtner, G. & Lechleitner, M. Prognostic value of antibody titre to heat-shock protein 65 on cardiovascular events. Cardiology 94, 220–223 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Knoflach, M. et al. T-cell reactivity against HSP60 relates to early but not advanced atherosclerosis. Atherosclerosis 195, 333–338 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Kiechl, S. et al. Chronic infections and the risk of carotid atherosclerosis: prospective results from a large population study. Circulation 103, 1064–1070 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Gurfinkel, E. et al. Treatment with the antibiotic roxithromycin in patients with acute non-Q-wave coronary syndromes: the final report of the ROXIS Study. Eur. Heart J. 20, 121–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Muhlestein, J. B. et al. Randomized secondary prevention trial of azithromycin in patients with coronary artery disease: primary clinical results of the ACADEMIC study. Circulation 102, 1755–1760 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Wiesli, P. et al. Roxithromycin treatment prevents progression of peripheral arterial occlusive disease in Chlamydia pneumoniae seropositive men: a randomized, double-blind, placebo-controlled trial. Circulation 105, 2646–2652 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Mayr, M., Kiechl, S., Willeit, J., Wick, G. & Xu, Q. Infections, immunity, and atherosclerosis: associations of antibodies to Chlamydia pneumoniae, Helicobacter pylori, and cytomegalovirus with immune reactions to heat-shock protein 60 and carotid or femoral atherosclerosis. Circulation 102, 833–839 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Mayr, M. et al. Increased risk of atherosclerosis is confined to CagA-positive Helicobacter pylori strains: prospective results from the Bruneck Study. Stroke 34, 610–615 (2003).

    Article  PubMed  Google Scholar 

  86. Schett, G. et al. Salivary anti-hsp65 antibodies as a diagnostic marker for gingivitis and a possible link to atherosclerosis. Int. Arch. Allergy Imm. 114, 246–250 (1997).

    Article  CAS  Google Scholar 

  87. Ford, P. J. et al. Cross-reactivity of GroEL antibodies with human heat shock protein 60 and quantification of pathogens in atherosclerosis. Oral Microbiol. Immunol. 20, 296–302 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Bartz, S. R. et al. An Hsp60 related protein is associated with purified HIV and SIV. J. Med. Primatol. 23, 151–154 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Shamaei-Tousi, A., Halcox, J. P. & Henderson, B. Stressing the obvious? Cell stress and cell stress proteins in cardiovascular disease. Cardiovasc. Res. 74, 19–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Lewthwaite, J., Owen, N., Coates, A., Henderson, B. & Steptoe, A. Circulating human heat shock protein 60 in the plasma of British civil servants: relationship to physiological and psychosocial stress. Circulation 106, 196–201 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, X. et al. Elevated heat shock protein 60 levels are associated with higher risk of coronary heart disease in Chinese. Circulation 118, 2687–2693 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Pockley, A. G. et al. Circulating heat shock protein 60 is associated with early cardiovascular disease. Hypertension 36, 303–307 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Pockley, A. G. et al. Circulating heat shock protein and heat shock protein antibody levels in established hypertension. J. Hypertens. 20, 1815–1820 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Giannessi, D. et al. Circulating heat shock proteins and inflammatory markers in patients with idiopathic left ventricular dysfunction: their relationships with myocardial and microvascular impairment. Cell Stress Chaperones 12, 265–274 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Andrie, R. P. et al. Prevalence of intimal heat shock protein 60 homologues in unstable angina and correlation with anti-heat shock protein antibody titers. Basic Res. Cardiol. 106, 657–665 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Knoflach, M. et al. Cardiovascular risk factors and atherosclerosis in young males: ARMY study (Atherosclerosis Risk-Factors in Male Youngsters). Circulation 108, 1064–1069 (2003).

    Article  PubMed  Google Scholar 

  97. Knoflach, M. et al. Cardiovascular risk factors and atherosclerosis in young women: Atherosclerosis Risk factors in Female Youngsters (ARFY study). Stroke 40, 1063–1069 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Rossmann, A. et al. T-cells from advanced atherosclerotic lesions recognize hHSP60 and have a restricted T-cell receptor repertoire. Exp. Gerontol. 43, 229–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Wallin, R. P. et al. Heat-shock proteins as activators of the innate immune system. Trends Immunol. 23, 130–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Vabulas, R. M. et al. Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem. 276, 31332–31339 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Zanin-Zhorov, A., Nussbaum, G., Franitza, S., Cohen, I. R. & Lider, O. T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors. FASEB J. 17, 1567–1569 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Kol, A., Lichtman, A. H., Finberg, R. W., Libby, P. & Kurt-Jones, E. A. Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J. Immunol. 164, 13–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Metzler, B. et al. Epitope specificity of anti-heat shock protein 65/60 serum antibodies in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 17, 536–541 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Perschinka, H. et al. Identification of atherosclerosis-associated conformational heat shock protein 60 epitopes by phage display and structural alignment. Atherosclerosis 194, 79–87 (2007).

    Article  PubMed  Google Scholar 

  105. Benagiano, M. et al. Human 60-kDa heat shock protein is a target autoantigen of T cells derived from atherosclerotic plaques. J. Immunol. 174, 6509–6517 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Almanzar, G. et al. Autoreactive HSP60 epitope-specific T-cells in early human atherosclerotic lesions. J. Autoimmun. 39, 441–450 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Danesh, J., Collins, R. & Peto, R. Chronic infections and coronary heart disease: is there a link? Lancet 350, 430–436 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Ridker, P. M., Hennekens, C. H., Buring, J. E. & Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342, 836–843 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Wick, M. C., Kremser, C., Frischauf, S. & Wick, G. In vivo molecular imaging of vascular stress. Cell Stress Chaperones 13, 263–273 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Maurovich-Horvat, P., Ferencik, M., Voros, S., Merkely, B. & Hoffmann, U. Comprehensive plaque assessment by coronary CT angiography. Nat. Rev. Cardiol. http://dx.doi.org/10.1038/nrcardio.2014.60.

  111. Otsuka, F., Joner, M., Prati, F., Virmani, R. & Narula, J. Clinical classification of plaque morphology in coronary disease. Nat. Rev. Cardiol. http://dx.doi.org/10.1038/nrcardio.2014.62.

  112. Tarkin, J. M., Joshi F. R. & Rudd, J. H. PET imaging of inflammation in atherosclerosis. Nat. Rev. Cardiol. http://dx.doi.org/10.1038/nrcardio.2014.80.

  113. Wick, M. C. et al. In vivo imaging of the effect of LPS on arterial endothelial cells: molecular imaging of heat shock protein 60 expression. Cell Stress Chaperones 13, 275–285 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Davenport, P. & Tipping, P. G. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am. J. Pathol. 163, 1117–1125 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. George, J. et al. Requisite role for interleukin-4 in the acceleration of fatty streaks induced by heat shock protein 65 or Mycobacterium tuberculosis. Circ. Res. 86, 1203–1210 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. George, J. et al. Interleukin (IL)-4 deficiency does not influence fatty streak formation in C57BL/6 mice. Atherosclerosis 153, 403–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. King, V. L., Szilvassy, S. J. & Daugherty, A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler. Thromb. Vasc. Biol. 22, 456–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. King, V. L., Cassis, L. A. & Daugherty, A. Interleukin-4 does not influence development of hypercholesterolemia or angiotensin II-induced atherosclerotic lesions in mice. Am. J. Pathol. 171, 2040–2047 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Huber, S. A., Sakkinen, P., David, C., Newell, M. K. & Tracy, R. P. T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia. Circulation 103, 2610–2616 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Jing, H. et al. Oral administration of Lactococcus lactis delivered heat shock protein 65 attenuates atherosclerosis in low-density lipoprotein receptor-deficient mice. Vaccine 29, 4102–4109 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Mundkur, L. et al. Mucosal tolerance to a combination of ApoB and HSP60 peptides controls plaque progression and stabilizes vulnerable plaque in Apob(tm2Sgy)Ldlr(tm1Her)/J mice. PLoS ONE 8, e58364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li, H., Ding, Y., Yi, G., Zeng, Q. & Yang, W. Establishment of nasal tolerance to heat shock protein-60 alleviates atherosclerosis by inducing TGF-β-dependent regulatory T cells. J. Huazhong Uni. Sci. Tech. Med. Sci. 32, 24–30 (2012).

    Article  CAS  Google Scholar 

  123. Xiong, Q., Li, J., Jin, L., Liu, J. & Li, T. Nasal immunization with heat shock protein 65 attenuates atherosclerosis and reduces serum lipids in cholesterol-fed wild-type rabbits probably through different mechanisms. Immunol. Letters 125, 40–45 (2009).

    Article  CAS  Google Scholar 

  124. Dubaquié, Y., Looser, R., Fünfschilling, U., Jenö, P. & Rospert, S. Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10. EMBO J. 17, 5868–5876 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Takizawa, S. et al. HSP 10 is a new autoantigen in both autoimmune pancreatitis and fulminant type 1 diabetes. Biochem. Biophys. Res. Commun. 386, 192–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Shan, Y. X. et al. Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells. J. Mol. Cell. Cardiol. 35, 1135–1143 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Ciervo, A., Petrucca, A., Villano, U., Fioroni, G. & Cassone, A. Low prevalence of antibodies against heat shock protein 10 of Chlamydophila pneumoniae in patients with coronary heart disease. J. Microbiol. Meth. 63, 248–253 (2005).

    Article  CAS  Google Scholar 

  128. Mehlen, P., Schulze-Osthoff, K. & Arrigo, A. P. Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J. Biol. Chem. 271, 16510–16514 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Park, H. K. et al. Expression of heat shock protein 27 in human atherosclerotic plaques and increased plasma level of heat shock protein 27 in patients with acute coronary syndrome. Circulation 114, 886–893 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Cuerrier, C. M. et al. Chronic over-expression of heat shock protein 27 attenuates atherogenesis and enhances plaque remodeling: a combined histological and mechanical assessment of aortic lesions. PLoS ONE 8, e55867 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rayner, K. et al. Extracellular release of the atheroprotective heat shock protein 27 is mediated by estrogen and competitively inhibits acLDL binding to scavenger receptor-A. Circ. Res. 103, 133–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Martin-Ventura, J. L. et al. Identification by a differential proteomic approach of heat shock protein 27 as a potential marker of atherosclerosis. Circulation 110, 2216–2219 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Lepedda, A. J. et al. A proteomic approach to differentiate histologically classified stable and unstable plaques from human carotid arteries. Atherosclerosis 203, 112–118 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Qiu, X. B., Shao, Y. M., Miao, S. & Wang, L. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell. Mol. Life Sci. 63, 2560–2570 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Nguyen, T. Q. et al. Increased expression of HDJ-2 (hsp40) in carotid artery atherosclerosis: a novel heat shock protein associated with luminal stenosis and plaque ulceration. J. Vasc. Surg. 33, 1065–1071 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Timofeeva, A. V. et al. Altered gene expression in peripheral blood leukocytes from patients with arterial hypertension. Ann. N. Y. Acad. Sci. 1091, 319–335 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Bobryshev, Y. V. & Lord, R. S. A. Expression of heat shock protein-70 by dendritic cells in the arterial intima and its potential significance in atherogenesis. J. Vasc. Surg. 35, 368–375 (2002).

    Article  PubMed  Google Scholar 

  138. Zhu, J. et al. Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 23, 1055–1059 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Li, Z. et al. Heat shock protein 70 acts as a potential biomarker for early diagnosis of heart failure. PLoS ONE 8, e67964 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Csermely, P., Schnaider, T., Soti, C., Prohászka, Z. & Nardai, G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther. 79, 129–168 (1998).

    Article  CAS  PubMed  Google Scholar 

  141. Businaro, R. et al. Heat-shock protein 90: a novel autoantigen in human carotid atherosclerosis. Atherosclerosis 207, 74–83 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Madrigal-Matute, J. et al. Heat shock protein 90 inhibitors attenuate inflammatory responses in atherosclerosis. Cardiovasc. Res. 86, 330–337 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Rose, N. R. & Bona, C. Defining criteria for autoimmune diseases (Witebsky's postulates revisited). Immunol. Today 14, 426–430 (1993).

    Article  CAS  PubMed  Google Scholar 

  144. Monzini, N., Legname, G., Marcucci, F., Gromo, G. & Modena, D. Identification and cloning of human chaperonin 10 homologue. Biochim. Biophys. Acta 1218, 478–480 (1994).

    Article  CAS  PubMed  Google Scholar 

  145. De Souza, A. I. et al. Heat shock protein 27 is associated with freedom from graft vasculopathy after human cardiac transplantation. Circ. Res. 97, 192–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Ganea, E. Chaperone-like activity of α-crystallin and other small heat shock proteins. Curr. Protein Pept. Sci. 2, 205–225 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Hino, M., Kurogi, K., Okubo, M. A., Murata-Hori, M. & Hosoya, H. Small heat shock protein 27 (HSP27) associates with tubulin/microtubules in HeLa cells. Biochem. Biophys. Res. Commun. 271, 164–169 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Jakob, U., Gaestel, M., Engel, K. & Buchner, J. Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268, 1517–1520 (1993).

    CAS  PubMed  Google Scholar 

  149. Sun, Y. & MacRae, T. H. Small heat shock proteins: molecular structure and chaperone function. Cell. Mol. Life Sci. 62, 2460–2476 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Becker, T., Hartl, F. U. & Wieland, F. CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J. Cell Biol. 158, 1277–1285 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chen, M. S., Roti Roti, J. & Laszlo, A. Hsc40, a new member of the hsp40 family, exhibits similar expression profile to that of hsc70 in mammalian cells. Gene 238, 333–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Hattori, H. et al. Intracellular localization and partial amino acid sequence of a stress-inducible 40 kDa protein in HeLa cells. Cell Struct. Funct. 17, 77–86 (1992).

    Article  CAS  PubMed  Google Scholar 

  153. Raabe, T. & Manley, J. L. A human homologue of the Escherichia coli DnaJ heat shock protein. Nucleic Acids Res. 19, 6645 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Metzler, B. et al. Activation of heat shock transcription factor 1 in atherosclerosis. Am. J. Pathol. 162, 1669–1676 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Green, M., Schuetz, T. J., Sullivan, E. K. & Kingston, R. E. A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol. Cell. Biol. 15, 3354–3362 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rabindran, S. K., Giorgi, G., Clos, J. & Wu, C. Molecular cloning and expression of a human heat shock factor, HSF1. Proc. Natl Acad. Sci. USA 88, 6906–6910 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Arosa, F. A., De Jesus, O., Porto, G., Carmo, A. M. & De Sousa, M. Calreticulin is expressed on the cell surface of activated human peripheral blood T lymphocytes in association with major histocompatibility complex class I molecules. J. Biol. Chem. 274, 16917–16922 (1999).

    Article  CAS  PubMed  Google Scholar 

  158. David, V., Hochstenbach, F., Rajagopalan, S. & Brenner, M. B. Interaction with newly synthesized and retained proteins in the endoplasmic reticulum suggests a chaperone function for human integral membrane protein IP90 (calnexin). J. Biol. Chem. 268, 9585–9592 (1993).

    CAS  PubMed  Google Scholar 

  159. Dupuis, M., Schaerer, E., Krause, K. H. & Tschopp, J. The calcium-binding protein calreticulin is a major constituent of lytic granules in cytolytic T lymphocytes. J. Exp. Med. 177, 1–7 (1993).

    Article  CAS  PubMed  Google Scholar 

  160. Lee, D. et al. Calreticulin induces dilated cardiomyopathy. PLoS ONE 8, e56387 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ohashi, K., Burkart, V., Flohe, S. & Kolb, H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J. Immunol. 164, 558–561 (2000).

    Article  CAS  PubMed  Google Scholar 

  162. Lewis, V. A., Hynes, G. M., Zheng, D., Saibil, H. & Willison, K. T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature 358, 249–252 (1992).

    Article  CAS  PubMed  Google Scholar 

  163. Li, W. Z. et al. Tcp20, a subunit of the eukaryotic TRiC chaperonin from humans and yeast. J. Biol. Chem. 269, 18616–18622 (1994).

    CAS  PubMed  Google Scholar 

  164. Bukau, B. & Horwich, A. L. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. Asea, A. et al. Novel signal transduction pathway utilized by extracellular HSP70: role of Toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 277, 15028–15034 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Vabulas, R. M. et al. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Biol. Chem. 277, 15107–15112 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Asea, A. et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 6, 435–442 (2000).

    Article  CAS  PubMed  Google Scholar 

  168. Zhou, J. D. et al. Increased expression of heat shock protein 70 and heat shock factor 1 in chronic dermal ulcer tissues treated with laser-aided therapy. Chin. Med. J. 121, 1269–1273 (2008).

    Article  CAS  PubMed  Google Scholar 

  169. Dybdahl, B. et al. Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart 91, 299–304 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gao, T. & Newton, A. C. The turn motif is a phosphorylation switch that regulates the binding of Hsp70 to protein kinase C. J. Biol. Chem. 277, 31585–31592 (2002).

    Article  CAS  PubMed  Google Scholar 

  171. Han, Z., Truong, Q. A., Park, S. & Breslow, J. L. Two Hsp70 family members expressed in atherosclerotic lesions. Proc. Natl Acad. Sci. USA 100, 1256–1261 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ishihara, K., Yasuda, K. & Hatayama, T. Molecular cloning, expression and localization of human 105 kDa heat shock protein, hsp105. Biochim. Biophys. Acta 1444, 138–142 (1999).

    Article  CAS  PubMed  Google Scholar 

  173. Jørgensen, M. M. et al. Grp78 is involved in retention of mutant low density lipoprotein receptor protein in the endoplasmic reticulum. J. Biol. Chem. 275, 33861–33868 (2000).

    Article  PubMed  Google Scholar 

  174. Takeuchi, S. Molecular cloning, sequence, function and structural basis of human heart 150 kDa oxygen-regulated protein, an ER chaperone. Protein J. 25, 517–528 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Wan, T. et al. Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood 103, 1747–1754 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. Wisniewska, M. et al. Crystal structures of the ATPase domains of four human Hsp70 isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70–2, HSPA6/Hsp70B', and HSPA5/BiP/GRP78. PLoS ONE 5, e8625 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Binder, R. J., Vatner, R. & Srivastava, P. The heat-shock protein receptors: some answers and more questions. Tissue Antigens 64, 442–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Basu, S., Binder, R. J., Ramalingam, T. & Srivastava, P. K. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14, 303–313 (2001).

    Article  CAS  PubMed  Google Scholar 

  179. Maki, R. G., Old, L. J. & Srivastava, P. K. Human homologue of murine tumor rejection antigen gp96: 5-regulatory and coding regions and relationship to stress-induced proteins. Proc. Natl Acad. Sci. USA 87, 5658–5662 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Meunier, L., Usherwood, Y. K., Tae Chung, K. & Hendershot, L. M. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol. Biol. Cell 13, 4456–4469 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Liu, B. et al. Folding of Toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone. Nat. Commun. 1, 79 (2010).

    Article  CAS  PubMed  Google Scholar 

  182. Obermann, W. M., Sondermann, H., Russo, A. A., Pavletich, N. P. & Hartl, F. U. In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J. Cell Biol. 143, 901–910 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ho Yeong, S., Dunbar, J. D., Yuan Xin, Z., Guo, D. & Donner, D. B. Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J. Biol. Chem. 270, 3574–3581 (1995).

    Article  Google Scholar 

  184. Felts, S. J. et al. The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 275, 3305–3312 (2000).

    Article  CAS  PubMed  Google Scholar 

  185. Uray, K., Hudecz, F., Füst, G. & Prohászka, Z. Comparative analysis of linear antibody epitopes on human and mycobacterial 60-kDa heat shock proteins using samples of healthy blood donors. Int. Immunol. 15, 1229–1236 (2003).

    Article  CAS  PubMed  Google Scholar 

  186. Choi, J. I. et al. Epitope mapping of Porphyromonas gingivalis heat-shock protein and human heat-shock protein in human atherosclerosis. J. Dent. Res. 83, 936–940 (2004).

    Article  CAS  PubMed  Google Scholar 

  187. Wysocki, J. et al. Human heat shock protein 60 (409–424) fragment is recognized by serum antibodies of patients with acute coronary syndromes. Cardiovasc. Pathol. 11, 238–243 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from: the European Union FP7Large-Scale Integrated Project, Novel Approaches to Reconstitute Normal Immune Function at Old Age (TOLERAGE HEALTH-F4-2008-202156), coordinated by G.W. and C.G.; the Austrian Research Fund (FWF) Grant P198810-B05 to G.W.; the Medizinische Forschungsförderung Innsbruck MFI (Project 9443) to M.C.W.; the Lore and Udo Saldow-Donation to G.W. and B.J.; the Tiroler Wissenschaftsfonds Project “The role of Vascular Associated Lymphoid Tissue (VALT) in the Development of Atherosclerosis–Inside Out or Outside In” to B.J.; and the Translational Research Project “T-Oral” to G.W. and M.B.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, provided substantial contributions to discussions of its content, wrote the article, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Georg Wick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Amino acid sequence of heat shock proteins and their reactive T-cell and B-cell epitopes from human samples (DOCX 86 kb)

Supplementary Table 2

Induction and tolerization of atherosclerosis with heat shock proteins and their reactive T-cell epitopes in experimental animals (DOCX 38 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wick, G., Jakic, B., Buszko, M. et al. The role of heat shock proteins in atherosclerosis. Nat Rev Cardiol 11, 516–529 (2014). https://doi.org/10.1038/nrcardio.2014.91

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.91

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing