Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The inflammatory response in myocardial injury, repair, and remodelling

Key Points

  • In the infarcted myocardium, cardiomyocyte death and degradation of the cardiac extracellular matrix releases signals that activate innate immune pathways and trigger an intense inflammatory reaction

  • The role of postinfarction inflammation in extending ischaemic cardiomyocyte injury is controversial; however, inflammatory mediators are implicated in dilative remodelling and in the pathogenesis of postinfarction heart failure

  • Early stimulation of inflammatory signalling is important for clearance of dead cells from the infarcted area and for tissue repair

  • Timely repression of proinflammatory mediators protects the heart from excessive inflammatory injury

  • Patients who survive a large myocardial infarction exhibit pathophysiological heterogeneity, as subpopulations with progressive dilative remodelling or predominant diastolic dysfunction are identified

  • Biomarker-based approaches are needed to identify patients with overactive proinflammatory signalling or excessive fibrosis who might benefit from targeted therapies

Abstract

Myocardial infarction triggers an intense inflammatory response that is essential for cardiac repair, but which is also implicated in the pathogenesis of postinfarction remodelling and heart failure. Signals in the infarcted myocardium activate toll-like receptor signalling, while complement activation and generation of reactive oxygen species induce cytokine and chemokine upregulation. Leukocytes recruited to the infarcted area, remove dead cells and matrix debris by phagocytosis, while preparing the area for scar formation. Timely repression of the inflammatory response is critical for effective healing, and is followed by activation of myofibroblasts that secrete matrix proteins in the infarcted area. Members of the transforming growth factor β family are critically involved in suppression of inflammation and activation of a profibrotic programme. Translation of these concepts to the clinic requires an understanding of the pathophysiological complexity and heterogeneity of postinfarction remodelling in patients with myocardial infarction. Individuals with an overactive and prolonged postinfarction inflammatory response might exhibit left ventricular dilatation and systolic dysfunction and might benefit from targeted anti-IL-1 or anti-chemokine therapies, whereas patients with an exaggerated fibrogenic reaction can develop heart failure with preserved ejection fraction and might require inhibition of the Smad3 (mothers against decapentaplegic homolog 3) cascade. Biomarker-based approaches are needed to identify patients with distinct pathophysiologic responses and to rationally implement inflammation-modulating strategies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytotoxic inflammatory injury after myocardial infarction.
Figure 2: The postinfarction inflammatory response.
Figure 3: TGF-β is a key mediator in postinfarction remodelling.
Figure 4: Biomarker-based approaches to target the inflammatory response in patients with acute myocardial infarction.

Similar content being viewed by others

References

  1. Mallory, G. K., White, P. D. & Salcedo-Salgar, J. The speed of healing of myocardial infarction. A study of the pathologic anatomy in seventy-two cases. Am. Heart J. 18, 647–671 (1939).

    Google Scholar 

  2. Entman, M. L. et al. Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence. J. Clin. Invest. 90, 1335–1345 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yamazaki, T. et al. Expression of intercellular adhesion molecule-1 in rat heart with ischemia/reperfusion and limitation of infarct size by treatment with antibodies against cell adhesion molecules. Am. J. Pathol. 143, 410–418 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Simpson, P. J. et al. Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mo1, anti-CD11b) that inhibits leukocyte adhesion. J. Clin. Invest. 81, 624–629 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tojo, S. J. et al. Reduction of rat myocardial ischemia and reperfusion injury by sialyl Lewis X oligosaccharide and anti-rat P-selectin antibodies. Glycobiology 6, 463–469 (1996).

    CAS  PubMed  Google Scholar 

  6. Christia, P. & Frangogiannis, N. G. Targeting inflammatory pathways in myocardial infarction. Eur. J. Clin. Invest. 43, 986–995 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cohn, J. N., Ferrari, R. & Sharpe, N. on behalf of an International Forum on Cardiac Remodeling. Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J. Am. Coll. Cardiol. 35, 569–582 (2000).

    CAS  PubMed  Google Scholar 

  8. White, H. D. et al. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76, 44–51 (1987).

    CAS  PubMed  Google Scholar 

  9. Frangogiannis, N. G. The immune system and cardiac repair. Pharmacol. Res. 58, 88–111 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Briaud, S. A. et al. Leukocyte trafficking and myocardial reperfusion injury in ICAM-1/P-selectin-knockout mice. Am. J. Physiol. Heart Circ. Physiol. 280, H60–H67 (2001).

    CAS  PubMed  Google Scholar 

  11. Chen, W. et al. Endogenous IRAK-M attenuates postinfarction remodeling through effects on macrophages and fibroblasts. Arterioscler. Thromb. Vasc. Biol. 32, 2598–2608 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Frangogiannis, N. G. Regulation of the inflammatory response in cardiac repair. Circ. Res. 110, 159–173 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Timmers, L. et al. The innate immune response in reperfused myocardium. Cardiovasc. Res. 94, 276–283 (2012).

    CAS  PubMed  Google Scholar 

  14. Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).

    CAS  PubMed  Google Scholar 

  15. Chan, J. K. et al. Alarmins: awaiting a clinical response. J. Clin. Invest. 122, 2711–2719 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Andrassy, M. et al. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 117, 3216–3226 (2008).

    CAS  PubMed  Google Scholar 

  17. Ding, H. S. et al. The HMGB1-TLR4 axis contributes to myocardial ischemia/reperfusion injury via regulation of cardiomyocyte apoptosis. Gene 527, 389–393 (2013).

    CAS  PubMed  Google Scholar 

  18. Kitahara, T. et al. High-mobility group Box 1 restores cardiac function after myocardial infarction in transgenic mice. Cardiovasc. Res. 80, 40–46 (2008).

    CAS  PubMed  Google Scholar 

  19. Zou, N. et al. Critical role of extracellular heat shock cognate protein 70 in the myocardial inflammatory response and cardiac dysfunction after global ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol. 294, H2805–H2813 (2008).

    CAS  PubMed  Google Scholar 

  20. Arslan, F., de Kleijn, D. P. & Pasterkamp, G. Innate immune signaling in cardiac ischemia. Nat. Rev. Cardiol. 8, 292–300 (2011).

    CAS  PubMed  Google Scholar 

  21. Mezzaroma, E. et al. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc. Natl Acad. Sci. USA 108, 19725–19730 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Huebener, P. et al. CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response. J. Immunol. 180, 2625–2633 (2008).

    CAS  PubMed  Google Scholar 

  23. Dobaczewski, M., Gonzalez-Quesada, C. & Frangogiannis, N. G. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J. Mol. Cell Cardiol. 48, 504–511 (2010).

    CAS  PubMed  Google Scholar 

  24. Oyama, J. et al. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation 109, 784–789 (2004).

    CAS  PubMed  Google Scholar 

  25. Timmers, L. et al. Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ. Res. 102, 257–264 (2008).

    CAS  PubMed  Google Scholar 

  26. Arslan, F. et al. Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation 121, 80–90 (2010).

    CAS  PubMed  Google Scholar 

  27. Weisman, H. F. et al. Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science 249, 146–151 (1990).

    CAS  PubMed  Google Scholar 

  28. Chandrasekar, B., Smith, J. B. & Freeman, G. L. Ischemia-reperfusion of rat myocardium activates nuclear factor-KappaB and induces neutrophil infiltration via lipopolysaccharide-induced CXC chemokine. Circulation 103, 2296–2302 (2001).

    CAS  PubMed  Google Scholar 

  29. Mulligan, M. S. et al. Roles of β2 integrins of rat neutrophils in complement- and oxygen radical-mediated acute inflammatory injury. J. Immunol. 148, 1847–1857 (1992).

    CAS  PubMed  Google Scholar 

  30. Fan, H. et al. Oxygen radicals trigger activation of NF-kappaB and AP-1 and upregulation of ICAM-1 in reperfused canine heart. Am. J. Physiol. Heart Circ. Physiol. 282, H1778–H1786 (2002).

    CAS  PubMed  Google Scholar 

  31. Frangogiannis, N. G. Chemokines in ischemia and reperfusion. Thromb. Haemost. 97, 738–747 (2007).

    CAS  PubMed  Google Scholar 

  32. Clark-Lewis, I., Schumacher, C., Baggiolini, M. & Moser, B. Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. J. Biol. Chem. 266, 23128–23134 (1991).

    CAS  PubMed  Google Scholar 

  33. Ivey, C. L., Williams, F. M., Collins, P. D., Jose, P. J. & Williams, T. J. Neutrophil chemoattractants generated in two phases during reperfusion of ischemic myocardium in the rabbit. Evidence for a role for C5a and interleukin-8. J. Clin. Invest. 95, 2720–2728 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dewald, O. et al. CCL2/Monocyte Chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 96, 881–889 (2005).

    CAS  PubMed  Google Scholar 

  35. Dobaczewski, M., Xia, Y., Bujak, M., Gonzalez-Quesada, C. & Frangogiannis, N. G. CCR5 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart, mediating recruitment of regulatory T cells. Am. J. Pathol. 176, 2177–2187 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Herskowitz, A., Choi, S., Ansari, A. A. & Wesselingh, S. Cytokine mRNA expression in postischemic/reperfused myocardium. Am. J. Pathol. 146, 419–428 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dewald, O. et al. Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am. J. Pathol. 164, 665–677 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Frangogiannis, N. G. et al. Resident cardiac mast cells degranulate and release preformed TNF-α, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 98, 699–710 (1998).

    CAS  PubMed  Google Scholar 

  39. Maekawa, N. et al. Improved myocardial ischemia/reperfusion injury in mice lacking tumor necrosis factor-α. J. Am. Coll. Cardiol. 39, 1229–1235 (2002).

    CAS  PubMed  Google Scholar 

  40. Kurrelmeyer, K. M. et al. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc. Natl Acad. Sci. USA 97, 5456–5461 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hamid, T. et al. Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation 119, 1386–1397 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mann, D. L. et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109, 1594–1602 (2004).

    CAS  PubMed  Google Scholar 

  43. Bujak, M. et al. Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am. J. Pathol. 173, 57–67 (2008).

    PubMed  PubMed Central  Google Scholar 

  44. Saxena, A. et al. IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium. J. Immunol. 191, 4838–4848 (2013).

    CAS  PubMed  Google Scholar 

  45. Abbate, A. et al. Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation 117, 2670–2683 (2008).

    CAS  PubMed  Google Scholar 

  46. Van Tassell, B. W., Toldo, S., Mezzaroma, E. & Abbate, A. Targeting interleukin-1 in heart disease. Circulation 128, 1910–1923 (2013).

    PubMed  PubMed Central  Google Scholar 

  47. Fischer, P. & Hilfiker-Kleiner, D. Role of gp130-mediated signalling pathways in the heart and its impact on potential therapeutic aspects. Br. J. Pharmacol. 153 (Suppl 1), S414–S427 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mima, T. & Nishimoto, N. Clinical value of blocking IL-6 receptor. Curr. Opin. Rheumatol. 21, 224–230 (2009).

    CAS  PubMed  Google Scholar 

  49. Fuchs, M. et al. Role of interleukin-6 for LV remodeling and survival after experimental myocardial infarction. FASEB J. 17, 2118–2120 (2003).

    CAS  PubMed  Google Scholar 

  50. Kobara, M. et al. Antibody against interleukin-6 receptor attenuates left ventricular remodelling after myocardial infarction in mice. Cardiovasc. Res. 87, 424–430 (2010).

    CAS  PubMed  Google Scholar 

  51. Hilfiker-Kleiner, D. et al. Continuous glycoprotein-130-mediated signal transducer and activator of transcription-3 activation promotes inflammation, left ventricular rupture, and adverse outcome in subacute myocardial infarction. Circulation 122, 145–155 (2010).

    CAS  PubMed  Google Scholar 

  52. Gersch, C. et al. Mast cells and macrophages in normal C57/BL/6 mice. Histochem. Cell Biol. 118, 41–49 (2002).

    CAS  PubMed  Google Scholar 

  53. Darden, A. G., Forbes, R. D., Darden, P. M. & Guttmann, R. D. The effects of genetics and age on expression of MHC class II and CD4 antigens on rat cardiac interstitial dendritic cells. Cell. Immunol. 126, 322–330 (1990).

    CAS  PubMed  Google Scholar 

  54. Ito, B. R., Engler, R. L. & del Balzo, U. Role of cardiac mast cells in complement C5a-induced myocardial ischemia. Am. J. Physiol. 264, H1346–H1354 (1993).

    CAS  PubMed  Google Scholar 

  55. Linden, J. Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu. Rev. Pharmacol. Toxicol. 41, 775–787 (2001).

    CAS  PubMed  Google Scholar 

  56. Gilles, S., Zahler, S., Welsch, U., Sommerhoff, C. P. & Becker, B. F. Release of TNF-α during myocardial reperfusion depends on oxidative stress and is prevented by mast cell stabilizers. Cardiovasc. Res. 60, 608–616 (2003).

    CAS  PubMed  Google Scholar 

  57. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    CAS  PubMed  Google Scholar 

  58. Hoshida, S. et al. Attenuation of neutrophil function by inhibitors of arachidonate metabolism reduces the extent of canine myocardial infarction. Am. J. Cardiol. 63, 24E–28E (1989).

    CAS  PubMed  Google Scholar 

  59. Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zouggari, Y. et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med. 19, 1273–1280 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Nahrendorf, M. & Swirski, F. K. Monocyte and macrophage heterogeneity in the heart. Circ. Res. 112, 1624–1633 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kawaguchi, M. et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123, 594–604 (2011).

    CAS  PubMed  Google Scholar 

  63. Frangogiannis, N. G. et al. Induction and suppression of interferon-inducible protein 10 in reperfused myocardial infarcts may regulate angiogenesis. FASEB J. 15, 1428–1430 (2001).

    CAS  PubMed  Google Scholar 

  64. Kumar, A. G. et al. Induction of monocyte chemoattractant protein-1 in the small veins of the ischemic and reperfused canine myocardium. Circulation 95, 693–700 (1997).

    CAS  PubMed  Google Scholar 

  65. Liu, Y. et al. Novel role of platelets in mediating inflammatory responses and ventricular rupture or remodeling following myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 31, 834–841 (2011).

    CAS  PubMed  Google Scholar 

  66. Gwechenberger, M. et al. Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions. Circulation 99, 546–551 (1999).

    CAS  PubMed  Google Scholar 

  67. Christia, P. et al. Systematic characterization of myocardial inflammation, repair, and remodeling in a mouse model of reperfused myocardial infarction. J. Histochem. Cytochem. 61, 555–570 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Fullerton, J. N., O'Brien, A. J. & Gilroy, D. W. Pathways mediating resolution of inflammation: when enough is too much. J. Pathol. 231, 8–20 (2013).

    PubMed  Google Scholar 

  69. Cochain, C. et al. The chemokine decoy receptor D6 prevents excessive inflammation and adverse ventricular remodeling after myocardial infarction. Arterioscler Thromb. Vasc. Biol. 32, 2206–2213 (2012).

    CAS  PubMed  Google Scholar 

  70. Seropian, I. M. et al. Galectin-1 controls cardiac inflammation and ventricular remodeling during acute myocardial infarction. Am. J. Pathol. 182, 29–40 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. de Lemos, J. A. et al. Serial measurement of monocyte chemoattractant protein-1 after acute coronary syndromes: results from the A to Z. trial. J. Am. Coll. Cardiol. 50, 2117–2124 (2007).

    CAS  PubMed  Google Scholar 

  72. Frangogiannis, N. G. The prognostic value of monocyte chemoattractant protein-1/CCL2 in acute coronary syndromes. J. Am. Coll. Cardiol. 50, 2125–2127 (2007).

    CAS  PubMed  Google Scholar 

  73. Yan, X. et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J. Mol. Cell Cardiol. 62, 24–35 (2013).

    CAS  PubMed  Google Scholar 

  74. Wan, E. et al. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ. Res. 113, 1004–1012 (2013).

    CAS  PubMed  Google Scholar 

  75. Zymek, P. et al. The role of platelet-derived growth factor signaling in healing myocardial infarcts. J. Am. Coll. Cardiol 48, 2315–2323 (2006).

    CAS  PubMed  Google Scholar 

  76. Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202 (2002).

    CAS  PubMed  Google Scholar 

  77. Kempf, T. et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat. Med. 17, 581–588 (2011).

    CAS  PubMed  Google Scholar 

  78. Ikeuchi, M. et al. Inhibition of TGF-β signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc. Res. 64, 526–535 (2004).

    CAS  PubMed  Google Scholar 

  79. Dobaczewski, M., Chen, W. & Frangogiannis, N. G. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J. Mol. Cell Cardiol. 51, 600–606 (2011).

    CAS  PubMed  Google Scholar 

  80. Frangogiannis, N. G. et al. IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury. J. Immunol. 165, 2798–2808 (2000).

    CAS  PubMed  Google Scholar 

  81. Keyes, K. T. et al. Resolvin E1 protects the rat heart against reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 299, H153–H164 (2010).

    CAS  PubMed  Google Scholar 

  82. Souders, C. A., Bowers, S. L. & Baudino, T. A. Cardiac fibroblast: the renaissance cell. Circ. Res. 105, 1164–1176 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen, W. & Frangogiannis, N. G. Fibroblasts in post-infarction inflammation and cardiac repair. Biochim. Biophys. Acta 1833, 945–953 (2013).

    CAS  PubMed  Google Scholar 

  84. Willems, I. E., Havenith, M. G., De Mey, J. G. & Daemen, M. J. The α-smooth muscle actin-positive cells in healing human myocardial scars. Am. J. Pathol. 145, 868–875 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Cleutjens, J. P., Verluyten, M. J., Smiths, J. F. & Daemen, M. J. Collagen remodeling after myocardial infarction in the rat heart. Am. J. Pathol. 147, 325–338 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Frangogiannis, N. G., Michael, L. H. & Entman, M. L. Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc. Res. 48, 89–100 (2000).

    CAS  PubMed  Google Scholar 

  87. Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13, 952–961 (2007).

    CAS  PubMed  Google Scholar 

  88. Möllmann, H. et al. Bone marrow-derived cells contribute to infarct remodelling. Cardiovasc. Res. 71, 661–671 (2006).

    PubMed  Google Scholar 

  89. Hinz, B. et al. The myofibroblast: one function, multiple origins. Am. J. Pathol. 170, 1807–1816 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Davis, J. & Molkentin, J. D. Myofibroblasts: Trust your heart and let fate decide. J. Mol. Cell Cardiol. http://dx.doi.org/10.1016/j.yjmcc.2013.10.019.

  91. Lajiness, J. D. & Conway, S. J. Origin, development, and differentiation of cardiac fibroblasts. J. Mol. Cell Cardiol http://dx.doi.org/10.1016/j.yjmcc.2013.11.003.

  92. Frangogiannis, N. G. Matricellular proteins in cardiac adaptation and disease. Physiol. Rev. 92, 635–688 (2012).

    CAS  PubMed  Google Scholar 

  93. Frangogiannis, N. G. et al. The critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation 111, 2935–2942 (2005).

    CAS  PubMed  Google Scholar 

  94. Birdsall, H. H. et al. Complement C5a, TGF-β 1, and MCP-1, in sequence, induce migration of monocytes into ischemic canine myocardium within the first one to five hours after reperfusion. Circulation 95, 684–692 (1997).

    CAS  PubMed  Google Scholar 

  95. Bujak, M. et al. Essential role of smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation 116, 2127–2138 (2007).

    CAS  PubMed  Google Scholar 

  96. Dobaczewski, M. et al. Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ. Res. 107, 418–428 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Weber, K. T., Sun, Y., Bhattacharya, S. K., Ahokas, R. A. & Gerling, I. C. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat. Rev. Cardiol. 10, 15–26 (2012).

    PubMed  Google Scholar 

  98. Cohn, J. N. & Colucci, W. Cardiovascular effects of aldosterone and post-acute myocardial infarction pathophysiology. Am. J. Cardiol 97, 4F–12F (2006).

    CAS  PubMed  Google Scholar 

  99. Schultz Jel, J. et al. TGF-β1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J. Clin. Invest. 109, 787–796 (2002).

    PubMed  Google Scholar 

  100. Nemir, M. et al. The notch pathway controls fibrotic and regenerative repair in the adult heart. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehs269.

  101. Sassoli, C. et al. Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-β/Smad3 signaling. PLoS ONE 8, e63896 (2013).

    PubMed  PubMed Central  Google Scholar 

  102. Arai, M. et al. An anti-CD18 antibody limits infarct size and preserves left ventricular function in dogs with ischemia and 48-hour reperfusion. J. Am. Coll. Cardiol 27, 1278–1285 (1996).

    CAS  PubMed  Google Scholar 

  103. Aversano, T., Zhou, W., Nedelman, M., Nakada, M. & Weisman, H. A chimeric IgG4 monoclonal antibody directed against CD18 reduces infarct size in a primate model of myocardial ischemia and reperfusion. J. Am. Coll. Cardiol. 25, 781–788 (1995).

    CAS  PubMed  Google Scholar 

  104. Lefer, D. J. et al. Cardioprotective actions of a monoclonal antibody against CD-18 in myocardial ischemia-reperfusion injury. Circulation 88, 1779–1787 (1993).

    CAS  PubMed  Google Scholar 

  105. Baran, K. W. et al. Double-blind, randomized trial of an anti-CD18 antibody in conjunction with recombinant tissue plasminogen activator for acute myocardial infarction: limitation of myocardial infarction following thrombolysis in acute myocardial infarction (LIMIT AMI) study. Circulation 104, 2778–2783 (2001).

    CAS  PubMed  Google Scholar 

  106. Faxon, D. P., Gibbons, R. J., Chronos, N. A., Gurbel, P. A. & Sheehan, F. The effect of blockade of the CD11/CD18 integrin receptor on infarct size in patients with acute myocardial infarction treated with direct angioplasty: the results of the HALT-MI study. J. Am. Coll. Cardiol. 40, 1199–1204 (2002).

    CAS  PubMed  Google Scholar 

  107. Rusnak, J. M. et al. An anti-CD11/CD18 monoclonal antibody in patients with acute myocardial infarction having percutaneous transluminal coronary angioplasty (the FESTIVAL study). Am. J. Cardiol. 88, 482–487 (2001).

    CAS  PubMed  Google Scholar 

  108. Armstrong, P. W. et al. Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. JAMA 297, 43–51 (2007).

    CAS  PubMed  Google Scholar 

  109. Dove, A. CD18 trials disappoint again. Nat. Biotechnol. 18, 817–818 (2000).

    CAS  PubMed  Google Scholar 

  110. Figueras, J. et al. Changes in hospital mortality rates in 425 patients with acute ST-elevation myocardial infarction and cardiac rupture over a 30-year period. Circulation 118, 2783–2789 (2008).

    PubMed  Google Scholar 

  111. Bujak, M. et al. Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J. Am. Coll. Cardiol. 51, 1384–1392 (2008).

    PubMed  PubMed Central  Google Scholar 

  112. Laflamme, M. A. & Murry, C. E. Regenerating the heart. Nat. Biotechnol. 23, 845–856 (2005).

    CAS  PubMed  Google Scholar 

  113. Bolli, R. et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378, 1847–1857 (2011).

    PubMed  PubMed Central  Google Scholar 

  114. Makkar, R. R. et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379, 895–904 (2012).

    PubMed  PubMed Central  Google Scholar 

  115. Penn, M. S., Pastore, J., Miller, T. & Aras, R. SDF-1 in myocardial repair. Gene Ther. 19, 583–587 (2012).

    CAS  PubMed  Google Scholar 

  116. Beohar, N., Rapp, J., Pandya, S. & Losordo, D. W. Rebuilding the damaged heart: the potential of cytokines and growth factors in the treatment of ischemic heart disease. J. Am. Coll. Cardiol. 56, 1287–1297 (2010).

    PubMed  PubMed Central  Google Scholar 

  117. Xiang, F. L. et al. Cardiomyocyte-specific overexpression of human stem cell factor improves cardiac function and survival after myocardial infarction in mice. Circulation 120, 1065–1074 (2009).

    CAS  PubMed  Google Scholar 

  118. Carrabba, N., Valenti, R., Parodi, G., Santoro, G. M. & Antoniucci, D. Left ventricular remodeling and heart failure in diabetic patients treated with primary angioplasty for acute myocardial infarction. Circulation 110, 1974–1979 (2004).

    PubMed  Google Scholar 

  119. Aronson, D. et al. Impact of diastolic dysfunction on the development of heart failure in diabetic patients after acute myocardial infarction. Circ. Heart Fail. 3, 125–131 (2010).

    CAS  PubMed  Google Scholar 

  120. Biernacka, A., Dobaczewski, M. & Frangogiannis, N. G. TGF-β signaling in fibrosis. Growth Factors 29, 196–202 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ridker, P. M., Thuren, T., Zalewski, A. & Libby, P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am. Heart J. 162, 597–605 (2011).

    CAS  PubMed  Google Scholar 

  122. Abbate, A. et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] pilot study). Am. J. Cardiol. 105, 1371–1377 (2010).

    CAS  PubMed  Google Scholar 

  123. Abbate, A. et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am. J. Cardiol. 111, 1394–1400 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Lopez, B., Gonzalez, A. & Diez, J. Circulating biomarkers of collagen metabolism in cardiac diseases. Circulation 121, 1645–1654 (2010).

    PubMed  Google Scholar 

  125. Tan, C. K. et al. SMAD3 deficiency promotes inflammatory aortic aneurysms in angiotensin II-infused mice via activation of iNOS. J. Am. Heart Assoc. 2, e000269 (2013).

    PubMed  PubMed Central  Google Scholar 

  126. Li, J. et al. Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59, 2612–2624 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Frangogiannis, N. G. Biomarkers: hopes and challenges in the path from discovery to clinical practice. Transl. Res. 159, 197–204 (2012).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr Frangogiannis' laboratory is funded by NIH grants R01 HL76246 and R01 HL85440 and by the Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos G. Frangogiannis.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frangogiannis, N. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11, 255–265 (2014). https://doi.org/10.1038/nrcardio.2014.28

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.28

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing