Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Impact of ethnicity on cardiac adaptation to exercise

A Correction to this article was published on 05 August 2014

This article has been updated

Key Points

  • Ethnicity is an important determinant of cardiovascular adaptation to exercise and should be considered during interpretation of the electrocardiogram and echocardiogram in athletes

  • Athletes of African or Afro-Caribbean ethnicity (black athletes) reveal profound electrical and structural alterations in response to exercise; 23% exhibit T-wave inversion and 13% left ventricular hypertrophy

  • Application of current electrocardiographic interpretation criteria derived from white athletes would result in >40% of black athletes being diagnosed with an abnormal electrocardiogram

  • In the absence of symptoms or family history of cardiomyopathy, T-wave inversion confined to leads V1–V4 is likely to represent an ethnically determined, physiological response to exercise in black athletes

  • Middle-Eastern athletes seem to exhibit similar electrical and structural changes in response to exercise as white athletes

  • More data are required for athletes from East and South Asia before conclusions can be made regarding cardiac adaptation to exercise in these ethnicities

Abstract

The increasing globalization of sport has resulted in athletes from a wide range of ethnicities emerging onto the world stage. Fuelled by the untimely death of a number of young professional athletes, data generated from the parallel increase in preparticipation cardiovascular evaluation has indicated that ethnicity has a substantial influence on cardiac adaptation to exercise. From this perspective, the group most intensively studied comprises athletes of African or Afro-Caribbean ethnicity (black athletes), an ever-increasing number of whom are competing at the highest levels of sport and who often exhibit profound electrical and structural cardiac changes in response to exercise. Data on other ethnic cohorts are emerging, but remain incomplete. This Review describes our current knowledge on the impact of ethnicity on cardiac adaptation to exercise, starting with white athletes in whom the physiological electrical and structural changes—collectively termed the 'athlete's heart'—were first described. Discussion of the differences in the cardiac changes between ethnicities, with a focus on black athletes, and of the challenges that these variations can produce for the evaluating physician is also provided. The impact of ethnically mediated changes on preparticipation cardiovascular evaluation is highlighted, particularly with respect to false positive results, and potential genetic mechanisms underlying racial differences in cardiac adaptation to exercise are described.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2: Common, training-related electrocardiographic changes in athletes that do not warrant further investigation.
Figure 3: Electrocardiographic changes in athletes, which are unrelated to training and require further investigation.
Figure 4: Distributions of LV dimensions.
Figure 5: The spectrum of electrocardiographic patterns observed in black athletes.
Figure 6: Prevalence of electrocardiographic changes in black athletes, black controls, and black patients with HCM.
Figure 7: Prevalence of abnormal electrocardiographic patterns other than T-wave inversions in a large cohort of adult black (n = 904) or white (n = 1,819) elite athletes undergoing preparticipation evaluation.122
Figure 8: Distribution of LV wall thicknesses, illustrating the extent of the differences in LV hypertrophy between the ethnicities.
Figure 9: Distribution of values for parasternal short-axis proximal RVOT1 in 675 athletes.
Figure 10: The high prevalence of T-wave inversions observed in black athletes coupled with several structural modifications can result in a number of diagnostic 'grey zones'.

Change history

  • 05 August 2014

    In the version of this article initially published online, Figure 10 incorrectly stated that the prevalence of T wave inversions in black athletes who might also exhibit coexisting right ventricular dilatation was 45%, instead of 14.3%. The error has been corrected for the HTML and PDF versions of the article.

  • 28 February 2014

    In the version of this article initially published online, the Y axis label for Figure 6, which should have read "Prevalence (%)", was missing. A typing error was also present in Figures 4, 6, and 10. The errors have been corrected for the HTML and PDF versions of the article.

References

  1. Baggish, A. L. & Wood, M. J. Athlete's heart and cardiovascular care of the athlete: scientific and clinical update. Circulation 123, 2723–2735 (2011).

    Article  PubMed  Google Scholar 

  2. Prior, D. L. & La Gerche, A. The athlete's heart. Heart 98, 947–955 (2012).

    Article  PubMed  Google Scholar 

  3. Sharma, S. Athlete's heart—effect of age, sex, ethnicity and sporting discipline. Exp. Physiol. 88, 665–669 (2003).

    Article  PubMed  Google Scholar 

  4. Sheikh, N. & Sharma, S. Overview of sudden cardiac death in young athletes. Phys. Sportsmed. 39, 22–36 (2011).

    Article  PubMed  Google Scholar 

  5. Chandra, N., Bastiaenen, R., Papadakis, M. & Sharma, S. Sudden cardiac death in young athletes: practical challenges and diagnostic dilemmas. J. Am. Coll. Cardiol. 61, 1027–1040 (2013).

    Article  PubMed  Google Scholar 

  6. Maron, B. Sudden death in young athletes. Lessons from the Hank Gathers affair. N. Engl. J. Med. 329, 55–57 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Corrado, D. et al. Recommendations for interpretation of 12-lead electrocardiogram in the athlete. Eur. Heart J. 31, 243–259 (2010).

    Article  PubMed  Google Scholar 

  8. Maron, B. J. et al. Recommendations & considerations related to preparticipation screening for cardiovascular abnormalities in competitive athletes: 2007 update: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism: endorsed by the American College of Cardiology Foundation. Circulation 115, 1643–1655 (2007).

    Article  PubMed  Google Scholar 

  9. De Ceuninck, M., D'Hooghe, M. & D'Hooghe, P. for the FIFA Sports Medicine Committee. Sudden cardiac death in football [online], (2005).

    Google Scholar 

  10. Ljunggvist, A. et al. The International Olympic Committee (IOC) Consensus Statement on periodic health evaluation of elite athletes March 2009. Br. J. Sports Med. 43, 631–643 (2009).

    Article  Google Scholar 

  11. Papadakis, M. et al. Impact of ethnicity upon cardiovascular adaptation in competitive athletes: relevance to preparticipation screening. Br. J. Sports Med. 46 (Suppl. 1), i22–i28 (2012).

    Article  PubMed  Google Scholar 

  12. Harris, N. Premier League diversity at heart of global appeal. Sporting Intelligence [online], (2012).

    Google Scholar 

  13. Harris, N. Premier League's global game hits landmark 100th different foreign nationality. Sporting Intelligence [online], (2013).

    Google Scholar 

  14. US Department of Commerce. United States Census Bureau. State & County QuickFacts: USA [online], (2013).

  15. UCF College of Business Administration. The Institute for Diversity and Ethics in Sport. Lapchick, R., Hippert, A., Rivera, S. & Robinson, J. The 2013 racial and gender report card: National Basketball Association.Executive summary [online], (2013).

    Google Scholar 

  16. Sharma, S., Ghani, S. & Papadakis, M. ESC criteria for ECG interpretation in athletes: better but not perfect. Heart 97, 1540–1541 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Christensen, N. J. & Galbo, H. Sympathetic nervous activity during exercise. Annu. Rev. Physiol. 45, 139–153 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Stratton, J. R., Pfeifer, M. A. & Halter, J. B. The hemodynamic effects of sympathetic stimulation combined with parasympathetic blockade in man. Circulation 75, 922–929 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Opthof, T. & Coronel, R. The normal range and determinants of the intrinsic heart rate in man. Cardiovasc. Res. 45, 175–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Uusitalo, A. L., Uusitalo, A. J. & Rusko, H. K. Exhaustive endurance training for 6–9 weeks did not induce changes in intrinsic heart rate and cardiac autonomic modulation in female athletes. Int. J. Sports Med. 19, 532–540 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Rowell, L. B. Human Circulation: Regulation During Physical Stress (Oxford University Press, 1986).

    Google Scholar 

  22. Rost, R. The athlete's heart. Historical perspectives—solved and unsolved problems. Cardiol. Clin. 15, 493–512 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Henschen S. Skilanglauf und skiwettlauf: eine medizinische sportstudie [German]. Mitt. Med. Klin. Upsala (Jena) 2, 15–18 (1899).

    Google Scholar 

  24. Maron, B. J. Structural features of the athlete heart as defined by echocardiography. J. Am. Coll. Cardiol. 7, 190–203 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Scharhag, J. et al. Athlete's heart: right and left ventricular mass and function in male endurance athletes and untrained individuals determined by magnetic resonance imaging. J. Am. Coll. Cardiol. 40, 1856–1863 (2002).

    Article  PubMed  Google Scholar 

  26. Spirito, P. et al. Morphology of the “athlete's heart” assessed by echocardiography in 947 elite athletes representing 27 sports. Am. J. Cardiol. 74, 802–806 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Morganroth, J., Maron, B. J., Henry, W. L. & Epstein, S. E. Comparative left ventricular dimensions in trained athletes. Ann. Intern. Med. 82, 521–524 (1975).

    Article  CAS  PubMed  Google Scholar 

  28. Spence, A. L. et al. A prospective randomised longitudinal MRI study of left ventricular adaptation to endurance and resistance exercise training in humans. J. Physiol. 589, 5443–5452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharma, S. et al. Electrocardiographic changes in 1,000 highly trained junior elite athletes. Br. J. Sports Med. 33, 319–324 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pelliccia, A. et al. Clinical significance of abnormal electrocardiographic patterns in trained athletes. Circulation 102, 278–284 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Pelliccia, A. et al. Prevalence of abnormal electrocardiograms in a large, unselected population undergoing pre-participation cardiovascular screening. Eur. Heart J. 28, 2006–2010 (2007).

    Article  PubMed  Google Scholar 

  32. Bjørnstad, H., Storstein, L., Meen, H. D. & Hals, O. Electrocardiographic findings in athletic students and sedentary controls. Cardiology 79, 290–305 (1991).

    Article  PubMed  Google Scholar 

  33. Storstein, L., Bjørnstad, H., Hals, O. & Meen, H. D. Electrocardiographic findings according to sex in athletes and controls. Cardiology 79, 227–236 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Bjørnstad, H., Storstein, L., Meen, H. D. & Hals, O. Ambulatory electrocardiographic findings in top athletes, athletic students and control subjects. Cardiology 84, 42–50 (1994).

    Article  PubMed  Google Scholar 

  35. Wu, J., Stork, T. L., Perron, A. D. & Brady, W. J. The athlete's electrocardiogram. Am. J. Emerg. Med. 24, 77–86 (2006).

    Article  PubMed  Google Scholar 

  36. Hanne-Paparo, N., Drory, Y., Schoenfeld, Y., Shapira, Y. & Kellermann, J. J. Common ECG changes in athletes. Cardiology 61, 267–278 (1976).

    Article  CAS  PubMed  Google Scholar 

  37. Northcote, R. J., Canning, G. P. & Ballantyne, D. Electrocardiographic findings in male veteran endurance athletes. Br. Heart J. 61, 155–160 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Balady, G. J., Cadigan, J. B. & Ryan, T. J. Electrocardiogram of the athlete: an analysis of 289 professional football players. Am. J. Cardiol. 53, 1339–1343 (1984).

    Article  CAS  PubMed  Google Scholar 

  39. Stein, R., Medeiros, C. M., Rosito, G. A., Zimerman, L. I. & Ribeiro, J. P. Intrinsic sinus and atrioventricular node electrophysiologic adaptations in endurance athletes. J. Am. Coll. Cardiol. 39, 1033–1038 (2002).

    Article  PubMed  Google Scholar 

  40. Meytes, I., Kaplinsky, E., Yahini, J. H., Hanne-Paparo, N. & Neufeld, H. N. Wenckebach A-V block: a frequent feature following heavy physical training. Am. Heart J. 90, 426–430 (1975).

    Article  CAS  PubMed  Google Scholar 

  41. Zehender, M., Meinertz, T., Keul, J. & Just, H. ECG variants and cardiac arrhythmias in athletes: clinical relevance and prognostic importance. Am. Heart J. 119, 1378–1391 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Maron, B. J. & Pelliccia, A. The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation 114, 1633–1644 (2006).

    Article  PubMed  Google Scholar 

  43. Huston, T. P., Puffer, J. C. & Rodney, W. M. The athletic heart syndrome. N. Engl. J. Med. 313, 24–32 (1985).

    Article  CAS  PubMed  Google Scholar 

  44. Parker, B. M., Londeree, B. R., Cupp, G. V. & Dubiel, J. P. The noninvasive cardiac evaluation of long-distance runners. Chest 73, 376–381 (1978).

    Article  CAS  PubMed  Google Scholar 

  45. Douglas, P. S., O'Toole, M. L., Hiller, W. D., Hackney, K. & Reichek, N. Electrocardiographic diagnosis of exercise-induced left ventricular hypertrophy. Am. Heart J. 116, 784–790 (1988).

    Article  CAS  PubMed  Google Scholar 

  46. Oakley, C. M. The electrocardiogram in the highly trained athlete. Cardiol. Clin. 10, 295–302 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Langdeau, J. B., Blier, L., Turcotte, H., O'Hara, G. & Boulet, L. P. Electrocardiographic findings in athletes: the prevalence of left ventricular hypertrophy and conduction defects. Can. J. Cardiol. 17, 655–659 (2001).

    CAS  PubMed  Google Scholar 

  48. Moore, E. N., Boineau, J. P. & Patterson, D. F. Incomplete right bundle-branch block. An electrocardiographic enigma and possible misnomer. Circulation 44, 678–687 (1971).

    Article  CAS  PubMed  Google Scholar 

  49. Fagard, R. et al. Noninvasive assessment of seasonal variations in cardiac structure and function in cyclists. Circulation 67, 896–901 (1983).

    Article  CAS  PubMed  Google Scholar 

  50. Noseworthy, P. A. et al. Early repolarization pattern in competitive athletes: clinical correlates and the effects of exercise training. Circ. Arrhythmia Electrophysiol. 4, 432–440 (2011).

    Article  Google Scholar 

  51. Junttila, M. J. et al. Inferolateral early repolarization in athletes. J. Interv. Card. Electrophysiol. 31, 33–38 (2011).

    Article  PubMed  Google Scholar 

  52. Crouse, S., Meade, T., Hansen, B., Green, J. S. & Martin, S. E. Electrocardiograms of collegiate football athletes. Clin. Cardiol. 32, 37–42 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tikkanen, J. T. et al. Early repolarization: electrocardiographic phenotypes associated with favorable long-term outcome. Circulation 123, 2666–2673 (2011).

    Article  PubMed  Google Scholar 

  54. Oakley, D. G. & Oakley, C. M. Significance of abnormal electrocardiograms in highly trained athletes. Am. J. Cardiol. 50, 985–989 (1982).

    Article  CAS  PubMed  Google Scholar 

  55. Kansal, S., Roitman, D. I. & Sheffield, L. T. A quantitative relationship of electrocardiographic criteria of left ventricular hypertrophy with echocardiographic left ventricular mass: a multivariate approach. Clin. Cardiol. 6, 456–463 (1983).

    Article  CAS  PubMed  Google Scholar 

  56. Raskoff, W. J., Goldman, S. & Cohn, K. The “athletic heart”. Prevalence and physiological significance of left ventricular enlargement in distance runners. JAMA 236, 158–162 (1976).

    Article  CAS  PubMed  Google Scholar 

  57. Haïssaguerre, M. et al. Sudden cardiac arrest associated with early repolarization. N. Engl. J. Med. 358, 2016–2023 (2008).

    Article  PubMed  Google Scholar 

  58. Rosso, R. et al. J-point elevation in survivors of primary ventricular fibrillation and matched control subjects: incidence and clinical significance. J. Am. Coll. Cardiol. 52, 1231–1238 (2008).

    Article  PubMed  Google Scholar 

  59. Tikkanen, J. T. et al. Long-term outcome associated with early repolarization on electrocardiography. N. Engl. J. Med. 361, 2529–2537 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Bianco, M. et al. Does early repolarization in the athlete have analogies with the Brugada syndrome? Eur. Heart J. 22, 504–510 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Tanguturi, V. K., Noseworthy, P. A., Newton-Cheh, C. & Baggish, A. L. The electrocardiographic early repolarization pattern in athletes: normal variant or sudden death risk factor? Sports Med. 42, 359–366 (2012).

    Article  PubMed  Google Scholar 

  62. Papadakis, M. et al. Prevalence and significance of T-wave inversions in predominantly Caucasian adolescent athletes. Eur. Heart J. 30, 1728–1735 (2009).

    Article  PubMed  Google Scholar 

  63. Wilson, M. G. et al. Efficacy of personal symptom and family history questionnaires when screening for inherited cardiac pathologies: the role of electrocardiography. Br. J. Sports Med. 42, 207–211 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Basavarajaiah, S. et al. Prevalence and significance of an isolated long QT interval in elite athletes. Eur. Heart J. 28, 2944–2949 (2007).

    Article  PubMed  Google Scholar 

  65. Ryan, M. P. et al. The standard electrocardiogram as a screening test for hypertrophic cardiomyopathy. Am. J. Cardiol. 76, 689–694 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. McKenna, W. J., Spirito, P., Desnos, M., Dubourg, O. & Komajda, M. Experience from clinical genetics in hypertrophic cardiomyopathy: proposal for new diagnostic criteria in adult members of affected families. Heart 77, 130–132 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marcus, F. I. et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation 121, 1533–1541 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Charron, P. et al. Diagnostic value of electrocardiography and echocardiography for familial hypertrophic cardiomyopathy in a genotyped adult population. Circulation 96, 214–219 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Corrado, D. et al. Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. JAMA 296, 1593–1601 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Baggish, A. L. et al. Cardiovascular screening in college athletes with and without electrocardiography: a cross-sectional study. Ann. Intern. Med. 152, 269–275 (2010).

    Article  PubMed  Google Scholar 

  71. Weiner, R. B. et al. Performance of the 2010 European Society of Cardiology criteria for ECG interpretation in athletes. Heart 97, 1573–1577 (2011).

    Article  PubMed  Google Scholar 

  72. Brosnan, M. et al. The Seattle Criteria increase the specificity of preparticipation ECG screening among elite athletes. Br. J. Sports Med. http://dx.doi.org/10.1136/bjsports-2013-092420.

  73. Gati, S. et al. Should axis deviation or atrial enlargement be categorised as abnormal in young athletes? The athlete's electrocardiogram: time for re-appraisal of markers of pathology. Eur. Heart J. 34, 3641–3648 (2013).

    Article  PubMed  Google Scholar 

  74. Maron, B. J., Wolfson, J. K., Ciró, E. & Spirito, P. Relation of electrocardiographic abnormalities and patterns of left ventricular hypertrophy identified by 2-dimensional echocardiography in patients with hypertrophic cardiomyopathy. Am. J. Cardiol. 51, 189–194 (1983).

    Article  CAS  PubMed  Google Scholar 

  75. Schwartz, P., Moss, A., Vincent, G. & Crampton, R. Diagnostic criteria for the long QT syndrome. An update. Circulation 88, 782–784 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Pelliccia, A. et al. Outcomes in athletes with marked ECG repolarization abnormalities. N. Engl. J. Med. 358, 152–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Pelliccia, A., Maron, B. J., Spataro, A., Proschan, M. A. & Spirito, P. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N. Engl. J. Med. 324, 295–301 (1991).

    Article  CAS  PubMed  Google Scholar 

  78. Pelliccia, A., Maron, B. J., Culasso, F., Spataro, A. & Caselli, G. Athlete's heart in women. Echocardiographic characterization of highly trained elite female athletes. JAMA 276, 211–215 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Pelliccia, A., Culasso, F., Di Paolo, F. M. & Maron, B. J. Physiologic left ventricular cavity dilatation in elite athletes. Ann. Intern. Med. 130, 23–31 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Sharma, S. et al. Physiologic limits of left ventricular hypertrophy in elite junior athletes: relevance to differential diagnosis of athlete's heart and hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 40, 1431–1436 (2002).

    Article  PubMed  Google Scholar 

  81. Makan, J. et al. Physiological upper limits of ventricular cavity size in highly trained adolescent athletes. Heart 91, 495–499 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pelliccia, A. Remodeling of left ventricular hypertrophy in elite athletes after long-term deconditioning. Circulation 105, 944–949 (2002).

    Article  PubMed  Google Scholar 

  83. Pelliccia, A. et al. Prevalence and clinical significance of left atrial remodeling in competitive athletes. J. Am. Coll. Cardiol. 46, 690–696 (2005).

    Article  PubMed  Google Scholar 

  84. Pluim, B. M., Zwinderman, A. H., van der Laarse, A. & van der Wall, E. E. The athlete's heart. A meta-analysis of cardiac structure and function. Circulation 101, 336–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Oxborough, D. et al. The right ventricle of the endurance athlete: the relationship between morphology and deformation. J. Am. Soc. Echocardiogr. 25, 263–271 (2012).

    Article  PubMed  Google Scholar 

  86. Prakken, N. H. et al. Cardiac MRI reference values for athletes and nonathletes corrected for body surface area, training hours/week and sex. Eur. J. Cardiovasc. Prev. Rehabil. 17, 198–203 (2010).

    Article  PubMed  Google Scholar 

  87. Scharhag, J., Thünenkötter, T., Urhausen, A., Schneider, G. & Kindermann, W. Echocardiography of the right ventricle in athlete's heart and hearts of normal size compared to magnetic resonance imaging: which measurements should be applied in athletes? Int. J. Sports Med. 31, 58–64 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Pelliccia, A. et al. Prevalence and clinical significance of aortic root dilation in highly trained competitive athletes. Circulation 122, 698–706 (2010).

    Article  PubMed  Google Scholar 

  89. D'Andrea, A. et al. Range of right heart measurements in top-level athletes: the training impact. Int. J. Cardiol. 164, 48–57 (2013).

    Article  PubMed  Google Scholar 

  90. D'Andrea, A. et al. Aortic root dimensions in elite athletes. Am. J. Cardiol. 105, 1629–1634 (2010).

    Article  PubMed  Google Scholar 

  91. Scharf, M. et al. Cardiac magnetic resonance assessment of left and right ventricular morphologic and functional adaptations in professional soccer players. Am. Heart J. 159, 911–918 (2010).

    Article  PubMed  Google Scholar 

  92. Hauser, A. M. et al. Symmetric cardiac enlargement in highly trained endurance athletes: a two-dimensional echocardiographic study. Am. Heart J. 109, 1038–1044 (1985).

    Article  CAS  PubMed  Google Scholar 

  93. Höglund, C. Enlarged left atrial dimension in former endurance athletes: an echocardiographic study. Int. J. Sports Med. 7, 133–136 (1986).

    Article  PubMed  Google Scholar 

  94. Hoogsteen, J., Hoogeveen, A., Schaffers, H., Wijn, P. F. F. & Van Der Wall, E. E. Left atrial and ventricular dimensions in highly trained cyclists. Int. J. Cardiovasc. Imaging 19, 211–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Iskandar, A. & Thompson, P. D. A meta-analysis of aortic root size in elite athletes. Circulation 127, 791–798 (2013).

    Article  PubMed  Google Scholar 

  96. Kinoshita, N. et al. Aortic root dilatation among young competitive athletes: echocardiographic screening of 1,929 athletes between 15 and 34 years of age. Am. Heart J. 139, 723–728 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Babaee Bigi, M. A. & Aslani, A. Aortic root size and prevalence of aortic regurgitation in elite strength trained athletes. Am. J. Cardiol. 100, 528–530 (2007).

    Article  PubMed  Google Scholar 

  98. D'Andrea, A. et al. Right ventricular myocardial adaptation to different training protocols in top-level athletes. Echocardiography 20, 329–336 (2003).

    Article  PubMed  Google Scholar 

  99. Henriksen, E. et al. An echocardiographic study of right ventricular adaptation to physical exercise in elite male orienteers. Clin. Physiol. 18, 498–503 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Henriksen, E. et al. An echocardiographic study of right and left ventricular adaptation to physical exercise in elite female orienteers. Eur. Heart J. 20, 309–316 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Douglas, P. S., O'Toole, M. L., Hiller, W. D. & Reichek, N. Different effects of prolonged exercise on the right and left ventricles. J. Am. Coll. Cardiol. 15, 64–69 (1990).

    Article  CAS  PubMed  Google Scholar 

  102. D'Andrea, A. et al. Biventricular myocardial adaptation to different training protocols in competitive master athletes. Int. J. Cardiol. 115, 342–349 (2007).

    Article  PubMed  Google Scholar 

  103. D'Andrea, A. et al. Different involvement of right ventricular myocardial function in either physiologic or pathologic left ventricular hypertrophy: a Doppler tissue study. J. Am. Soc. Echocardiogr. 16, 154–161 (2003).

    Article  PubMed  Google Scholar 

  104. Pagourelias, E. D. et al. Right atrial and ventricular adaptations to training in male Caucasian athletes: an echocardiographic study. J. Am. Soc. Echocardiogr. 26, 1344–1352 (2013).

    Article  PubMed  Google Scholar 

  105. Littmann, D. Persistence of the juvenile pattern in the precordial leads of healthy adult negroes, with report of electrocardiographic survey on three hundred negro and two hundred white subjects. Am. Heart J. 32, 370–382 (1946).

    Article  CAS  PubMed  Google Scholar 

  106. Grusin, H. Peculiarities of the African's electrocardiogram and the changes observed in serial studies. Circulation 9, 860–867 (1954).

    Article  CAS  PubMed  Google Scholar 

  107. Powell, S. J. Unexplained electrocardiograms in the African. Br. Heart J. 21, 263–268 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Somers, K. & Rankin, A. M. The electrocardiogram in healthy East African (Bantu and Nilotic) men. Br. Heart J. 24, 542–548 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Smith, W. G., Cullen, K. J. & Thorburn, I. O. Electrocardiograms of marathon runners in 1962 Commonwealth Games. Br. Heart J. 26, 469–476 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Seriki, O. & Smith, A. J. The electrocardiogram of young Nigerians. Am. Heart J. 72, 153–157 (1966).

    Article  CAS  PubMed  Google Scholar 

  111. Okin, P. M. et al. Ethnic differences in electrocardiographic criteria for left ventricular hypertrophy: the LIFE study. Losartan Intervention For Endpoint. Am. J. Hypertens. 15, 663–671 (2002).

    Article  PubMed  Google Scholar 

  112. Sliwa, K. et al. Redefining the ECG in urban South Africans: electrocardiographic findings in heart disease-free Africans. Int. J. Cardiol. 167, 2204–2209 (2013).

    Article  PubMed  Google Scholar 

  113. Xie, X., Liu, K., Stamler, J. & Stamler, R. Ethnic differences in electrocardiographic left ventricular hypertrophy in young and middle-aged employed American men. Am. J. Cardiol. 73, 564–567 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. Brink, A. J. An investigation of factors influencing repolarization in the human heart. S. Afr. J. Clin. Sci. 2, 288–297 (1951).

    CAS  PubMed  Google Scholar 

  115. Ruiz, L., Miall, W. E. & Swan, A. V. Quantitative aspects of electrocardiograms of adults in a Jamaican rural population. Br. Heart J. 35, 829–839 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Thomas, J., Harris, E. & Lassiter, G. Observations on the T wave and ST segment changes in the precordial electrocardiogram of 320 young Negro adults. Am. J. Cardiol. 5, 468–472 (1960).

    Article  CAS  PubMed  Google Scholar 

  117. Wasserburger, R. H. Observations on the “juvenile pattern” of adult Negro males. Am. J. Med. 18, 428–437 (1955).

    Article  CAS  PubMed  Google Scholar 

  118. Mayet, J. et al. Racial differences in cardiac structure and function in essential hypertension. Br. Med. J. 308, 1011–1014 (1994).

    Article  CAS  Google Scholar 

  119. Chapman, J. N. et al. Ethnic differences in the identification of left ventricular hypertrophy in the hypertensive patient. Am. J. Hypertens. 12, 437–442 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Kizer, J. R. et al. Differences in left ventricular structure between black and white hypertensive adults: the Hypertension Genetic Epidemiology Network study. Hypertension 43, 1182–1188 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Drazner, M. H. et al. Left ventricular hypertrophy is more prevalent in blacks than whites in the general population: the Dallas Heart Study. Hypertension 46, 124–129 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Papadakis, M. et al. The prevalence, distribution, and clinical outcomes of electrocardiographic repolarization patterns in male athletes of African/Afro-Caribbean origin. Eur. Heart J. 32, 2304–2313 (2011).

    Article  PubMed  Google Scholar 

  123. Magalski, A. et al. Relation of race to electrocardiographic patterns in elite American football players. J. Am. Coll. Cardiol. 51, 2250–2255 (2008).

    Article  PubMed  Google Scholar 

  124. Choo, J. K., Abernethy, W. B. 3rd & Hutter, A. M. Jr Electrocardiographic observations in professional football players. Am. J. Cardiol. 90, 198–200 (2002).

    Article  PubMed  Google Scholar 

  125. Gersh, B. J. et al. 2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 58, e212–e260 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. McKenna, W. J. et al. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Heart 71, 215–218 (1994).

    Article  CAS  Google Scholar 

  127. Marcus, F. I. Prevalence of T-wave inversion beyond V1 in young normal individuals and usefulness for the diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Am. J. Cardiol. 95, 1070–1071 (2005).

    Article  PubMed  Google Scholar 

  128. Savage, D. D. et al. Electrocardiographic findings in patients with obstructive and nonobstructive hypertrophic cardiomyopathy. Circulation 58, 402–408 (1978).

    Article  CAS  PubMed  Google Scholar 

  129. Rawlins, J. et al. Ethnic differences in physiological cardiac adaptation to intense physical exercise in highly trained female athletes. Circulation 121, 1078–1085 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Bille, K. et al. Sudden cardiac death in athletes: the Lausanne Recommendations. Eur. J. Cardiovasc. Prev. Rehabil. 13, 859–875 (2006).

    Article  PubMed  Google Scholar 

  131. Maron, B. J., Doerer, J. J., Haas, T. S., Tierney, D. M. & Mueller, F. O. Sudden deaths in young competitive athletes: analysis of 1,866 deaths in the United States, 1980–2006 Circulation 119, 1085–1092 (2009).

    Article  PubMed  Google Scholar 

  132. Harmon, K. G., Asif, I. M., Klossner, D. & Drezner, J. A. Incidence of sudden cardiac death in National Collegiate Athletic Association Athletes. Circulation 123, 1594–1600 (2011).

    Article  PubMed  Google Scholar 

  133. Di Paolo, F. M. et al. The Athlete's heart in adolescent Africans: an electrocardiographic and echocardiographic study. J. Am. Coll. Cardiol. 59, 1029–1036 (2012).

    Article  PubMed  Google Scholar 

  134. Sheikh, N. et al. Cardiac adaptation to exercise in adolescent athletes of African ethnicity: an emergent elite athletic population. Br. J. Sports Med. 47, 585–592 (2013).

    Article  PubMed  Google Scholar 

  135. Basavarajaiah, S. et al. Ethnic differences in left ventricular remodeling in highly-trained athletes relevance to differentiating physiologic left ventricular hypertrophy from hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 51, 2256–2262 (2008).

    Article  PubMed  Google Scholar 

  136. Zaidi, A. et al. Physiological right ventricular adaptation in elite athletes of African and Afro-Caribbean origin. Circulation 127, 1783–1792 (2013).

    Article  PubMed  Google Scholar 

  137. Weinstock, J. & Estes, N. A. 3rd The heart of an athlete: black, white, and shades of grey with no gold standard. Circulation 127, 1757–1759 (2013).

    Article  PubMed  Google Scholar 

  138. Link, M. S. & Estes, N. A. 3rd Sudden cardiac death in the athlete: bridging the gaps between evidence, policy, and practice. Circulation 125, 2511–2516 (2012).

    Article  PubMed  Google Scholar 

  139. Freedom, R. M. et al. The morphological spectrum of ventricular noncompaction. Cardiol. Young 15, 345–364 (2005).

    Article  PubMed  Google Scholar 

  140. Jenni, R., Oechslin, E. N. & van der Loo, B. Isolated ventricular non-compaction of the myocardium in adults. Heart 93, 11–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Jenni, R., Oechslin, E., Schneider, J., Attenhofer Jost, C. & Kaufmann, P. A. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart 86, 666–671 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Oechslin, E. & Jenni, R. Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur. Heart J. 32, 1446–1456 (2011).

    Article  PubMed  Google Scholar 

  143. Udeoji, D. U., Philip, K. J., Morrissey, R. P., Phan, A. & Schwarz, E. R. Left ventricular noncompaction cardiomyopathy: updated review. Ther. Adv. Cardiovasc. Dis. 7, 260–273 (2013).

    Article  PubMed  Google Scholar 

  144. Ergul, Y. et al. Electrocardiographic findings at initial diagnosis in children with isolated left ventricular noncompaction. Ann. Noninvasive Electrocardiol. 16, 184–191 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Steffel, J., Kobza, R., Oechslin, E., Jenni, R. & Duru, F. Electrocardiographic characteristics at initial diagnosis in patients with isolated left ventricular noncompaction. Am. J. Cardiol. 104, 984–989 (2009).

    Article  PubMed  Google Scholar 

  146. Gati, S. et al. Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes? Heart 99, 401–408 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Luijkx, T. et al. Ethnic differences in ventricular hypertrabeculation on cardiac MRI in elite football players. Neth. Heart J. 20, 389–395 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wilson, M. G. et al. Prevalence of electrocardiographic abnormalities in West-Asian and African male athletes. Br. J. Sports Med. 46, 341–347 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Riding, N. R. et al. ECG and morphologic adaptations in Arabic athletes: are the European Society of Cardiology's recommendations for the interpretation of the 12-lead ECG appropriate for this ethnicity? Br. J. Sports Med. http://dx.doi.org/10.1136/bjsports-2012-091871.

  150. Dabiran, S., Tutunchi, P., Tutunchi, A. S., Mohebi, A. & Goodarzynejad, H. An echocardiographic study of heart in a group of male adult elite athletes. J. Tehran Univ. Hear. Cent. 2, 107–112 (2008).

    Google Scholar 

  151. Ng, C. T., Ong, H. Y., Cheok, C., Chua, T. S. J. & Ching, C. K. Prevalence of electrocardiographic abnormalities in an unselected young male multi-ethnic South-East Asian population undergoing pre-participation cardiovascular screening: results of the Singapore Armed Forces electrocardiogram and echocardiogram screening protocol. Europace 14, 1018–1024 (2012).

    Article  PubMed  Google Scholar 

  152. National Physical Fitness Award (NAPFA). Fitness Assessment Singapore [online], (2013).

  153. Ng, C. T. et al. Prevalence of hypertrophic cardiomyopathy on an electrocardiogram-based pre-participation screening programme in a young male South-East Asian population: results from the Singapore Armed Forces electrocardiogram and echocardiogram screening protocol. Europace 13, 883–888 (2011).

    Article  PubMed  Google Scholar 

  154. Kervio, G. et al. Alterations in echocardiographic and electrocardiographic features in Japanese professional soccer players: comparison to African–Caucasian ethnicities. Eur. J. Prev. Cardiol. 20, 880–888 (2013).

    Article  PubMed  Google Scholar 

  155. Ma, J. Z. et al. Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death in China. J. Sci. Med. Sport 10, 227–233 (2007).

    Article  PubMed  Google Scholar 

  156. Sun, B., Ma, J. Z., Yong, Y. H. & Lv, Y. Y. The upper limit of physiological cardiac hypertrophy in elite male and female athletes in China. Eur. J. Appl. Physiol. 101, 457–463 (2007).

    Article  PubMed  Google Scholar 

  157. Nagashima, J., Musha, H., Takada, H. & Murayama, M. New upper limit of physiologic cardiac hypertrophy in Japanese participants in the 100-km ultramarathon. J. Am. Coll. Cardiol. 42, 1617–1623 (2003).

    Article  PubMed  Google Scholar 

  158. Maron, B. J. et al. Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA 276, 199–204 (1996).

    Article  CAS  PubMed  Google Scholar 

  159. Maron, B. J. Sudden death in young athletes. N. Engl. J. Med. 349, 1064–1075 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Corrado, D., Basso, C. & Thiene, G. Essay: Sudden death in young athletes. Lancet 366 (Suppl. 1), S47–S48 (2005).

    Article  PubMed  Google Scholar 

  161. Harris, K., Sponsel, A., Hutter, A. M. Jr. & Maron, B. J. Brief communication: Cardiovascular screening practices of major North American professional sports teams. Ann. Intern. Med. 145, 507–511 (2006).

    Article  PubMed  Google Scholar 

  162. Corrado, D. et al. Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol. Consensus Statement of the Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur. Heart J. 26, 516–524 (2005).

    Article  PubMed  Google Scholar 

  163. Corrado, D., Basso, C., Schiavon, M. & Thiene, G. Screening for hypertrophic cardiomyopathy in young athletes. N. Engl. J. Med. 339, 346–369 (1998).

    Article  Google Scholar 

  164. Vetter, V. L. & Dugan, N. P. A discussion of electrocardiographic screening and sudden cardiac death prevention: evidence and consensus. Curr. Opin. Cardiol. 28, 139–151 (2013).

    Article  PubMed  Google Scholar 

  165. Drezner, J. A. et al. Electrocardiographic interpretation in athletes: the 'Seattle Criteria'. Br. J. Sports Med. 47, 122–124 (2013).

    Article  PubMed  Google Scholar 

  166. Lang, R. M. et al. Recommendations for chamber quantification. Eur. J. Echocardiogr. 7, 79–108 (2006).

    Article  PubMed  Google Scholar 

  167. Maron, B. J. et al. Relationship of race to sudden cardiac death in competitive athletes with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 41, 974–980 (2003).

    Article  PubMed  Google Scholar 

  168. Basavarajaiah, S. et al. Physiological left ventricular hypertrophy or hypertrophic cardiomyopathy in an elite adolescent athlete: role of detraining in resolving the clinical dilemma. Br. J. Sports Med. 40, 727–729 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kaski, J. P. et al. Prevalence of sarcomere protein gene mutations in preadolescent children with hypertrophic cardiomyopathy. Circ. Cardiovasc. Genet. 2, 436–441 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Van Driest, S. L., Ommen, S. R., Tajik, A. J., Gersh, B. J. & Ackerman, M. J. Yield of genetic testing in hypertrophic cardiomyopathy. Mayo Clin. Proc. 80, 739–744 (2005).

    Article  PubMed  Google Scholar 

  171. Andersen, P. S. et al. Diagnostic yield, interpretation, and clinical utility of mutation screening of sarcomere encoding genes in Danish hypertrophic cardiomyopathy patients and relatives. Hum. Mutat. 30, 363–370 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Maron, B. J., Spirito, P., Wesley, Y. & Arce, J. Development and progression of left ventricular hypertrophy in children with hypertrophic cardiomyopathy. N. Engl. J. Med. 315, 610–614 (1986).

    Article  CAS  PubMed  Google Scholar 

  173. Drezner, J. A. et al. Abnormal electrocardiographic findings in athletes: recognising changes suggestive of cardiomyopathy. Br. J. Sports Med. 47, 137–152 (2013).

    Article  PubMed  Google Scholar 

  174. Drezner, J. A. et al. Normal electrocardiographic findings: recognising physiological adaptations in athletes. Br. J. Sports Med. 47, 125–136 (2013).

    Article  PubMed  Google Scholar 

  175. Drezner, J. A. et al. Abnormal electrocardiographic findings in athletes: recognising changes suggestive of primary electrical disease. Br. J. Sports Med. 47, 153–167 (2013).

    Article  PubMed  Google Scholar 

  176. Zaidi, A. et al. Clinical significance of electrocardiographic right ventricular hypertrophy in athletes: comparison with arrhythmogenic right ventricular cardiomyopathy and pulmonary hypertension. Eur. Heart J. 34, 3649–3656 (2013).

    Article  PubMed  Google Scholar 

  177. Sheikh, N. et al. Comparison of ECG criteria for the detection of cardiac abnormalities in elite black and white athletes. Circulation (in press).

  178. Montgomery, H. E. et al. Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation 96, 741–747 (1997).

    Article  CAS  PubMed  Google Scholar 

  179. Diet, F. et al. ACE and angiotensinogen gene genotypes and left ventricular mass in athletes. Eur. J. Clin. Invest. 31, 836–842 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Boraita, A. et al. Cardiovascular adaptation, functional capacity and Angiotensin-converting enzyme I/D polymorphism in elite athletes. Rev. Esp. Cardiol. 63, 810–819 (2010).

    Article  PubMed  Google Scholar 

  181. Rizzo, M. et al. ACE I/D polymorphism and cardiac adaptations in adolescent athletes. Med. Sci. Sports Exerc. 35, 1986–1990 (2003).

    Article  PubMed  Google Scholar 

  182. Nagashima, J. et al. Influence of angiotensin-converting enzyme gene polymorphism on development of athlete's heart. Clin. Cardiol. 23, 621–624 (2000).

    Article  CAS  PubMed  Google Scholar 

  183. Hernández, D. et al. The ACE/DD genotype is associated with the extent of exercise-induced left ventricular growth in endurance athletes. J. Am. Coll. Cardiol. 42, 527–532 (2003).

    Article  CAS  PubMed  Google Scholar 

  184. Montgomery, H., Brull, D. & Humphries, S. E. Analysis of gene-environment interactions by “stressing-the-genotype” studies: the angiotensin converting enzyme and exercise-induced left ventricular hypertrophy as an example. Ital. Heart J. 3, 10–14 (2002).

    PubMed  Google Scholar 

  185. Di Mauro, M. et al. ACE and AGTR1 polymorphisms and left ventricular hypertrophy in endurance athletes. Med. Sci. Sport. Exerc. 1, 915–921 (2010).

    Article  CAS  Google Scholar 

  186. Karjalainen, J. et al. Angiotensinogen gene M235T polymorphism predicts left ventricular hypertrophy in endurance athletes. J. Am. Coll. Cardiol. 34, 494–499 (1999).

    Article  CAS  PubMed  Google Scholar 

  187. Ito, H. et al. Insulin-like growth factor-II induces hypertrophy with increased expression of muscle specific genes in cultured rat cardiomyocytes. J. Mol. Cell. Cardiol. 26, 789–795 (1994).

    Article  PubMed  Google Scholar 

  188. Donath, M. Y., Zapf, J., Eppenberger-Eberhardt, M., Froesch, E. R. & Eppenberger, H. M. Insulin-like growth factor I stimulates myofibril development and decreases smooth muscle alpha-actin of adult cardiomyocytes. Proc. Natl Acad. Sci. U.S.A. 91, 1686–1690 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Decker, R. S., Cook, M. G., Behnke-Barclay, M. & Decker, M. L. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading. Circ. Res. 77, 544–555 (1995).

    Article  CAS  PubMed  Google Scholar 

  190. Reiss, K. et al. Fibroblast proliferation during myocardial development in rats is regulated by IGF-1 receptors. Am. J. Physiol. 269, H943–H951 (1995).

    Article  CAS  PubMed  Google Scholar 

  191. Pauliks, L. B., Cole, K. E. & Mergner, W. J. Increased insulin-like growth factor-1 protein in human left ventricular hypertrophy. Exp. Mol. Pathol. 66, 53–58 (1999).

    Article  CAS  PubMed  Google Scholar 

  192. DeBosch, B. et al. Akt1 is required for physiological cardiac growth. Circulation 113, 2097–2104 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Schlüter, K. D., Goldberg, Y., Taimor, G., Schäfer, M. & Piper, H. M. Role of phosphatidylinositol 3-kinase activation in the hypertrophic growth of adult ventricular cardiomyocytes. Cardiovasc. Res. 40, 174–181 (1998).

    Article  PubMed  Google Scholar 

  194. Templeton, A. R. Human races: a genetic and evolutionary perspective. Am. Anthropol. 100, 632–650 (1998).

    Article  Google Scholar 

  195. Templeton, A. Out of Africa again and again. Nature 416, 45–51 (2002).

    Article  CAS  PubMed  Google Scholar 

  196. Heyer, E. et al. Genetic diversity and the emergence of ethnic groups in Central Asia. BMC Genet. 10, 49 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.S. researched data for the article. Both authors contributed substantially to the discussion of content, wrote the article, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Sanjay Sharma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sheikh, N., Sharma, S. Impact of ethnicity on cardiac adaptation to exercise. Nat Rev Cardiol 11, 198–217 (2014). https://doi.org/10.1038/nrcardio.2014.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.15

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing