Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heart transplantation with donation after circulatory determination of death

Subjects

Key Points

  • Shortage of organs limits the number of heart transplantations performed; waiting-list mortality is 10–12% per year in Europe and the USA

  • Adoption of donation after circulatory determination of death (DCDD) in heart transplantation could substantially improve organ availability for both adults and children

  • Very limited clinical evidence already supports the feasibility of heart transplantation with DCDD

  • Tissue injury resulting from exposure of the donor heart to warm, noncardioplegic ischaemia before procurement is the major obstacle for DCDD in heart transplantation

  • Strategies for procurement, storage, and evaluation must be optimized for DCDD in heart transplantation; effective approaches remain to be identified

  • Establishment of DCDD in heart transplantation also requires careful consideration of ethical and legal aspects

Abstract

The constant shortage of available organs is a major obstacle and limiting factor in heart transplantation; the discrepancy between the number of donors and potential recipients leads to waiting-list mortality of 10–12% per year in Europe and the USA. If adopted for heart transplantation, donation after circulatory determination of death (DCDD) would be expected to improve the availability of organs substantially for both adults and children. With DCDD, however, hearts to be transplanted undergo a period of warm ischaemia before procurement, which is of particular concern because tissue damage occurs rapidly and might be sufficient to preclude transplantation. Nonetheless, the heart is able to withstand limited periods of warm ischaemia, which could provide a window of opportunity for DCDD. Development of clinical approaches specifically for DCDD is critical for the exploitation of these organs, because current practices for donor heart procurement, evaluation, and storage have been optimized for conventional donation after brain death, without consideration of warm ischaemia before organ procurement. Establishment of clinical protocols and ethical and legal frameworks for DCDD of other organs is underway. This Review provides a timely evaluation of the potential for DCDD in heart transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Events surrounding donor death result in exposure of the heart to variable conditions before access for organ procurement.
Figure 2: Windows of opportunity for potential cardioprotective interventions in various categories of donors for cardiac DCDD.

Similar content being viewed by others

References

  1. Council of Europe. International figures on donation and transplantation 2010 (ed. Matesanz, R). Newsletter Transplant. 16, 1–80 (2011).

  2. Council of Europe. International figures on donation and transplantation 2011 (ed. Matesanz, R). Newsletter Transplant. 17, 1–92 (2012).

  3. Osaki, S., Anderson, J. E., Johnson, M. R., Edwards, N. M. & Kohmoto, T. The potential of cardiac allografts from donors after cardiac death at the University of Wisconsin Organ Procurement Organization. Eur. J. Cardiothorac. Surg. 37, 74–79 (2010).

    PubMed  Google Scholar 

  4. Manara, A. R., Murphy, P. G. & O'Callaghan, G. Donation after circulatory death. Br. J. Anaesth. 108 (Suppl. 1), i108–i121 (2012).

    PubMed  Google Scholar 

  5. Singhal, A. K. et al. Potential suitability for transplantation of hearts from human non-heart-beating donors: data review from the Gift of Life Donor Program. J. Heart Lung Transplant. 24, 1657–1664 (2005).

    PubMed  Google Scholar 

  6. Noterdaeme, T. et al. What is the potential increase in the heart graft pool by cardiac donation after circulatory death? Transpl. Int. 26, 61–66 (2013).

    PubMed  Google Scholar 

  7. Koogler, T. & Costarino, A. T. Jr. The potential benefits of the pediatric nonheartbeating organ donor. Pediatrics 101, 1049–1052 (1998).

    CAS  PubMed  Google Scholar 

  8. Pleacher, K. M., Roach, E. S., Van der Werf, W., Antommaria, A. H. & Bratton, S. L. Impact of a pediatric donation after cardiac death program. Pediatr. Crit. Care Med. 10, 166–170 (2009).

    PubMed  Google Scholar 

  9. Whetstine, L., Bowman, K. & Hawryluck, L. Pro/con ethics debate: is nonheart-beating organ donation ethically acceptable? Crit. Care 6, 192–195 (2002).

    PubMed  PubMed Central  Google Scholar 

  10. Ali, A. et al. Cardiac recovery in a human non-heart-beating donor after extracorporeal perfusion: source for human heart donation? J. Heart Lung Transplant. 28, 290–293 (2009).

    PubMed  Google Scholar 

  11. Rosenfeldt, F., Ou, R., Woodard, J., Esmore, D. & Marasco, S. Twelve-hour reanimation of a human heart following donation after circulatory death. Heart Lung Circ. 23, 88–90 (2014).

    PubMed  Google Scholar 

  12. Boucek, M. M. et al. Pediatric heart transplantation after declaration of cardiocirculatory death. N. Engl. J. Med. 359, 709–714 (2008).

    CAS  PubMed  Google Scholar 

  13. Chiu, K. M., Lin, T. Y. & Chu, S. H. Successful heterotopic heart transplant after cardiopulmonary bypass rescue of an arrested donor heart. Transplant. Proc. 38, 1514–1515 (2006).

    PubMed  Google Scholar 

  14. Kootstra, G., Daemen, J. H. & Oomen, A. P. Categories of non-heart-beating donors. Transplant. Proc. 27, 2893–2894 (1995).

    CAS  PubMed  Google Scholar 

  15. Sanchez-Fructuoso, A. I. et al. Renal transplantation from non-heart beating donors: a promising alternative to enlarge the donor pool. J. Am. Soc. Nephrol. 11, 350–358 (2000).

    CAS  PubMed  Google Scholar 

  16. Bernat, J. L. et al. Circulatory death determination in uncontrolled organ donors: a panel viewpoint. Ann. Emerg. Med. 63, 384–390 (2014).

    PubMed  Google Scholar 

  17. Barnard, C. N. The operation. A human cardiac transplant: an interim report of a successful operation performed at Groote Schuur Hospital, Cape Town. S. Afr. Med. J. 41, 1271–1274 (1967).

    CAS  PubMed  Google Scholar 

  18. Monbaliu, D., Pirenne, J. & Talbot, D. Liver transplantation using donation after cardiac death donors. J. Hepatol. 56, 474–485 (2012).

    PubMed  Google Scholar 

  19. Manno, E. M. Nonheart-beating donation in the neurologically devastated patient. Neurocrit. Care 3, 111–114 (2005).

    PubMed  Google Scholar 

  20. Dominguez-Gil, B. et al. Current situation of donation after circulatory death in European countries. Transpl. Int. 24, 676–686 (2011).

    PubMed  Google Scholar 

  21. Dipchand, A. I. et al. Ten yr of pediatric heart transplantation: a report from the Pediatric Heart Transplant Study. Pediatr. Transplant. 17, 99–111 (2013).

    PubMed  Google Scholar 

  22. Magee, J. C. et al. Pediatric transplantation. Am. J. Transplant. 4 (Suppl. 9), 54–71 (2004).

    PubMed  Google Scholar 

  23. Mathur, M., Castleberry, D. & Job, L. Identifying potential heart donors among newborns undergoing circulatory determination of death. J. Heart Lung Transplant. 30, 389–394 (2011).

    PubMed  Google Scholar 

  24. Fraser, J. et al. The potential for non-heart beating organ donation within a paediatric intensive care unit. Arch. Dis. Child. 96, 932–935 (2011).

    CAS  PubMed  Google Scholar 

  25. Durall, A. L., Laussen, P. C. & Randolph, A. G. Potential for donation after cardiac death in a children's hospital. Pediatrics 119, e219–e224 (2007).

    PubMed  Google Scholar 

  26. Dark, J. H. Lung transplantation from the non-heart beating donor. Transplantation 86, 200–201 (2008).

    PubMed  Google Scholar 

  27. Snell, G. I. et al. Effect of multiorgan donation after cardiac death retrieval on lung performance. ANZ J. Surg. 78, 262–265 (2008).

    PubMed  Google Scholar 

  28. Goldsmith, P. J. et al. Outcomes following renal transplantation after multiorgan retrieval versus kidney-only retrieval in donation after cardiac death donors. Transplant. Proc. 42, 3963–3965 (2010).

    CAS  PubMed  Google Scholar 

  29. NHS Blood and Transplant. National standards for organ retrieval from deceased donors [online], (2013).

  30. Hirota, M. et al. Prediction of functional recovery of 60-minute warm ischemic hearts from asphyxiated canine non-heart-beating donors. J. Heart Lung Transplant. 25, 339–344 (2006).

    PubMed  Google Scholar 

  31. Hirota, M., Ishino, K., Tedoriya, T. & Sano, S. Post-mortem tissue-type plasminogen activator preserves graft function of hearts harvested from non-pre-treated non-heart-beating donors. J. Heart Lung Transplant. 29, 888–893 (2010).

    PubMed  Google Scholar 

  32. Kotani, Y. et al. Efficacy of MCI-186, a free-radical scavenger and antioxidant, for resuscitation of nonbeating donor hearts. J. Thorac. Cardiovasc. Surg. 133, 1626–1632 (2007).

    CAS  PubMed  Google Scholar 

  33. Osaki, S. et al. Resuscitation of non-beating donor hearts using continuous myocardial perfusion: the importance of controlled initial reperfusion. Ann. Thorac. Surg. 81, 2167–2171 (2006).

    PubMed  Google Scholar 

  34. Osaki, S. et al. Circulatory load during hypoxia impairs post-transplant myocardial functional recovery in donation after cardiac death. J. Heart Lung Transplant. 28, 266–272 (2009).

    PubMed  Google Scholar 

  35. Stadelmann, M. et al. Mild hypothermia during global cardiac ischemia opens a window of opportunity to develop heart donation after cardiac death. Transpl. Int. 26, 339–348 (2013).

    CAS  PubMed  Google Scholar 

  36. Dornbierer, M. et al. Early reperfusion hemodynamics predict recovery in rat hearts: a potential approach towards evaluating cardiac grafts from non-heart-beating donors. PLoS ONE 7, e43642 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bernat, J. L. The boundaries of organ donation after circulatory death. N. Engl. J. Med. 359, 669–671 (2008).

    CAS  PubMed  Google Scholar 

  38. Chaib, E. Non heart-beating donors in England. Clinics 63, 121–134 (2008).

    PubMed  PubMed Central  Google Scholar 

  39. Rustad et al. Heart transplant systolic and diastolic function is impaired by prolonged pretransplant graft ischaemic time and high donor age: an echocardiographic study. Eur. J. Cardiothorac. Surg. 44, e97–e104 (2013).

    PubMed  Google Scholar 

  40. Kato, G. et al. Efficacy of an endothelin-A receptor antagonist in heart transplantation from asphyxiated canine non-heart-beating donors. Jpn. J. Thorac. Cardiovasc. Surg. 54, 511–515 (2006).

    PubMed  Google Scholar 

  41. Zhao, Z. Q. & Vinten-Johansen, J. Postconditioning: reduction of reperfusion-induced injury. Cardiovasc. Res. 70, 200–211 (2006).

    CAS  PubMed  Google Scholar 

  42. Bell, R. M., Mocanu, M. M. & Yellon, D. M. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J. Mol. Cell. Cardiol. 50, 940–950 (2011).

    CAS  PubMed  Google Scholar 

  43. Hausenloy, D. J. & Yellon, D. M. Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis 204, 334–341 (2009).

    CAS  PubMed  Google Scholar 

  44. Doenst, T. et al. Three good reasons for heart surgeons to understand cardiac metabolism. Eur. J. Cardiothorac. Surg. 33, 862–871 (2008).

    PubMed  Google Scholar 

  45. Fugate, J. E., Stadtler, M., Rabinstein, A. A. & Wijdicks, E. F. Variability in donation after cardiac death protocols: a national survey. Transplantation 91, 386–389 (2011).

    PubMed  Google Scholar 

  46. Gries, C. J. et al. An official American Thoracic Society/International Society for Heart and Lung Transplantation/Society of Critical Care Medicine/Association of Organ and Procurement Organizations/United Network of Organ Sharing Statement: ethical and policy considerations in organ donation after circulatory determination of death. Am. J. Respir. Crit. Care Med. 188, 103–109 (2013).

    PubMed  Google Scholar 

  47. The Australian and New Zealand Intensive Care Society. The ANZICS Statement on Death and Organ Donation Edition 3.2 [online], (2013).

  48. Richards, B. & Rogers, W. A. Organ donation after cardiac death: legal and ethical justifications for antemortem interventions. Med. J. Aust. 187, 168–170 (2007).

    PubMed  Google Scholar 

  49. Sivaraman, V. & Yellon, D. M. Pharmacologic therapy that simulates conditioning for cardiac ischemic/reperfusion injury. J. Cardiovasc. Pharmacol. Ther. 19, 83–96 (2014).

    CAS  PubMed  Google Scholar 

  50. Gerczuk, P. Z. & Kloner, R. A. Protecting the heart from ischemia: an update on ischemic and pharmacologic conditioning. Hosp. Pract. (1995) 39, 35–43 (2011).

    Google Scholar 

  51. Cohen, M. V. & Downey, J. M. Is it time to translate ischemic preconditioning's mechanism of cardioprotection into clinical practice? J. Cardiovasc. Pharmacol. Ther. 16, 273–280 (2011).

    CAS  PubMed  Google Scholar 

  52. D'Ascenzo, F. et al. Remote ischaemic preconditioning in coronary artery bypass surgery: a meta-analysis. Heart 98, 1267–1271 (2012).

    PubMed  Google Scholar 

  53. Kloner, R. A. Current state of clinical translation of cardioprotective agents for acute myocardial infarction. Circ. Res. 113, 451–463 (2013).

    CAS  PubMed  Google Scholar 

  54. Marczak, J., Nowicki, R., Kulbacka, J. & Saczko, J. Is remote ischaemic preconditioning of benefit to patients undergoing cardiac surgery? Interact. Cardiovasc. Thorac. Surg. 14, 634–639 (2012).

    PubMed  PubMed Central  Google Scholar 

  55. Zhou, C. et al. β-Blockers and volatile anesthetics may attenuate cardioprotection by remote preconditioning in adult cardiac surgery: a meta-analysis of 15 randomized trials. J. Cardiothorac. Vasc. Anesth. 27, 305–311 (2013).

    CAS  PubMed  Google Scholar 

  56. Przyklenk, K. Reduction of myocardial infarct size with ischemic “conditioning”: physiologic and technical considerations. Anesth. Analg. 117, 891–901 (2013).

    PubMed  Google Scholar 

  57. Thielmann, M. et al. Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet 382, 597–604 (2013).

    PubMed  Google Scholar 

  58. Hausenloy, D. J. et al. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet 370, 575–579 (2007).

    PubMed  Google Scholar 

  59. Pagel, P. S. & Hudetz, J. A. Delayed cardioprotection by inhaled anesthetics. J. Cardiothorac. Vasc. Anesth. 25, 1125–1140 (2011).

    PubMed  Google Scholar 

  60. Landoni, G., Fochi, O. & Torri, G. Cardiac protection by volatile anaesthetics: a review. Curr. Vasc. Pharmacol. 6, 108–111 (2008).

    CAS  PubMed  Google Scholar 

  61. Landoni, G., Turi, S., Bignami, E. & Zangrillo, A. Organ protection by volatile anesthetics in non-coronary artery bypass grafting surgery. Future Cardiol. 5, 589–603 (2009).

    PubMed  Google Scholar 

  62. Tissier, R., Ghaleh, B., Cohen, M. V., Downey, J. M. & Berdeaux, A. Myocardial protection with mild hypothermia. Cardiovasc. Res. 94, 217–225 (2012).

    CAS  PubMed  Google Scholar 

  63. Chien, G. L., Wolff, R. A., Davis, R. F. & van Winkle, D. M. “Normothermic range” temperature affects myocardial infarct size. Cardiovasc. Res. 28, 1014–1017 (1994).

    CAS  PubMed  Google Scholar 

  64. Jones, R. N., Reimer, K. A., Hill, M. L. & Jennings, R. B. Effect of hypothermia on changes in high-energy phosphate production and utilization in total ischemia. J. Mol. Cell. Cardiol. 14 (Suppl. 3), 123–130 (1982).

    CAS  PubMed  Google Scholar 

  65. Hayashida, N. et al. Tepid antegrade and retrograde cardioplegia. Ann. Thorac. Surg. 59, 723–729 (1995).

    CAS  PubMed  Google Scholar 

  66. Tissier, R. et al. The small chill: mild hypothermia for cardioprotection? Cardiovasc. Res. 88, 406–414 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Shao, Z. H. et al. Therapeutic hypothermia cardioprotection via Akt- and nitric oxide-mediated attenuation of mitochondrial oxidants. Am. J. Physiol. Heart Circ. Physiol. 298, H2164–H2173 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mochizuki, T., Yu, S., Katoh, T., Aoki, K. & Sato, S. Cardioprotective effect of therapeutic hypothermia at 34°C against ischaemia/reperfusion injury mediated by PI3K and nitric oxide in a rat isolated heart model. Resuscitation 83, 238–242 (2012).

    CAS  PubMed  Google Scholar 

  69. Lampe, J. W. & Becker, L. B. State of the art in therapeutic hypothermia. Annu. Rev. Med. 62, 79–93 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Castrén, M. et al. Intra-arrest transnasal evaporative cooling: a randomized, prehospital, multicenter study (PRINCE: Pre-ROSC IntraNasal Cooling Effectiveness). Circulation 122, 729–736 (2010).

    PubMed  Google Scholar 

  71. Miki, T., Liu, G. S., Cohen, M. V. & Downey, J. M. Mild hypothermia reduces infarct size in the beating rabbit heart: a practical intervention for acute myocardial infarction? Basic Res. Cardiol. 93, 372–383 (1998).

    CAS  PubMed  Google Scholar 

  72. Hausenloy, D. J. Signalling pathways in ischaemic postconditioning. Thromb. Haemost. 101, 626–634 (2009).

    CAS  PubMed  Google Scholar 

  73. Hearse, D. J. Myocardial protection during ischemia and reperfusion. Mol. Cell. Biochem. 186, 177–184 (1998).

    CAS  PubMed  Google Scholar 

  74. Mockford, K. A., Girn, H. R. & Homer-Vanniasinkam, S. Postconditioning: current controversies and clinical implications. Eur. J. Vasc. Endovasc. Surg. 37, 437–442 (2009).

    CAS  PubMed  Google Scholar 

  75. Zhao, Z. Q. et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol. 285, H579–H588 (2003).

    CAS  PubMed  Google Scholar 

  76. Hausenloy, D. J., Lecour, S. & Yellon, D. M. Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid. Redox Signal. 14, 893–907 (2011).

    CAS  PubMed  Google Scholar 

  77. Hausenloy, D. J. & Yellon, D. M. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc. Res. 61, 448–460 (2004).

    CAS  PubMed  Google Scholar 

  78. Lecour, S. Activation of the protective survivor activating factor enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J. Mol. Cell. Cardiol. 47, 32–40 (2009).

    CAS  PubMed  Google Scholar 

  79. Correa, F. et al. Post-conditioning preserves glycolytic ATP during early reperfusion: a survival mechanism for the reperfused heart. Cell. Physiol. Biochem. 22, 635–644 (2008).

    CAS  PubMed  Google Scholar 

  80. Lauzier, B. et al. After four hours of cold ischemia and cardioplegic protocol, the heart can still be rescued with postconditioning. Transplantation 84, 1474–1482 (2007).

    PubMed  Google Scholar 

  81. Hausenloy, D. J. & Yellon, D. M. The therapeutic potential of ischemic conditioning: an update. Nat. Rev. Cardiol. 8, 619–629 (2011).

    CAS  PubMed  Google Scholar 

  82. Hausenloy, D. J., Boston-Griffiths, E. & Yellon, D. M. Cardioprotection during cardiac surgery. Cardiovasc. Res. 94, 253–265 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Stanley, W. C., Recchia, F. A. & Lopaschuk, G. D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85, 1093–1129 (2005).

    CAS  PubMed  Google Scholar 

  84. Doenst, T. et al. Insulin improves functional and metabolic recovery of reperfused working rat heart. Ann. Thorac. Surg. 67, 1682–1688 (1999).

    CAS  PubMed  Google Scholar 

  85. Zaha, V., Francischetti, I. & Doenst, T. Insulin improves postischemic recovery of function through PI3K in isolated working rat heart. Mol. Cell. Biochem. 247, 229–232 (2003).

    CAS  PubMed  Google Scholar 

  86. Lopaschuk, G. D. Optimizing cardiac energy metabolism: how can fatty acid and carbohydrate metabolism be manipulated? Coron. Artery Dis. 12 (Suppl. 1), S8–S11 (2001).

    PubMed  Google Scholar 

  87. Cheung, N. W. Glucose control during acute myocardial infarction. Intern Med. J. 38, 345–348 (2008).

    CAS  PubMed  Google Scholar 

  88. Yellon, D. M. & Hausenloy, D. J. Myocardial reperfusion injury. N. Engl. J. Med. 357, 1121–1135 (2007).

    CAS  PubMed  Google Scholar 

  89. Argaud, L. et al. Postconditioning inhibits mitochondrial permeability transition. Circulation 111, 194–197 (2005).

    CAS  PubMed  Google Scholar 

  90. Cohen, M. V., Yang, X. M. & Downey, J. M. The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 115, 1895–1903 (2007).

    PubMed  Google Scholar 

  91. Honda, H. M., Korge, P. & Weiss, J. N. Mitochondria and ischemia/reperfusion injury. Ann. N. Y. Acad. Sci. 1047, 248–258 (2005).

    CAS  PubMed  Google Scholar 

  92. Hausenloy, D. J., Maddock, H. L., Baxter, G. F. & Yellon, D. M. Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc. Res. 55, 534–543 (2002).

    CAS  PubMed  Google Scholar 

  93. Perrelli, M. G., Pagilaro, P. & Penna, C. Ischemia/reperfusion injury and cardioprotective mechanisms: role of mitochondria and reactive oxygen species. World J. Cardiol. 3, 186–200 (2011).

    PubMed  PubMed Central  Google Scholar 

  94. Guarini, G. et al. Therapy against ischemic injury. Curr. Pharm. Des. 19, 4597–4621 (2013).

    CAS  PubMed  Google Scholar 

  95. Morel, O. et al. Pharmacological approaches to reperfusion therapy. Cardiovasc. Res. 94, 246–252 (2012).

    CAS  PubMed  Google Scholar 

  96. Ivanes, F. et al. Cardioprotection in the clinical setting. Cardiovasc. Drugs Ther. 24, 281–287 (2010).

    PubMed  Google Scholar 

  97. Ivanes, F., Rioufol, G., Piot, C. & Ovize, M. Postconditioning in acute myocardial infarction patients. Antioxid. Redox Signal. 14, 811–820 (2011).

    CAS  PubMed  Google Scholar 

  98. Gomez, L. et al. Inhibition of mitochondrial permeability transition pore opening: translation to patients. Cardiovasc. Res. 83, 226–233 (2009).

    CAS  PubMed  Google Scholar 

  99. Thatte, H. S. et al. Development and evaluation of a novel solution, Somah, for the procurement and preservation of beating and nonbeating donor hearts for transplantation. Circulation 120, 1704–1713 (2009).

    PubMed  Google Scholar 

  100. Illes, R. W., Asimakis, G. K., Inners-McBride, K. & Buckingham, E. D. Recovery of nonbeating donor hearts. J. Heart Lung Transplant. 14, 553–561 (1995).

    CAS  PubMed  Google Scholar 

  101. Martin, J. et al. Successful orthotopic pig heart transplantation from non-heart-beating donors. J. Heart Lung Transplant. 18, 597–606 (1999).

    CAS  PubMed  Google Scholar 

  102. White, C. W. et al. A cardioprotective preservation strategy employing ex vivo heart perfusion facilitates successful transplant of donor hearts after cardiocirculatory death. J. Heart Lung Transplant. 32, 734–743 (2013).

    PubMed  Google Scholar 

  103. Koike, N. et al. Effects of adding P38 mitogen-activated protein-kinase inhibitor to celsior solution in canine heart transplantation from non-heart-beating donors. Transplantation 77, 286–292 (2004).

    CAS  PubMed  Google Scholar 

  104. Scheule, A. M. et al. Sodium-hydrogen inhibitor cariporide (HOE 642) improves in situ protection of hearts from non-heart-beating donors. J. Heart Lung Transplant. 22, 1335–1342 (2003).

    PubMed  Google Scholar 

  105. Repse, S., Pepe, S., Anderson, J., McLean, C. & Rosenfeldt, F. L. Cardiac reanimation for donor heart transplantation after cardiocirculatory death. J. Heart Lung Transplant. 29, 747–755 (2010).

    PubMed  Google Scholar 

  106. Scheule, A. M. et al. A non-heart-beating donor model to evaluate functional and morphologic outcomes in resuscitated pig hearts. J. Invest. Surg. 15, 125–135 (2002).

    PubMed  Google Scholar 

  107. Collins, M. J., Moainie, S. L., Griffith, B. P. & Poston, R. S. Preserving and evaluating hearts with ex vivo machine perfusion: an avenue to improve early graft performance and expand the donor pool. Eur. J. Cardiothorac. Surg. 34, 318–325 (2008).

    PubMed  Google Scholar 

  108. Koike, N. et al. The effect of short-term coronary perfusion using a perfusion apparatus on canine heart transplantation from non-heart-beating donors. J. Heart Lung Transplant. 22, 810–817 (2003).

    PubMed  Google Scholar 

  109. Esmailian, F. et al. The PROCEED II International Heart Transplant Trial with the Organ Care System Technology (OCS). J. Heart Lung Transplant. 32 (Suppl.), S95–S96 (2013).

    Google Scholar 

  110. Ferrera, R., Bopassa, J. C., Rodriguez, C., Baverel, G. & Ovize, M. A simple and reliable method to assess heart viability after hypothermic procurement. Transplant. Proc. 38, 2283–2284 (2006).

    CAS  PubMed  Google Scholar 

  111. Ferrera, R., Forrat, R., Marcsek, P., de Lorgeril, M. & Dureau, G. Importance of initial coronary artery flow after heart procurement to assess heart viability before transplantation. Circulation 91, 257–261 (1995).

    CAS  PubMed  Google Scholar 

  112. Suehiro, K. et al. Posttransplant function of a nonbeating heart is predictable by an ex vivo perfusion method. Ann. Thorac. Surg. 71, 278–283 (2001).

    CAS  PubMed  Google Scholar 

  113. Collins, M. J. et al. Use of diffusion tensor imaging to predict myocardial viability after warm global ischemia: possible avenue for use of non-beating donor hearts. J. Heart Lung Transplant. 26, 376–383 (2007).

    PubMed  Google Scholar 

  114. Sourdon, J. et al. Cardiac transplantation with hearts from donors after circulatory declaration of death: haemodynamic and biochemical parameters at procurement predict recovery following cardioplegic storage in a rat model. Eur. J. Cardiothorac. Surg. 44, e87–e96 (2013).

    PubMed  Google Scholar 

  115. Wells, A. C. et al. Donor kidney disease and transplant outcome for kidneys donated after cardiac death. Br. J. Surg. 96, 299–304 (2009).

    CAS  PubMed  Google Scholar 

  116. Thomas, H. L. et al. Incidence and outcome of Levitronix CentriMag support as rescue therapy for early cardiac allograft failure: a United Kingdom national study. Eur. J. Cardiothorac. Surg. 40, 1348–1354 (2011).

    PubMed  Google Scholar 

  117. Curfman, G. D., Morrissey, S. & Drazen, J. M. Cardiac transplantation in infants. N. Engl. J. Med. 359, 749–750 (2008).

    CAS  PubMed  Google Scholar 

  118. Gardiner, D., Shemie, S., Manara, A. & Opdam, H. International perspective on the diagnosis of death. Br. J. Anaesth. 108 (Suppl. 1), i14–i28 (2012).

    PubMed  Google Scholar 

  119. Shemie, S. D. et al. National recommendations for donation after cardiocirculatory death in Canada: donation after cardiocirculatory death in Canada. CMAJ 175, S1–S24 (2006).

    PubMed  PubMed Central  Google Scholar 

  120. Huang, J. et al. The national program for deceased organ donation in China. Transplantation 96, 5–9 (2013).

    PubMed  Google Scholar 

  121. Bruzzone, P. Ethical and legal issues in donation after cardiac death in Italy. Transplant. Proc. 42, 1046–1047 (2010).

    CAS  PubMed  Google Scholar 

  122. DeVita, M. A. The death watch: certifying death using cardiac criteria. Prog. Transplant. 11, 58–66 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

To limit the number of references, reviews have occasionally been cited and the authors apologize to the authors of original papers for not citing them directly. The authors thank L. Seidel (Department of Cardiovascular Surgery, Inselspital, Berne University Hospital and University of Berne, Switzerland) for administrative assistance. The authors are supported by the Swiss National Science Foundation (grant number 310030_149730).

Author information

Authors and Affiliations

Authors

Contributions

S.L.L., V.M., and H.T.T. researched data for the article. S.L.L., M.D., F.D., T.P.C., and H.T.T. contributed substantially to discussion of its content. S.L.L, V.M., M.D., and H.T.T. wrote the manuscript, and S.L.L., F.D., T.P.C., and H.T.T. reviewed/edited the article before submission.

Corresponding author

Correspondence to Hendrik T. Tevaearai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longnus, S., Mathys, V., Dornbierer, M. et al. Heart transplantation with donation after circulatory determination of death. Nat Rev Cardiol 11, 354–363 (2014). https://doi.org/10.1038/nrcardio.2014.45

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.45

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing