Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Top 10 cardiovascular therapies and interventions for the next decade

Abstract

Cardiovascular disease (CVD) has become the most-common cause of death worldwide. The Western lifestyle does not promote healthy living, and the consequences are most devastating when social inequalities are combined with economic factors and population growth. The expansion of poor nutritional habits, obesity, and associated conditions (such as diabetes mellitus, hypertension, physical inactivity, and advancing age) are major risk factors for developing CVD and are increasing in prevalence. Individuals in low-income and middle-income countries are undergoing a major shift in cardiovascular risk factors as they adopt Western lifestyles, a phenomenon that is hastened by industrialization, urbanization, and globalization. In this Perspectives article, I predict the 10 most-promising advances in cardiovascular therapies and interventions. Our improved understanding of CVD might help us, during the next decade, to achieve a transition from treating complex disease to promoting global cardiovascular health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myocardial death during ischaemia and reperfusion.
Figure 2: Assessment of epicardial and microvascular ischaemia.
Figure 3: Risk of aortic valve replacement increases with age and presence of comorbidities.
Figure 4: Imaging of left atrial appendage morphology.
Figure 5: The influence of efferent and afferent sympathetic fibres on modulating sympathetic responses of the kidneys, heart, vasculature, and other target organs.
Figure 6: LDL-cholesterol metabolism in the presence or absence of PCSK9.
Figure 7: Global burden of cardiovascular disease.
Figure 8: Milestones in clinical trials of cardiac regenerative therapies.

Similar content being viewed by others

References

  1. O'Gara, P. T. et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 61, e78–e140 (2013).

    Article  PubMed  Google Scholar 

  2. Steg, P. G. et al. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC). Eur. Heart J. 33, 2569–2619 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Krumholz, H. M. et al. Reduction in acute myocardial infarction mortality in the United States: risk-standardized mortality rates from 1995–2006. JAMA 302, 767–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Larose, E. et al. Predicting late myocardial recovery and outcomes in the early hours of ST-segment elevation myocardial infarction: traditional measures compared with microvascular obstruction, salvaged myocardium, and necrosis characteristics by cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 55, 2459–2469 (2010).

    Article  PubMed  Google Scholar 

  5. Javadov, S. & Karmazyn, M. Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell. Physiol. Biochem. 20, 1–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Ibanez, B. et al. The cardioprotection granted by metoprolol is restricted to its administration prior to coronary reperfusion. Int. J. Cardiol. 147, 428–432 (2011).

    Article  PubMed  Google Scholar 

  7. Murry, C. E., Jennings, R. B. & Reimer, K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124–1136 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Bøtker, H. E. et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 375, 727–734 (2010).

    Article  PubMed  Google Scholar 

  9. Sloth, A. D. et al. Improved long-term clinical outcomes in patients with ST-elevation myocardial infarction undergoing remote ischaemic conditioning as an adjunct to primary percutaneous coronary intervention. Eur. Heart J. 35, 168–175 (2014).

    Article  PubMed  Google Scholar 

  10. Breivik, L., Helgeland, E., Aarnes, E. K., Mrdalj, J. & Jonassen, A. K. Remote postconditioning by humoral factors in effluent from ischemic preconditioned rat hearts is mediated via PI3K/Akt-dependent cell-survival signaling at reperfusion. Basic Res. Cardiol. 106, 135–145 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Piot, C. et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N. Engl. J. Med. 359, 473–481 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  13. Opie, L. H. Metabolic management of acute myocardial infarction comes to the fore and extends beyond control of hyperglycemia. Circulation 117, 2172–2177 (2008).

    Article  PubMed  Google Scholar 

  14. Díaz, R. et al. Glucose-insulin-potassium therapy in patients with ST-segment elevation myocardial infarction. JAMA 298, 2399–2405 (2007).

    Article  PubMed  Google Scholar 

  15. Selker, H. P. et al. Out-of-hospital administration of intravenous glucose-insulin-potassium in patients with suspected acute coronary syndromes: the IMMEDIATE randomized controlled trial. JAMA 307, 1925–1933 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, Z. et al. Early intravenous then oral metoprolol in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet 366, 1622–1632 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Ibanez, B. et al. Early metoprolol administration before coronary reperfusion results in increased myocardial salvage analysis of ischemic myocardium at risk using cardiac magnetic resonance. Circulation 115, 2909–2916 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Ibanez, B. et al. Effect of early metoprolol on infarct size in ST-segment-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: the Effect of Metoprolol in Cardioprotection During an Acute Myocardial Infarction (METOCARD-CNIC) trial. Circulation 128, 1495–1503 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Lunar, I. G. et al. Pre-reperfusion metoprolol administration diminishes CMR-quantified microvascular obstruction in STEMI patients undergoing PCI: role of neutrophil-platelet coaggregates inhibition [abstract]. J. Am. Coll. Cardiol. 63 (Suppl.), A35 (2014).

    Article  Google Scholar 

  20. Pizarro, G. et al. Long term benefit of early pre-reperfusion metoprolol administration in patients with acute myocardial infarction: results from the METOCARD-CNIC trial. J. Am. Coll. Cardiol. 63, 2356–2362 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Aragón, J. P. et al. Beta3-adrenoreceptor stimulation ameliorates myocardial ischemia-reperfusion injury via endothelial nitric oxide synthase and neuronal nitric oxide synthase activation. J. Am. Coll. Cardiol. 58, 2683–2691 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Passamani, E., Davis, K. B., Gillespie, M. J. & Killip, T. A randomized trial of coronary artery bypass surgery. Survival of patients with a low ejection fraction. N. Engl. J. Med. 312, 1665–1671 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Detre, K. M., Takaro, T., Hultgren, H. & Peduzzi, P. Long-term mortality and morbidity results of the Veterans Administration randomized trial of coronary artery bypass surgery. Circulation 72, V84–V89 (1985).

    CAS  PubMed  Google Scholar 

  24. Varnauskas, E. Survival, myocardial infarction, and employment status in a prospective randomized study of coronary bypass surgery. Circulation 72, V90–V101 (1985).

    CAS  PubMed  Google Scholar 

  25. Kovacic, J. C., Castellano, J. M. & Fuster, V. Cardiovascular defense challenges at the basic, clinical, and population levels. Ann. N. Y. Acad. Sci. 1254, 1–6 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Serruys, P. W. et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N. Engl. J. Med. 360, 961–972 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Mohr, F. W. et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet 381, 629–638 (2013).

    Article  PubMed  Google Scholar 

  28. Tonino, P. A. et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 360, 213–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Farkouh, M. E. et al. Strategies for multivessel revascularization in patients with diabetes. N. Engl. J. Med. 367, 2375–2384 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Magnuson, E. A. et al. Cost-effectiveness of percutaneous coronary intervention with drug eluting stents versus bypass surgery for patients with diabetes mellitus and multivessel coronary artery disease results from the FREEDOM trial. Circulation 127, 820–831 (2013).

    Article  PubMed  Google Scholar 

  31. Boden, W. E. et al. Optimal medical therapy with or without PCI for stable coronary disease. N. Engl. J. Med. 356, 1503–1516 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. The BARI 2D Study Group. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N. Engl. J. Med. 360, 2503–2515 (2009).

  33. Farkouh, M. E. et al. Risk factor control for coronary artery disease secondary prevention in large randomized trials. J. Am. Coll. Cardiol. 61, 1607–1615 (2013).

    Article  PubMed  Google Scholar 

  34. Gaur, S. et al. Reproducibility of invasively measured and non-invasively computed fractional flow reserve [abstract]. J. Am. Coll. Cardiol. 63 (Suppl.), A999 (2014).

    Article  Google Scholar 

  35. Ahmadi, A. et al. Does prognosis change depending on number and composition of non obstructive plaques? Results from the multinational coronary CT angiography evaluation for clinical outcome: an international multicenter registry (CONFIRM) [abstract]. J. Am. Coll. Cardiol. 63 (Suppl.), A980 (2014).

    Article  Google Scholar 

  36. Sanz, G. & Fuster, V. Prevention: Polypills for cardiovascular prevention: a step forward? Nat. Rev. Cardiol. 10, 683–684 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Yusuf, S. et al. Use of secondary prevention drugs for cardiovascular disease in the community in high-income, middle-income, and low-income countries (the PURE study): a prospective epidemiological survey. Lancet 378, 1231–1243 (2011).

    Article  PubMed  Google Scholar 

  38. Bosworth, H. B. et al. Medication adherence: a call for action. Am. Heart J. 162, 412–424 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Epstein, R. S. Medication adherence: hope for improvement? Mayo Clinic Proc. 86, 268–270 (2011).

    Article  Google Scholar 

  40. Wald, N. J. & Law, M. R. A strategy to reduce cardiovascular disease by more than 80%. BMJ 326, 1419 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thom, S. et al. Effects of a fixed-dose combination strategy on adherence and risk factors in patients with or at high risk of CVD: the UMPIRE randomized clinical trial. JAMA 310, 918–929 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Sanz, G. et al. The fixed-dose combination drug for secondary cardiovascular prevention project: improving equitable access and adherence to secondary cardiovascular prevention with a fixed-dose combination drug: study design and objectives. Am. Heart J. 162, 811.e1–817.e1 (2011).

    Article  CAS  Google Scholar 

  43. Muntner, P. et al. Projected impact of polypill use among US adults: medication use, cardiovascular risk reduction, and side effects. Am. Heart J. 161, 719–725 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yusuf, S. et al. Combination pharmacotherapy to prevent cardiovascular disease: present status and challenges. Eur. Heart J. 35, 353–364 (2014).

    Article  PubMed  Google Scholar 

  45. Andersen, H., Knudsen, L. & Hasenkam, J. Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs. Eur. Heart J. 13, 704–708 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Cribier, A. et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis first human case description. Circulation 106, 3006–3008 (2002).

    Article  PubMed  Google Scholar 

  47. Bourantas, C. V. & Serruys, P. W. Evolution of transcatheter aortic valve replacement. Circ. Res. 114, 1037–1051 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Leon, M. B. et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 363, 1597–1607 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Popma, J. J. et al. Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery. J. Am. Coll. Cardiol. 63, 1972–1981 (2014).

    Article  PubMed  Google Scholar 

  50. Smith, C. R. et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 364, 2187–2198 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Adams, D. H. et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N. Engl. J. Med. 370, 1790–1798 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Grube, E., Sinning, J.-M. & Vahanian, A. The Year in Cardiology 2013: valvular heart disease (focus on catheter-based interventions). Eur. Heart J. 35, 490–495 (2014).

    Article  PubMed  Google Scholar 

  53. Alfieri, O. et al. The double-orifice technique in mitral valve repair: a simple solution for complex problems. J. Thorac. Cardiovasc. Surg. 122, 674–681 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Munkholm-Larsen, S. et al. A systematic review on the safety and efficacy of percutaneous edge-to-edge mitral valve repair with the MitraClip system for high surgical risk candidates. Heart 100, 473–478 (2013).

    Article  PubMed  Google Scholar 

  55. Feldman, T. et al. Percutaneous repair or surgery for mitral regurgitation. N. Engl. J. Med. 364, 1395–1406 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Mauri. et al. 4-year results of a randomized controlled trial of percutaneous repair versus surgery for mitral regurgitation. J. Am. Coll. Cardiol. 62, 317–328 (2013).

  57. O'Gara, P., Calhoon, J., Moon, M. & Tommaso, C. Transcatheter therapies for mitral regurgitation: a professional society overview from the American College of Cardiology, the American Association for Thoracic Surgery, Society for Cardiovascular Angiography and Interventions Foundation, and the Society of Thoracic Surgeons. J. Thorac. Cardiovasc. Surg. 147, 837–849 (2014).

    Article  PubMed  Google Scholar 

  58. Fanning, J. P. et al. Characterization of neurological injury in transcatheter aortic valve implantation: how clear is the picture? Circulation 129, 504–515 (2014).

    Article  PubMed  Google Scholar 

  59. Van Belle, E. et al. Postprocedural aortic regurgitation in balloon-expandable and self-expandable transcatheter aortic valve replacement procedures: analysis of predictors and impact on long-term mortality: insights from the FRANCE2 registry. Circulation 129, 1415–1427 (2014).

    Article  PubMed  Google Scholar 

  60. Tuzcu, E. M. & Kapadia, S. R. Selection of valves for TAVR: is the CHOICE clear? JAMA 311, 1500–1502 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  62. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  63. Mack, M. J. et al. The outcomes of transcatheter aortic valve replacement in patients with end-stage renal disease: a report from the STS/ACC TVT Registry [abstract]. J. Am. Coll. Cardiol. 63 (Suppl.), A1714 (2014).

    Article  Google Scholar 

  64. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  65. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  66. Chugh, S. S., Roth, G. A., Gillum, R. F. & Mensah, G. A. Global burden of atrial fibrillation in developed and developing bations. Global Heart 9, 113–119 (2014).

    Article  PubMed  Google Scholar 

  67. January, C. et al. AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation http://dx.doi.org/10.1161/CIR.0000000000000041.

  68. Kirchhof, P. et al. Atrial fibrillation guidelines across the Atlantic: a comparison of the current recommendations of the European Society of Cardiology/European Heart Rhythm Association/European Association of Cardiothoracic Surgeons, the American College of Cardiology Foundation/American Heart Association/Heart Rhythm Society, and the Canadian Cardiovascular Society. Eur. Heart J. 34, 1471–1474 (2013).

    Article  PubMed  Google Scholar 

  69. Magnani, J. W. et al. Genetic loci associated with atrial fibrillation: relation to left atrial structure in the Framingham Heart Study. J. Am. Heart Assoc. 3, e000616 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lubitz, S. A. et al. Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese. J. Am. Coll. Cardiol. 63, 1200–1210 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nakanishi, K. et al. Peri-atrial epicardial adipose tissue is associated with new-onset nonvalvular atrial fibrillation. Circ. J. 76, 2748–2754 (2011).

    Article  CAS  Google Scholar 

  72. Abed, H. S. et al. Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial. JAMA 310, 2050–2060 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Kottkamp, H. Human atrial fibrillation substrate: towards a specific fibrotic atrial cardiomyopathy. Eur. Heart J. 34, 2731–2738 (2013).

    Article  PubMed  Google Scholar 

  74. Yoon, J. H. et al. Left atrial function assessed by Doppler echocardiography rather than left atrial volume predicts recurrence in patients with paroxysmal atrial fibrillation. Clin. Cardiol. 36, 235–240 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Russo, C. et al. LA volumes and reservoir function are associated with subclinical cerebrovascular disease: the CABL (Cardiovascular Abnormalities and Brain Lesions) study. JACC Cardiovasc. Imaging 6, 313–323 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gaita, F. et al. Prevalence of silent cerebral ischemia in paroxysmal and persistent atrial fibrillation and correlation with cognitive function. J. Am. Coll. Cardiol. 62, 1990–1997 (2013).

    Article  PubMed  Google Scholar 

  77. Di Biase, L. et al. Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fibrillation? Results from a multicenter study. J. Am. Coll. Cardiol. 60, 531–538 (2012).

    Article  PubMed  Google Scholar 

  78. Lee, J. M. et al. Impact of increased orifice size and decreased flow velocity of left atrial appendage on stroke in nonvalvular atrial fibrillation. Am. J. Cardiol. 113, 963–969 (2014).

    Article  PubMed  Google Scholar 

  79. Moran, A. E., Roth, G. A., Narula, J. & Mensah, G. A. 1990–2010 global cardiovascular disease atlas. Global Heart 9, 3–16 (2014).

    Article  PubMed  Google Scholar 

  80. Go, A. S. et al. Executive summary: Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129, 399–410 (2014).

    Article  PubMed  Google Scholar 

  81. Jaffe, M. G., Lee, G. A., Young, J. D., Sidney, S. & Go, A. S. Improved blood pressure control associated with a large-scale hypertension program. JAMA 310, 699–705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Centers for Disease Control and Prevention. Vital signs: awareness and treatment of uncontrolled hypertension among adults—United States, 2003–2010. MMWR Morb. Mortal. Wkly Rep. 61, 703–709 (2012).

  83. James, P. A. et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 311, 507–520 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Stone, N. J. et al. 2013 ACC/AHA Guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation http://dx.doi.org/10.1161/01.cir.0000437738.63853.7a.

  85. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445–544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mancia, G. et al. 2013 practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J. Hypertens. 31, 1925–1938 (2013).

    Article  CAS  Google Scholar 

  87. Wright, J. T. Jr, Fine, L. J., Lackland, D. T., Ogedegbe, G. & Dennison Himmelfarb, C. R. Evidence supporting a systolic blood pressure goal of less than 150 mm Hg in patients aged 60 years or older: the minority view. Ann. Intern. Med. 160, 499–503 (2014).

    Article  PubMed  Google Scholar 

  88. Peterson, E. D., Gaziano, J. M. & Greenland, P. Recommendations for treating hypertension what are the right goals and purposes? JAMA 311, 474–476 (2013).

    Article  CAS  Google Scholar 

  89. Cook, N., Appel, L. J. & Whelton, P. K. Lower levels of sodium intake and reduced cardiovascular risk. Circulation 129, 981–989 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Aburto, N. J. et al. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ 346, f1326 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fuster, V. & Kelly, B. B. (Eds) Promoting Cardiovascular Health in the Developing World: A Critical Challenge to Achieve Global Health (National Academies Press, 2010).

  92. Appel, L. J. et al. The importance of population-wide sodium reduction as a means to prevent cardiovascular disease and stroke a call to action from the American Heart Association. Circulation 123, 1138–1143 (2011).

    Article  PubMed  Google Scholar 

  93. Mozaffarian, D. & Ludwig, D. S. Dietary guidelines in the 21st century—a time for food. JAMA 304, 681–682 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Cogswell, M. E. et al. Sodium and potassium intakes among US adults: NHANES 2003–2008. Am. J. Clin. Nutr. 96, 647–657 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Beaglehole, R. et al. Priority actions for the non-communicable disease crisis. Lancet 377, 1438–1447 (2011).

    Article  PubMed  Google Scholar 

  96. He, F. J., Brinsden, H. C. & MacGregor, G. A. Salt reduction in the United Kingdom: a successful experiment in public health. J. Hum. Hypertens. 28, 345–352 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Wyness, L. A., Butriss, J. L. & Stanner, S. A. Reducing the population's sodium intake: the UK Food Standards Agency's salt reduction programme. Public Health Nutr. 15, 254–261 (2012).

    Article  PubMed  Google Scholar 

  98. Papademetriou, V., Rashidi, A. A., Tsioufis, C. & Doumas, M. Renal nerve ablation for resistant hypertension: how did we get here, present status, and future directions. Circulation 129, 1440–1451 (2014).

    Article  PubMed  Google Scholar 

  99. Schmieder, R. E. et al. Updated ESH position paper on interventional therapy of resistant hypertension. EuroIntervention 9 (Suppl. R), R58–R66 (2013).

    Article  PubMed  Google Scholar 

  100. Mahfoud, F. et al. Expert consensus document from the European Society of Cardiology on catheter-based renal denervation. Eur. Heart J. 34, 2149–2157 (2013).

    Article  PubMed  Google Scholar 

  101. Bhatt, D. L. et al. A controlled trial of renal denervation for resistant hypertension. N. Engl. J. Med. 370, 1393–1401 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Seidah, N. G., Awan, Z., Chrétien, M. & Mbikay, M. PCSK9: a key modulator of cardiovascular health. Circ. Res. 114, 1022–1036 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Gutierrez, M. J. et al. Efficacy and safety of ETC-1002, a novel investigational low-density lipoprotein-cholesterol-lowering therapy for the treatment of patients with hypercholesterolemia and type 2 diabetes mellitus. Arterioscler. Thromb. Vasc. Biol. 34, 676–683 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Nissen, S. E. et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290, 2292–2300 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Diditchenko, S. et al. Novel formulation of a reconstituted high-density lipoprotein (CSL112) dramatically enhances ABCA1-dependent cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 33, 2202–2211 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Waksman, R. et al. A first-in-man, randomized, placebo-controlled study to evaluate the safety and feasibility of autologous delipidated high density lipoprotein plasma infusions in patients with acute coronary syndrome. J. Am. Coll. Cardiol. 55, 2727–2735 (2010).

    Article  PubMed  Google Scholar 

  107. Dadu, R. T. & Ballantyne, C. M. Lipid lowering with PCSK9 inhibitors. Nat. Rev. Cardiol. 11, 563–575 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Selvin, E., Parrinello, C. M., Sacks, D. B. & Coresh, J. Trends in prevalence and control of diabetes in the United States, 1988–1994 and 1999–2010. Ann. Intern. Med. 160, 517–525 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Gregg, E. W. et al. Changes in diabetes-related complications in the United States, 1990–2010. N. Engl. J. Med. 370, 1514–1523 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N. Engl. J. Med. 370, 2002–2013 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Loy, C. T., Schofield, P. R., Turner, A. M. & Kwok, J. B. Genetics of dementia. Lancet 383, 828–840 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Kovacic, J. C. & Fuster, V. Atherosclerotic risk factors, vascular cognitive impairment, and Alzheimer disease. Mt Sinai J. Med. 79, 664–673 (2012).

    Article  PubMed  Google Scholar 

  113. Launer, L. J., Hughes, T. M. & White, L. R. Microinfarcts, brain atrophy, and cognitive function: the Honolulu Asia Aging Study Autopsy Study. Ann. Neurol. 70, 774–780 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Toledo, J. B. et al. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer's Coordinating Centre. Brain 136, 2697–2706 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Qureshi, A. I. & Caplan, L. R. Intracranial atherosclerosis. Lancet 383, 984–998 (2014).

    Article  PubMed  Google Scholar 

  116. Hassell, M. E. et al. Silent cerebral infarcts associated with cardiac disease and procedures. Nat. Rev. Cardiol. 10, 696–706 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Russo, C. et al. Subclinical left ventricular dysfunction and silent cerebrovascular disease: the Cardiovascular Abnormalities and Brain Lesions (CABL) study. Circulation 128, 1105–1111 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yaffe, K. et al. Early adult to midlife cardiovascular risk factors and cognitive function. Circulation 129, 1560–1567 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Larson, E. B., Yaffe, K. & Langa, K. M. New insights into the dementia epidemic. N. Engl. J. Med. 369, 2275–2277 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kovacic, J. C., Moreno, P., Nabel, E. G., Hachinski, V. & Fuster, V. Cellular senescence, vascular disease, and aging: part 2 of a 2-part review: clinical vascular disease in the elderly. Circulation 123, 1900–1910 (2011).

    Article  PubMed  Google Scholar 

  121. Afilalo, J. et al. Frailty assessment in the cardiovascular care of older adults. J. Am. Coll. Cardiol. 63, 747–762 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fyhrquist, F., Saijonmaa, O. & Strandberg, T. The roles of senescence and telomere shortening in cardiovascular disease. Nat. Rev. Cardiol. 10, 274–283 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Mapstone, M. et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat. Med. 20, 415–418 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Céspedes, J. et al. Promotion of cardiovascular health in preschool children: 36-month cohort follow-up. Am. J. Med. 126, 1122–1126 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  126. WHO. Noncommunicable diseases and mental health. Global status report on noncommunicable diseases 2010 [online], (WHO, 2011).

  127. Cannon, B. Cardiovascular disease: biochemistry to behaviour. Nature 493, S2–S3 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Fuster, V., Narula, J., Vedantahan, R. & Kelly, B. B. (eds) Promoting Cardiovascular Health Worldwide: Perspectives on the 12 Recommendations from the Institute of Medicine [online], (2014).

    Google Scholar 

  129. Jenks, S. Gene therapy death—“everyone has to share in the guilt”. J. Natl Cancer Inst. 92, 98–100 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Grines, C. The AGENT clinical trials programme. Eur. Heart J. Suppl. 6, E18–E23 (2004).

    Article  CAS  Google Scholar 

  131. Jessup, M. et al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124, 304–313 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Greenberg, B. et al. Design of a phase 2b trial of intracoronary administration of AAV1/SERCA2a in patients with advanced heart failure: the CUPID 2 trial (Calcium Up-Regulation by Percutaneous Administration of Gene Therapy in Cardiac Disease Phase 2b). JACC Heart Fail. 2, 84–92 (2014).

    Article  PubMed  Google Scholar 

  133. Perin, E. C. et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 307, 1717–1726 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Traverse, J. H. et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA 306, 2110–2119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Traverse, J. H. et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA 308, 2380–2389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sheridan, C. Amgen announces oncolytic virus shrinks tumors. Nat. Biotech. 31, 471–472 (2013).

    Article  CAS  Google Scholar 

  137. Delewi, R. et al. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a meta-analysis of randomised controlled clinical trials. Heart 99, 225–232 (2013).

    Article  PubMed  Google Scholar 

  138. Jeevanantham, V. et al. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters a systematic review and meta-analysis. Circulation 126, 551–568 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Bolli, R. et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378, 1847–1857 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Hare, J. M. et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 308, 2369–2379 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Makkar, R. R. et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379, 895–904 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Yaniz-Galende, E. et al. Stem cell factor gene transfer promotes cardiac repair after myocardial infarction via in situ recruitment and expansion of c-kit+ cells. Circ. Res. 111, 1434–1445 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Nagata, N. & Yamanaka, S. Perspectives for induced pluripotent stem cell technology: new insights into human physiology involved in somatic mosaicism. Circ. Res. 114, 505–510 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Yang, X., Pabon, L. & Murry, C. E. Engineering adolescence maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 114, 511–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Fuster.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuster, V. Top 10 cardiovascular therapies and interventions for the next decade. Nat Rev Cardiol 11, 671–683 (2014). https://doi.org/10.1038/nrcardio.2014.137

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing