Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pathophysiology and epidemiology of peripartum cardiomyopathy

Key Points

  • Peripartum cardiomyopathy (PPCM) is defined as idiopathic systolic dysfunction in peripartum women

  • To make a diagnosis of PPCM, other possible causes of heart failure in peripartum women, such as genetic forms of dilated cardiomyopathy, need to be excluded

  • The incidence and prognosis of PPCM vary according to socioeconomic and genetic factors

  • The aetiology of PPCM is unknown; risk factors might include pre-eclampsia, twin pregnancies, and African ethnicity

  • A possible pathophysiological mechanism for PPCM is the production of a 16 kDa fragment of prolactin; blocking prolactin is, therefore, a potential therapeutic target

Abstract

Cardiovascular diseases are a major cause of complications in pregnancy worldwide, and the number of patients who develop cardiac problems during pregnancy is increasing. Peripartum cardiomyopathy (PPCM) is a potentially life-threatening heart disease that emerges towards the end of pregnancy or in the first months postpartum, in previously healthy women. Symptoms and signs of PPCM are similar to those in patients with idiopathic dilated cardiomyopathy. The incidence varies geographically, most likely because of socioeconomic and genetic factors. The syndrome is associated with a high morbidity and mortality, and diagnosis is often delayed. Various mechanisms have been investigated, including the hypothesis that unbalanced peripartum or postpartum oxidative stress triggers the proteolytic cleavage of the nursing hormone prolactin into a potent antiangiogenic, proapoptotic, and proinflammatory 16 kDa fragment. This theory provides the basis for the discovery of disease-specific biomarkers and promising novel therapeutic targets. In this Review, we describe the latest understanding of the epidemiology, pathophysiology, and novel treatment strategies for patients with PPCM.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Time of onset of symptoms of peripartum cardiomyopathy according to country.
Figure 2: Pathophysiological mechanisms in PPCM.

References

  1. Pearson, G. D. et al. Peripartum cardiomyopathy: National Heart, Lung, and Blood Institute and Office of Rare Diseases (National Institutes of Health) workshop recommendations and review. JAMA 283, 1183–1188 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Selle, T., Renger, I., Labidi, S., Bultmann, I. & Hilfiker-Kleiner, D. Reviewing peripartum cardiomyopathy: current state of knowledge. Future Cardiol. 5, 175–189 (2009).

    Article  PubMed  Google Scholar 

  3. Sliwa, K., Fett, J. & Elkayam, U. Peripartum cardiomyopathy. Lancet 368, 687–693 (2006).

    Article  PubMed  Google Scholar 

  4. Sliwa, K. et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Working Group on Peripartum Cardiomyopathy. Eur. Heart J. 12, 767–778 (2010).

    Article  Google Scholar 

  5. Demakis, J. G. & Rahimtoola, S. H. Peripartum cardiomyopathy. Circulation 44, 964–968 (1971).

    Article  CAS  PubMed  Google Scholar 

  6. Elkayam, U. et al. Pregnancy-associated cardiomyopathy: clinical characteristics and a comparison between early and late presentation. Circulation 111, 2050–2055 (2005).

    Article  PubMed  Google Scholar 

  7. Haghikia, A. et al. Phenotyping and outcome on contemporary management in a German cohort of patients with peripartum cardiomyopathy. Basic Res. Cardiol. 108, 366 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goland, S. et al. Clinical profile and predictors of complications in peripartum cardiomyopathy. J. Card. Fail. 15, 645–650 (2009).

    Article  PubMed  Google Scholar 

  9. Sliwa, K. et al. Peripartum cardiomyopathy: inflammatory markers as predictors of outcome in 100 prospectively studied patients. Eur. Heart J. 27, 441–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Halkein, J. et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J. Clin. Invest. 123, 2143–2154 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hilfiker-Kleiner, D. et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 128, 589–600 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Patten, I. S. et al. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature 485, 333–338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Forster, O. et al. Reversal of IFN-γ, oxLDL and prolactin serum levels correlate with clinical improvement in patients with peripartum cardiomyopathy. Eur. J. Heart Fail. 10, 861–868 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Ricke-Hoch, M. et al. Opposing roles of Akt and STAT3 in protection of the maternal heart from peripartum stress. Cardiovasc. Res. 101, 587–596 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Kamiya, C. A. et al. Different characteristics of peripartum cardiomyopathy between patients complicated with and without hypertensive disorders: results from the Japanese Nationwide survey of peripartum cardiomyopathy. Circ. J. 75, 1975–1981 (2011).

    Article  PubMed  Google Scholar 

  16. Brar, S. S. et al. Incidence, mortality, and racial differences in peripartum cardiomyopathy. Am. J. Cardiol. 100, 302–304 (2007).

    Article  PubMed  Google Scholar 

  17. Fett, J. D. Peripartum cardiomyopathy: insights from Haiti regarding a disease of unknown etiology. Minn. Med. 85, 46–48 (2002).

    PubMed  Google Scholar 

  18. Fett, J. D., Christie, L. G., Carraway, R. D. & Murphy, J. G. Five-year prospective study of the incidence and prognosis of peripartum cardiomyopathy at a single institution. Mayo Clin. Proc. 80, 1602–1606 (2005).

    Article  PubMed  Google Scholar 

  19. Kuklina, E. V. & Callaghan, W. M. Cardiomyopathy and other myocardial disorders among hospitalizations for pregnancy in the United States: 2004–2006. Obstet. Gynecol. 115, 93–100 (2010).

    Article  PubMed  Google Scholar 

  20. Fett, J. D. et al. Unrecognized peripartum cardiomyopathy in Haitian women. Int. J. Gynaecol. Obstet. 90, 161–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Desai, D., Moodley, J. & Naidoo, D. Peripartum cardiomyopathy: experiences at King Edward VIII Hospital, Durban, South Africa and a review of the literature. Trop. Doct. 25, 118–123 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Chapa, J. B. et al. Prognostic value of echocardiography in peripartum cardiomyopathy. Obstet. Gynecol. 105, 1303–1308 (2005).

    Article  PubMed  Google Scholar 

  23. Gentry, M. B. et al. African-American women have a higher risk for developing peripartum cardiomyopathy. J. Am. Coll. Cardiol. 55, 654–659 (2010).

    Article  PubMed  Google Scholar 

  24. Modi, K. A., Illum, S., Jariatul, K., Caldito, G. & Reddy, P. C. Poor outcome of indigent patients with peripartum cardiomyopathy in the United States. Am. J. Obstet. Gynecol. 201, 171.e1–e5 (2009).

    Article  Google Scholar 

  25. Goland, S., Modi, K., Hatamizadeh, P. & Elkayam, U. Differences in clinical profile of African–American women with peripartum cardiopmyopathy in the United States. J. Card. Fail. 19, 214–218 (2013).

    Article  PubMed  Google Scholar 

  26. Blauwet, L. A. et al. Predictors of outcome in 176 South African patients with peripartum cardiomyopathy. Heart 99, 308–313 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Mielniczuk, L. M. et al. Frequency of peripartum cardiomyopathy. Am. J. Cardiol. 97, 1765–1768 (2006).

    Article  PubMed  Google Scholar 

  28. European Society of Cardiology. PeriPartum CardioMyopathy (PPCM) Registry [online], (2014).

  29. Elkayam, U. Clinical characteristics of peripartum cardiomyopathy in the United States: diagnosis, prognosis, and management. J. Am. Coll. Cardiol. 58, 659–670 (2011).

    Article  PubMed  Google Scholar 

  30. Safirstein, J. G. et al. Predictors of left ventricular recovery in a cohort of peripartum cardiomyopathy patients recruited via the internet. Int. J. Cardiol. 154, 27–31 (2012).

    Article  PubMed  Google Scholar 

  31. Sliwa, K. et al. EURObservational Research Programme: a worldwide registry on peripartum cardiomyopathy (PPCM) in conjunction with the Heart Failure Association of the European Society of Cardiology Working Group on PPCM. Eur. J. Heart Fail. http://dx.doi.org/10.1002/ejhf.68.

  32. Pearl, W. Familial occurrence of peripartum cardiomyopathy. Am. Heart J. 129, 421–422 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Pierce, J. A., Price, B. O. & Joyce, J. W. Familial occurrence of postpartal heart failure. Arch. Intern. Med. 111, 651–655 (1963).

    Article  CAS  PubMed  Google Scholar 

  34. Meyer, G. P. et al. Bromocriptine treatment associated with recovery from peripartum cardiomyopathy in siblings: two case reports. J. Med. Case Reports 4, 80 (2010).

    Article  PubMed Central  Google Scholar 

  35. Fett, J. D., Sundstrom, B. J., Etta King, M. & Ansari, A. A. Mother–daughter peripartum cardiomyopathy. Int. J. Cardiol. 86, 331–332 (2002).

    Article  PubMed  Google Scholar 

  36. van Spaendonck-Zwarts, K. et al. Peripartum cardiomyopathy as part of familial dilated cardiomyopathy. Circulation 121, 2169–2175 (2010).

    Article  PubMed  Google Scholar 

  37. Morales, A. et al. Rare variant mutations in pregnancy-associated or peripartum cardiomyopathy. Circulation 121, 2176–2182 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Spaendonck-Zwarts, K. Y. et al. Titin gene mutations are common in families with both peripartum cardiomyopathy and dilated cardiomyopathy. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehu050.

  39. Bahl, A., Swamy, A., Sharma, Y. & Kumar, N. Isolated noncompaction of left ventricle presenting as peripartum cardiomyopathy. Int. J. Cardiol. 109, 422–423 (2006).

    Article  PubMed  Google Scholar 

  40. Lea, B., Bailey, A. L., Wiisanen, M. E., Attili, A. & Rajagopalan, N. Left ventricular noncompaction presenting as peripartum cardiomyopathy. Int. J. Cardiol. 154, e65–e66 (2012).

    Article  PubMed  Google Scholar 

  41. Rehfeldt, K. H., Pulido, J. N., Mauermann, W. J. & Click, R. L. Left ventricular hypertrabeculation/noncompaction in a patient with peripartum cardiomyopathy. Int. J. Cardiol. 139, e18–e20 (2010).

    Article  PubMed  Google Scholar 

  42. Hilfiker-Kleiner, D., Struman, I., Hoch, M., Podewski, E. & Sliwa, K. 16-kDa prolactin and bromocriptine in postpartum cardiomyopathy. Curr. Heart Fail. Rep. 9, 174–182 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Toescu, V., Nuttall, S. L., Martin, U., Kendall, M. J. & Dunne, F. Oxidative stress and normal pregnancy. Clin. Endocrinol. (Oxf.) 57, 609–613 (2002).

    Article  CAS  Google Scholar 

  44. Lkhider, M., Castino, R., Bouguyon, E., Isidoro, C. & Ollivier-Bousquet, M. Cathepsin D released by lactating rat mammary epithelial cells is involved in prolactin cleavage under physiological conditions. J. Cell Sci. 117, 5155–5164 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Ferrara, N., Clapp, C. & Weiner, R. The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology 129, 896–900 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Piwnica, D. et al. Cathepsin D processes human prolactin into multiple 16K-like N-terminal fragments: study of their antiangiogenic properties and physiological relevance. Mol. Endocrinol. 18, 2522–2542 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Macotela, Y. et al. Matrix metalloproteases from chondrocytes generate an antiangiogenic 16 kDa prolactin. J. Cell Sci. 119, 1790–1800 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Tabruyn, S. P., Nguyen, N. Q., Cornet, A. M., Martial, J. A. & Struman, I. The antiangiogenic factor, 16-kDa human prolactin, induces endothelial cell cycle arrest by acting at both the G0–G1 and the G2–M phases. Mol. Endocrinol. 19, 1932–1942 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. D'Angelo, G. et al. 16K human prolactin inhibits vascular endothelial growth factor-induced activation of Ras in capillary endothelial cells. Mol. Endocrinol. 13, 692–704 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Tabruyn, S. P. et al. The antiangiogenic factor 16K human prolactin induces caspase-dependent apoptosis by a mechanism that requires activation of nuclear factor-κB. Mol. Endocrinol. 17, 1815–1823 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Lee, S. H., Kunz, J., Lin, S. H. & Yu-Lee, L. Y. 16-kDa prolactin inhibits endothelial cell migration by down-regulating the Ras–Tiam1–Rac1–Pak1 signaling pathway. Cancer Res. 67, 11045–11053 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Gonzalez, C. et al. 16K-prolactin inhibits activation of endothelial nitric oxide synthase, intracellular calcium mobilization, and endothelium-dependent vasorelaxation. Endocrinology 145, 5714–5722 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Gonzalez, C. et al. Elevated vasoinhibins may contribute to endothelial cell dysfunction and low birth weight in preeclampsia. Lab. Invest. 87, 1009–1017 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Nguyen, N. Q. et al. Inhibition of tumor growth and metastasis establishment by adenovirus-mediated gene transfer delivery of the antiangiogenic factor 16K hPRL. Mol. Ther. 15, 2094–2100 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Habedank, D. et al. Recovery from peripartum cardiomyopathy after treatment with bromocriptine. Eur. J. Heart Fail. 10, 1149–1151 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Hilfiker-Kleiner, D. et al. Recovery from postpartum cardiomyopathy in 2 patients by blocking prolactin release with bromocriptine. J. Am. Coll. Cardiol. 50, 2354–2355 (2007).

    Article  PubMed  Google Scholar 

  57. Sliwa, K. et al. Evaluation of bromocriptine in the treatment of acute severe peripartum cardiomyopathy: a proof-of-concept pilot study. Circulation 121, 1465–1473 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  59. Bello, N., Rendon, I. S. & Arany, Z. The relationship between pre-eclampsia and peripartum cardiomyopathy: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 62, 1715–1723 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rana, S. et al. Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulation 125, 911–919 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shahul, S. et al. Subclinical left ventricular dysfunction in preeclamptic women with preserved left ventricular ejection fraction: a 2D speckle-tracking imaging study. Circ. Cardiovasc. Imaging 5, 734–739 (2012).

    Article  PubMed  Google Scholar 

  62. Powe, C. E., Levine, R. J. & Karumanchi, S. A. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation 123, 2856–2869 (2011).

    Article  PubMed  Google Scholar 

  63. Fett, J. D. Earlier detection can help avoid many serious complications of peripartum cardiomyopathy. Future Cardiol. 9, 809–816 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Elkayam, U. et al. Maternal and fetal outcomes of subsequent pregnancies in women with peripartum cardiomyopathy. N. Engl. J. Med. 344, 1567–1571 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Chung, E., Yeung, F. & Leinwand, L. A. Akt and MAPK signaling mediate pregnancy-induced cardiac adaptation. J. Appl. Physiol. (1985) 112, 1564–1575 (2012).

    Article  CAS  Google Scholar 

  66. Eghbali, M. et al. Molecular and functional signature of heart hypertrophy during pregnancy. Circ. Res. 96, 1208–1216 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Walenta, K. et al. Circulating microparticles as indicators of peripartum cardiomyopathy. Eur. Heart J. 33, 1469–1479 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sylvia Dennis (Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, South Africa) for proofreading the manuscript. The authors are supported by the Deutsche Forschungs Gesellschaft (DFG), the Bundesministeriums für Bildung und Forschung (BMBF), the National Research Foundation South Africa, and the Medical Research Foundation South Africa.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, contributed substantially to discussion of its content, wrote the manuscript, and reviewed and edited it before submission.

Corresponding author

Correspondence to Denise Hilfiker-Kleiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hilfiker-Kleiner, D., Sliwa, K. Pathophysiology and epidemiology of peripartum cardiomyopathy. Nat Rev Cardiol 11, 364–370 (2014). https://doi.org/10.1038/nrcardio.2014.37

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing