Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Robotic technology in cardiovascular medicine

Key Points

  • The main fields of use of robotic technology in cardiovascular medicine are endoscopic cardiac and vascular surgery, endovascular surgery, catheter-based ablation therapy for atrial fibrillation, and percutaneous coronary intervention

  • Robotic devices enable complex endoscopic reconstructive manoeuvres in narrow spaces and can increase surgical precision; however, robotically assisted totally endoscopic approaches in cardiac and vascular surgery are technically challenging

  • In catheter-based interventions, robotic technology leads to improved catheter stability and reduced radiation exposure to both intervention teams and patients

  • All robotically assisted cardiovascular surgical procedures and catheter-based interventions involve a learning curve, during which conversion rates to conventional techniques and operative times are reduced

  • Prospective, randomized trials to compare robotic and conventional approaches are lacking; observational studies and nonrandomized comparative studies show basic feasibility and safety of robotic interventions and intermediate-term results are promising

Abstract

Robotic technology has been used in cardiovascular medicine since the late 1990s. Interventional cardiology, electrophysiology, endovascular surgery, minimally invasive cardiac surgery, and laparoscopic vascular surgery are all fields of application. Robotic devices enable endoscopic reconstructive surgery in narrow spaces and fast, very precise placement of catheters and devices in catheter-based interventions. In all robotic systems, the operator manipulates the robotic arms from a control station or console. In the field of cardiac surgery, mitral valve repair, CABG surgery, atrial septal defect repair, and myxoma resection can be achieved using robotic technology. Furthermore, vascular surgeons can perform a variety of robotically assisted operations to treat aortic, visceral, and peripheral artery disease. In electrophysiology, ablation procedures for atrial fibrillation can be carried out with robotic support. In the past few years, robotically assisted percutaneous coronary intervention and abdominal aortic endovascular surgery techniques have been developed. The basic feasibility and safety of robotic approaches in cardiovascular medicine has been demonstrated, but learning curves and the high costs associated with this technology have limited its widespread use. Nonetheless, increased procedural speed, accuracy, and reduced exposure to radiation and contrast agent in robotically assisted catheter-based interventions, as well as reduced surgical trauma and shortened patient recovery times after robotic cardiovascular surgery are promising achievements in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Catheter and sheath during a robotically assisted contralateral gate cannulation for an infrarenal endovascular aneurysm repair.
Figure 2: Robotically assisted totally endoscopic CABG surgery.
Figure 3
Figure 4: Robotic arms docked for robotically assisted laparoscopic abdominal aortic surgery.
Figure 5: Robotic construction of a graft-to-aorta anastomosis in endoscopic abdominal aortic surgery.

Similar content being viewed by others

References

  1. Granada, J. F. et al. First-in-human evaluation of a robotic-assisted coronary angioplasty system. JACC Cardiovasc. Interv. 4, 460–465 (2011).

    Article  PubMed  Google Scholar 

  2. Weisz, G. et al. Safety and feasibility of robotic percutaneous coronary intervention: PRECISE (Percutaneous Robotically-Enhanced Coronary Intervention) Study. J. Am. Coll. Cardiol. 61, 1596–1600 (2013).

    Article  PubMed  Google Scholar 

  3. Saliba, W. et al. Novel robotic catheter remote control system: feasibility and safety of trans-septal puncture and endocardial catheter navigation. J. Cardiovasc. Electrophysiol. 17, 1102–1105 (2006).

    Article  PubMed  Google Scholar 

  4. Saliba, W. et al. Atrial fibrillation ablation using a robotic catheter remote control system: initial human experience and long-term follow-up results. J. Am. Coll. Cardiol. 51, 2407–2411 (2008).

    Article  PubMed  Google Scholar 

  5. Wazni, O. M. et al. Experience with the Hansen robotic system for atrial fibrillation ablation—lessons learned and techniques modified: Hansen in the real world. J. Cardiovasc. Electrophysiol. 20, 1193–1196 (2009).

    Article  PubMed  Google Scholar 

  6. Bai, R. et al. Worldwide experience with the robotic navigation system in catheter ablation for atrial fibrillation: methodology, efficacy and safety. J. Cardiovasc. Electrophysiol. 23, 820–826 (2012).

    Article  PubMed  Google Scholar 

  7. Valderrábano, M., Dave, A. S., Báez-Escudero, J. L. & Rami, T. Robotic catheter ablation of left ventricular tachycardia: initial experience. Heart Rhythm 8, 1837–1846 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Di Biase, L. et al. Mapping and ablation of ventricular arrhythmias with magnetic navigation: comparison between 4- and 8-mm catheter tips. J. Interv. Card. Electrophysiol. 26, 133–137 (2009).

    Article  PubMed  Google Scholar 

  9. Bradfield, J., Tung, R., Mandapati, R., Boyle, N. G. & Shivkumar, K. Catheter ablation utilizing remote magnetic navigation: a review of applications and outcomes. Pacing Clin. Electrophysiol. 35, 1021–1034 (2012).

    Article  PubMed  Google Scholar 

  10. Kleine P. et al. Robotically enhanced placement of left ventricular epicardial electrodes during implantation of a biventricular implantable cardioverter defibrillator system. Pacing. Clin. Electrophysiol. 25, 989–991 (2002).

    Article  PubMed  Google Scholar 

  11. Jansens, J. L. et al. Robotic-enhanced biventricular resynchronization: an alternative to endovenous cardiac resynchronization therapy in chronic heart failure. Ann. Thorac. Surg. 76, 413–417 (2003).

    Article  PubMed  Google Scholar 

  12. DeRose, J. et al. Robotically assisted left ventricular epicardial lead implantation for biventricular pacing: the posterior approach. Ann. Thorac. Surg. 77, 1472–1474 (2004).

    Article  PubMed  Google Scholar 

  13. Mair, H. et al. Epicardial lead implantation techniques for biventricular pacing via left lateral mini-thoracotomy, video-assisted thoracoscopy, and robotic approach. Heart Surg. Forum 6, 412–417 (2003).

    PubMed  Google Scholar 

  14. Kamath, G. S. et al. Long-term outcome of leads and patients following robotic epicardial left ventricular lead placement for cardiac resynchronization therapy. Pacing Clin. Electrophysiol. 34, 235–240 (2010).

    Article  PubMed  Google Scholar 

  15. Bismuth, J., Kashef, E., Cheshire, N. & Lumsden, A. B. Feasibility and safety of remote endovascular catheter navigation in a porcine model. J. Endovasc. Ther. 18, 243–249 (2011).

    Article  PubMed  Google Scholar 

  16. Riga, C. V., Cheshire, N. J., Hamady, M. S. & Bicknell, C. D. The role of robotic endovascular catheters in fenestrated stent grafting. J. Vasc. Surg. 51, 810–819 (2010).

    Article  PubMed  Google Scholar 

  17. Riga, C. V., Bicknell, C. D., Hamady, M. S. & Cheshire, N. J. Evaluation of robotic endovascular catheters for arch vessel cannulation. J. Vasc. Surg. 54, 799–809 (2011).

    Article  PubMed  Google Scholar 

  18. Riga, C., Bicknell, C., Cheshire, N. & Hamady, M. Initial clinical application of a robotically steerable catheter system in endovascular aneurysm repair. J. Endovasc. Ther. 16, 149–153 (2009).

    Article  PubMed  Google Scholar 

  19. Lumsden, A. B. et al. Robot-assisted stenting of a high-grade anastomotic pulmonary artery stenosis following single lung transplantation. J. Endovasc. Ther. 17, 612–616 (2010).

    Article  PubMed  Google Scholar 

  20. Carrell, T., Dastur, N., Salter, R. & Taylor, P. Use of a remotely steerable “robotic” catheter in a branched endovascular aortic graft. J. Vasc. Surg. 55, 223–225 (2012).

    Article  PubMed  Google Scholar 

  21. Riga, C. V., Bicknell, C. D., Rolls, A., Cheshire, N. J. & Hamady, M. S. Robot-assisted fenestrated endovascular aneurysm repair (FEVAR) using the Magellan system. J. Vasc. Interv. Radiol. 24, 191–196 (2013).

    Article  PubMed  Google Scholar 

  22. Bismuth, J., Duran, C., Stankovic, M., Gersak, B. & Lumsden, A. B. A first-in-man study of the role of flexible robotics in overcoming navigation challenges in the iliofemoral arteries. J. Vasc. Surg. 57 (Suppl. 2), 14S–19S (2013).

    Article  PubMed  Google Scholar 

  23. Riga, C. V. et al. Endovascular robotic intervention: clinical feasibility and safety profiles. Presented at The British Society of Endovascular Therapy 2013 Annual Meeting.

  24. Stevens, J. H. et al. Port-access coronary artery bypass with cardioplegic arrest: acute and chronic canine studies. Ann. Thorac. Surg. 62, 435–440 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Loulmet, D. et al. Endoscopic coronary artery bypass grafting with the aid of robotic assisted instruments. J. Thorac. Cardiovasc. Surg. 118, 4–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Damiano, R. J. Robotics in cardiac surgery: the emperor's new clothes. J. Thorac. Cardiovasc. Surg. 134, 559–561 (2007).

    Article  PubMed  Google Scholar 

  27. Robicsek, F. Robotic cardiac surgery: time told! J. Thorac. Cardiovasc. Surg. 135, 243–145 (2008).

    Article  PubMed  Google Scholar 

  28. Mihaljevic, T. et al. Robotic posterior mitral leaflet repair: neochordal versus resectional techniques. Ann. Thorac. Surg. 95, 787–794 (2013).

    Article  PubMed  Google Scholar 

  29. Nifong, L. W., Rodriguez, E. & Chitwood, W. R. 540 consecutive robotic mitral valve repairs including concomitant atrial fibrillation cryoablation. Ann. Thorac. Surg. 94, 38–42 (2012).

    Article  PubMed  Google Scholar 

  30. Murphy, D. et al. Multicenter mitral valve study: a lateral approach using the da Vinci surgical system. Innovations (Phila.) 2, 56–61 (2007).

    Article  Google Scholar 

  31. Mihaljevic T. et al. Robotic repair of posterior mitral valve prolapse versus conventional approaches: potential realized. J. Thorac. Cardiovasc. Surg. 141, 72–80 (2011).

    Article  PubMed  Google Scholar 

  32. Sutter, F. P., Berry, T. & Wertan, T. Precision incision: robotic coronary revascularization via 3.9 cm minithoracotomy. Innovations (Phila.) 7, 223–228 (2012).

    Article  Google Scholar 

  33. Srivastava, S. et al. Beating heart totally endoscopic coronary artery bypass. Ann. Thorac. Surg. 89, 1873–1880 (2010).

    Article  PubMed  Google Scholar 

  34. Srivastava, S., Barrera, R. & Quismundo, S. One hundred sixty-four consecutive beating heart totally endoscopic coronary artery bypass cases without intraoperative conversion. Ann. Thorac. Surg. 94, 1463–1468 (2012).

    Article  PubMed  Google Scholar 

  35. Bonaros, N. et al. Five hundred cases of robotic totally endoscopic coronary artery bypass grafting: predictors of success and safety. Ann. Thorac. Surg. 95, 803–812 (2013).

    Article  PubMed  Google Scholar 

  36. Bonatti, J. et al. Totally endoscopic quadruple coronary artery bypass grafting is feasible using robotic technology. Ann. Thorac. Surg. 93, e111–e112 (2012).

    Article  PubMed  Google Scholar 

  37. de Cannière, D. et al. Feasibility, safety, and efficacy of totally endoscopic coronary artery bypass grafting: multicenter European experience. J. Thorac. Cardiovasc. Surg. 134, 710–716 (2007).

    Article  PubMed  Google Scholar 

  38. Balkhy, H. H., Wann, L. S., Krienbring, D. & Arnsdorf, S. E. Integrating coronary anastomotic connectors and robotics toward a totally endoscopic beating heart approach: review of 120 cases. Ann. Thorac. Surg. 92, 821–827 (2011).

    Article  PubMed  Google Scholar 

  39. Dhawan, R. et al. Multivessel beating heart robotic myocardial revascularization increases morbidity and mortality. J. Thorac. Cardiovasc. Surg. 143, 1056–1061 (2012).

    Article  PubMed  Google Scholar 

  40. Bonatti, J. et al. Hybrid coronary revascularization using robotic totally endoscopic surgery: perioperative outcomes and 5-year results. Ann. Thorac. Surg. 94, 1920–1926 (2012).

    Article  PubMed  Google Scholar 

  41. Torracca, L., Ismano, G. & Alfieri, O. Totally endoscopic computer-enhanced atrial septal defect closure in six patients. Ann. Thorac. Surg. 72, 1354–1357 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Wimmer-Greinecker, G. et al. Totally endoscopic atrial septal repair in adults with computer-enhanced telemanipulation. J. Thorac. Cardiovasc. Surg. 126, 465–468 (2003).

    Article  PubMed  Google Scholar 

  43. Argenziano, M. et al. Totally endoscopic atrial septal defect repair with robotic assistance. Circulation 108 (Suppl. 1), II-191–II-194 (2003).

    Google Scholar 

  44. Bonaros, N. et al. Robotically assisted totally endoscopic atrial septal defect repair: insights from operative times, learning curves, and clinical outcome. Ann. Thorac. Surg. 82, 687–693 (2006).

    Article  PubMed  Google Scholar 

  45. Gao, C. et al. Totally endoscopic robotic ventricular septal defect repair. Innovations (Phila.) 5, 278–280 (2010).

    Article  Google Scholar 

  46. Chakraborty, B., Burkhart, H. M., Warnes, C. A. & Suri, R. Successful robotic-assisted division of symptomatic vascular ring. Heart Surg. Forum 15, E306 (2012).

    Article  PubMed  Google Scholar 

  47. Gao, C. et al. Excision of atrial myxoma using robotic technology. J. Thorac. Cardiovasc. Surg. 139, 1282–1285 (2010).

    Article  PubMed  Google Scholar 

  48. Schilling, J., Engel, A. M., Hassan, M. & Smith, J. M. Robotic excision of atrial myxoma. J. Card. Surg. 27, 423–426 (2012).

    Article  PubMed  Google Scholar 

  49. Štádler, P., Šebesta, P., Vitásek, P., Matouš, P. & El Samman, K. A modified technique of transperitoneal direct approach for totally laparoscopic aortoiliac surgery. Eur. J. Vasc. Endovasc. Surg. 3, 266–269 (2006).

    Article  Google Scholar 

  50. Stádler, P., Dvoracek, L., Vitasek, P. & Matous, P. Robotic vascular surgery, 150 cases. Int. J. Med. Robot. 4, 394–398 (2010).

    Article  Google Scholar 

  51. Novotný, T., Dvorák, M. & Staffa, R. The learning curve of robot-assisted laparoscopic aortofemoral bypass grafting for aortoiliac occlusive disease. J. Vasc. Surg. 2, 414–420 (2011).

    Article  Google Scholar 

  52. Lin, J. C. et al. Robotic-assisted aortic surgery with and without minilaparotomy for complicated occlusive disease and aneurysm. J. Vasc. Surg. 1, 16–22 (2012).

    Article  Google Scholar 

  53. Bonaros, N. et al. Quality of life improvement after robotically assisted coronary artery bypass grafting. Cardiology 114, 59–66 (2009).

    Article  PubMed  Google Scholar 

  54. Schachner, T. et al. Training surgeons to perform robotically assisted totally endoscopic coronary surgery. Ann. Thorac. Surg. 88, 523–527 (2009).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, contributed substantially to the discussion of content, wrote the manuscript, and reviewed/edited the article before submission.

Corresponding author

Correspondence to Johannes Bonatti.

Ethics declarations

Competing interests

G.V. is an investigator in the PECISE trial for Corindus Vascular Robotics. C.R. is a consultant for Hansen Medical, and has received educational fees from Gore Medical and Medtronic. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonatti, J., Vetrovec, G., Riga, C. et al. Robotic technology in cardiovascular medicine. Nat Rev Cardiol 11, 266–275 (2014). https://doi.org/10.1038/nrcardio.2014.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.23

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing