Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MicroRNAs in myocardial infarction

Key Points

  • Tissue injury and inflammation regulate microRNAs in the heart after myocardial infarction

  • MicroRNAs control many processes in the infarcted heart, such as cardiomyocyte cell death and proliferation, neovascularization, and progenitor-cell-mediated repair

  • Acute inhibition or overexpression of microRNAs after myocardial infarction might be useful to limit tissue injury and improve neovascularization to prevent long-term negative remodelling and heart failure

  • Using microRNAs to induce cardiac regeneration by direct cardiac reprogramming of fibroblasts or by inducing cardiomyocyte proliferation offers new therapeutic opportunities

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that block translation or induce degradation of mRNA and thereby control patterns of gene expression. Acute myocardial infarction is a common cardiovascular event that results in cardiac remodelling and can consequently lead to the development of chronic heart failure. Several miRNAs have been shown to control important processes that contribute to the pathophysiological consequences of acute myocardial infarction. miRNAs can either promote or inhibit cardiomyocyte cell death, and also regulate postischaemic neovascularization. Cardiac regeneration can also be regulated by miRNAs that control cardiomyocyte proliferation or interfere with cardioprotective effects mediated by stem or progenitor cells. miRNAs can also be used for direct reprogramming of cardiac fibroblasts into cardiomyocytes. In this Review, we focus on the current understanding of the role of miRNAs in these processes, and particularly discuss the therapeutic potential of miRNAs in treating acute myocardial infarction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: MicroRNAs regulate cardiomyocyte survival and proliferation.
Figure 2: MicroRNAs regulate angiogenesis.
Figure 3: MicroRNAs control the function of stem and progenitor cells and are used for intercellular communication.

References

  1. 1

    Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    Article  CAS  Google Scholar 

  2. 2

    Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Members, W. G. et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125, e2–e220 (2012).

    Article  Google Scholar 

  4. 4

    Thum, T. Noncoding RNAs and myocardial fibrosis. Nat. Rev. Cardiol. 11, 655–663 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Hullinger, T. G. et al. Inhibition of miR-15 protects against cardiac ischemic injury. Circ. Res. 110, 71–81 (2012).

    Article  CAS  Google Scholar 

  6. 6

    Nishi, H. et al. MicroRNA-15b modulates cellular ATP levels and degenerates mitochondria via Arl2 in neonatal rat cardiac myocytes. J. Biol. Chem. 285, 4920–4930 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Zhu, H. et al. MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1. Cardiovasc. Res. 92, 75–84 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Hermeking, H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 17, 193–199 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Boon, R. A. et al. MicroRNA-34a regulates cardiac ageing and function. Nature 495, 107–110 (2013).

    Article  CAS  Google Scholar 

  10. 10

    Bernardo, B. C. et al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc. Natl Acad. Sci. USA 109, 17615–17620 (2012).

    Article  Google Scholar 

  11. 11

    Bernardo, B. C. et al. Silencing of miR-34a attenuates cardiac dysfunction in a setting of moderate, but not severe, hypertrophic cardiomyopathy. PLoS ONE 9, e90337 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Yamakuchi, M., Ferlito, M. & Lowenstein, C. J. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl Acad. Sci. USA 105, 13421–13426 (2008).

    Article  PubMed  Google Scholar 

  13. 13

    Ren, X.-P. et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119, 2357–2366 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Li, J. et al. Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis. Mol. Cell. Biol. 34, 1788–1799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Shan, Z.-X. et al. miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Lett. 584, 3592–3600 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Zhang, B. et al. MicroRNA-92a inhibition attenuates hypoxia/reoxygenation-induced myocardiocyte apoptosis by targeting Smad7. PLoS ONE 9, e100298 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Hinkel, R. et al. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation 128, 1066–1075 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Huang, X. et al. Expression of microRNA-122 contributes to apoptosis in H9C2 myocytes. J. Cell. Mol. Med. 16, 2637–2646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Li, X. et al. MicroRNA-150 aggravates H2O2-induced cardiac myocyte injury by down-regulating c-myb gene. Acta Biochim. Biophys. Sin. 45, 734–741 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Wang, L. et al. Effects of downregulation of microRNA-181a on H2O2-induced H9c2 cell apoptosis via the mitochondrial apoptotic pathway. Oxid. Med. Cell. Longev. 2014, 960362 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. 21

    Pan, Z. et al. M3 subtype of muscarinic acetylcholine receptor promotes cardioprotection via the suppression of miR-376b-5p. PLoS ONE 7, e32571 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Li, R.-C. et al. In vivo suppression of microRNA-24 prevents the transition toward decompensated hypertrophy in aortic-constricted mice. Circ. Res. 112, 601–605 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Qian, L. et al. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J. Exp. Med. 208, 549–560 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    van Rooij, E. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA 103, 18255–18260 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Li, D. F. et al. Induction of microRNA-24 by HIF-1 protects against ischemic injury in rat cardiomyocytes. Physiol. Res. 61, 555–565 (2012).

    CAS  PubMed  Google Scholar 

  26. 26

    Meloni, M. et al. Local inhibition of microRNA-24 improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction. Mol. Ther. 21, 1390–1402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Fiedler, J. et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124, 720–730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Aurora, A. B. et al. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death. J. Clin. Invest. 122, 1222–1232 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Lv, G. et al. MicroRNA-214 protects cardiac myocytes against H2O2-induced injury. J. Cell. Biochem. 115, 93–101 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Li, B. et al. MicroRNA-7a/b protects against cardiac myocyte injury in ischemia/reperfusion by targeting poly(ADP-ribose) polymerase. PLoS ONE 9, e90096 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Frank, D. et al. MicroRNA-20a inhibits stress-induced cardiomyocyte apoptosis involving its novel target Egln3/PHD3. J. Mol. Cell. Cardiol. 52, 711–717 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    He, S. et al. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway. Biochem. Biophys. Res. Comm. 441, 763–769 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Zhang, X. et al. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. J. Mol. Cell. Cardiol. 49, 841–850 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Hu, S. et al. MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 122 (Suppl.), S124–S131 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Wang, J. et al. miR-499 protects cardiomyocytes from H2O2-induced apoptosis via its effects on Pdcd4 and Pacs2. RNA Biol. 11, 339–350 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Wang, K. et al. miR-874 regulates myocardial necrosis by targeting caspase-8. Cell Death Dis. 4, e709 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Porrello, E. R. & Olson, E. N. A neonatal blueprint for cardiac regeneration. Stem Cell Res. 13, 556–570 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Steinhauser, M. L. & Lee, R. T. Regeneration of the heart. EMBO Mol. Med. 3, 701–712 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Porrello, E. R. et al. miR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ. Res. 109, 670–679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Porrello, E. R. et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl Acad. Sci. USA 110, 187–192 (2013).

    Article  PubMed  Google Scholar 

  42. 42

    Eulalio, A. et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492, 376–381 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Liu, N. et al. MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 22, 3242–3254 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Yin, V. P., Lepilina, A., Smith, A. & Poss, K. D. Regulation of zebrafish heart regeneration by miR-133. Dev. Biol. 365, 319–327 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Chen, J. et al. miR-17–92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ. Res. 112, 1557–1566 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Danielson, L. S. et al. Cardiovascular dysregulation of miR-17-92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis. FASEB J. 27, 1460–1467 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Bonauer, A. et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324, 1710–1713 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Iaconetti, C. et al. Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res. Cardiol. 107, 1–14 (2012).

    Article  CAS  Google Scholar 

  49. 49

    Urbich, C., Walter, D. H., Zeiher, A. M. & Dimmeler, S. Laminar shear stress upregulates integrin expression: role in endothelial cell adhesion and apoptosis. Circ. Res. 87, 683–689 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Wu, W. et al. Flow-dependent regulation of Krüppel-like factor 2 is mediated by microRNA-92a. Circulation 124, 633–641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Doebele, C. et al. Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood 115, 4944–4950 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Pin, A.-L. et al. miR-20a represses endothelial cell migration by targeting MKK3 and inhibiting p38 MAP kinase activation in response to VEGF. Angiogenesis 15, 593–608 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Suarez, Y. et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc. Natl Acad. Sci. USA 105, 14082–14087 (2008).

    Article  PubMed  Google Scholar 

  54. 54

    Semo, J. et al. The 106b25 microRNA cluster is essential for neovascularization after hindlimb ischaemia in mice. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/eht041.

  55. 55

    Icli, B. et al. MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circ. Res. 113, 1231–1241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Yin, K.-J. et al. Vascular endothelial cell-specific microRNA-15a inhibits angiogenesis in hindlimb ischemia. J. Biol. Chem. 287, 27055–27064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Spinetti, G. et al. MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ. Res. 112, 335–346 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. 58

    Fasanaro, P. et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand ephrin-A3. J. Biol. Chem. 283, 15878–15883 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Matsa, E., Sallam, K. & Wu, J. C. Cardiac stem cell biology: glimpse of the past, present, and future. Circ. Res. 114, 21–27 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Dimmeler, S., Ding, S., Rando, T. A. & Trounson, A. Translational strategies and challenges in regenerative medicine. Nat. Med. 20, 814–821 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Jakob, P. et al. Loss of angiomiR-126 and 130a in angiogenic early outgrowth cells from patients with chronic heart failure: role for impaired in vivo neovascularization and cardiac repair capacity. Circulation 126, 2962–2975 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Jansen, F. et al. Endothelial microparticle–mediated transfer of microRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 128, 2026–2038 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Chen, J. J. & Zhou, S. H. Mesenchymal stem cells overexpressing miR-126 enhance ischemic angiogenesis via the AKT/ERK-related pathway. Cardiol. J. 18, 675–681 (2011).

    Article  PubMed  Google Scholar 

  64. 64

    Huang, F. et al. Mesenchymal stem cells modified with miR-126 release angiogenic factors and activate Notch ligand Delta-like-4, enhancing ischemic angiogenesis and cell survival. Int. J. Mol. Med. 31, 484–492 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Liu, J. et al. MicroRNA-155 prevents necrotic cell death in human cardiomyocyte progenitor cells via targeting RIP1. J. Cell. Mol. Med. 15, 1474–1482 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Xu, Q. et al. MicroRNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease. J. Am. Coll. Cardiol. 59, 2107–2117 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Hu, S. et al. Novel MicroRNA prosurvival cocktail for improving engraftment and function of cardiac progenitor cell transplantation. Circulation 124 (Suppl.), S27–S34 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68

    Heinrich, E.-M. & Dimmeler, S. MicroRNAs and stem cells: control of pluripotency, reprogramming, and lineage commitment. Circ. Res. 110, 1014–1022 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Jayawardena, T. M. et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ. Res. 110, 1465–1473 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Nam, Y.-J. et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc. Natl Acad. Sci. USA 110, 5588–5593 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Jayawardena, T. M. et al. MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocaytes and improved cardiac function. Circ. Res. http://dx.doi.org/10.1161/CIRCRESAHA.116.304510.

  72. 72

    Qian, L. et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485, 593–598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Boon, R. A. & Vickers, K. C. Intercellular transport of microRNAs. Arterioscler. Thromb. Vasc. Biol. 33, 186–192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Hosoda, T. et al. Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation 123, 1287–1296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Hergenreider, E. et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat. Cell Biol. 14, 249–256 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Zhou, J. et al. Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress. Circ. Res. 113, 40–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Losordo, D. W. et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ. Res. 109, 428–436 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Mocharla, P. et al. AngiomiR-126 expression and secretion from circulating CD34+ and CD14+ PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood 121, 226–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. 79

    Barile, L. et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc. Res. 103, 530–541 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Ong, S.-G. et al. Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation 130 (Suppl. 1), S60–S69 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Katare, R. et al. Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving microRNA-132. Circ. Res. 109, 894–906 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Ibrahim, A. G.-E., Cheng, K. & Marbán, E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports 2, 606–619 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Cheng, H. S. et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol. Med. 5, 949–966 (2013).

    Article  CAS  Google Scholar 

  84. 84

    Chen, L. et al. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem. Biophys. Res. Comm. 431, 566–571 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Yu, B. et al. Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PLoS ONE 8, e73304 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Bang, C. et al. Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Invest. 124, 2136–2146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Bellera, N. et al. Single intracoronary injection of encapsulated antagomir-92a promotes angiogenesis and prevents adverse infarct remodeling. J. Am. Heart Assoc. 3, e000946 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    van Rooij, E. & Kauppinen, S. Development of microRNA therapeutics is coming of age. EMBO Mol. Med. 6, 851–864 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Kota, J. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    US National Library of Medicine. ClinicalTrial.gov[online], (2014).

  91. 91

    Bonci, D. et al. The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat. Med. 14, 1271–1277 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. 92

    Schäfer, F., Wagner, J., Knau, A., Dimmeler, S. & Heckel, A. Regulating angiogenesis with light-inducible antimiRs. Angew. Chem. Int. Ed. Engl. 52, 13558–13561 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Bish, L. T. et al. Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum. Gene Ther. 19, 1359–1368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are funded by the German Center for Cardiovascular Research DZHK (BMBF), the LOEWE Center for Cell and Gene Therapy (State of Hessen), the Deutsche Forschungsgemeinschaft (SFB834), and the Fondation Leducq Transatlantic Network 'MIRVAD'.

Author information

Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, and wrote, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Stefanie Dimmeler.

Ethics declarations

Competing interests

S.D. is an advisor for miRagen Therapeutics, and owns a patent on the development of miR 92a therapeutics. S.D. and R.A.B. are inventors on a patent on the development of miR 34a inhibitors for the treatment of cardiovascular disease.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boon, R., Dimmeler, S. MicroRNAs in myocardial infarction. Nat Rev Cardiol 12, 135–142 (2015). https://doi.org/10.1038/nrcardio.2014.207

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing