Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Noncoding RNAs and myocardial fibrosis

Key Points

  • Cardiac fibrosis is an important event of the cardiac remodelling process, which includes activation of fibroblasts and exaggerated extracellular matrix production

  • Noncoding RNAs (ncRNAs) are important cellular regulators and divided into several classes, such as small microRNAs (22 nucleotides) and long noncoding RNAs (>200 nucleotides)

  • ncRNAs are detectable in blood and other body fluids and can be used for improved diagnosis of cardiac diseases including cardiac remodelling

  • ncRNAs provide powerful therapeutic targets that can be modulated in vivo by injection of specific oligonucleotides to repress cardiac diseases including the cardiac fibrosis process

  • Paracrine signalling and cell–cell interactions have a major role during cardiac remodelling, and ncRNAs can contribute to this process by active cellular secretion and uptake mechanisms within the cardiovascular environment

Abstract

Cardiac stress leads to remodelling of cardiac tissue, which often progresses to heart failure and death. Part of the remodelling process is the formation of fibrotic tissue, which is caused by exaggerated activity of cardiac fibroblasts leading to excessive extracellular matrix production within the myocardium. Noncoding RNAs (ncRNAs) are a diverse group of endogenous RNA-based molecules, which include short (22 nucleotides) microRNAs and long ncRNAs (of >200 nucleotides). These ncRNAs can regulate important functions in many cardiovascular cells types. This Review focuses on the role of ncRNAs in cardiac fibrosis; specifically, ncRNAs as therapeutic targets, factors for direct fibroblast transdifferentation, their use as diagnostic and prognostic markers, and their potential to function as paracrine modulators of cardiac fibrosis and remodelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ncRNAs in fibroblast biology.
Figure 2: ncRNAs in transdifferentiation of fibroblasts towards cardiomyocytes.
Figure 3: Cardiac fibroblasts involved in intercellular communication.

Similar content being viewed by others

References

  1. Jessup, M. & Brozena, S. Heart failure. N. Engl. J. Med. 348, 2007–2018 (2003).

    Article  PubMed  Google Scholar 

  2. Hill, J. A. & Olson, E. N. Cardiac plasticity. N. Engl. J. Med. 358, 1370–1380 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Maron, B. J., & Maron, M. S. Hypertrophic cardiomyopathy. Lancet 381, 242–255 (2013).

    Article  PubMed  Google Scholar 

  4. Heusch, G. et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383, 1933–1943 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13, 952–961 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Gittenberger-de Groot, A. C. et al. The arterial and cardiac epicardium in development, disease and repair. Differentiation 84, 41–53 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Moore-Morris, T. et al. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J. Clin. Invest. 124, 2921–2934 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumarswamy, R. et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ. Res. 114, 1569–1575 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Kumarswamy, R. & Thum, T. Non-coding RNAs in cardiac remodeling and heart failure. Circ. Res. 113, 676–689 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Dangwal, S. & Thum, T. microRNA therapeutics in cardiovascular disease models. Annu. Rev. Pharmacol. Toxicol. 54, 185–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Rinn, J. L., Chang, H. Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Batista, P. J., Chang, H. Y. Long noncoding RNAs: cellular address codes in development and disease. Cell 152, 1298–1307 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Galindo, M. I., Pueyo, J. I., Fouix, S., Bishop, S. A. & Couso, J. P. Peptides encoded by short ORFs control development and define a new eukaryotic gene family. PLoS Biol. 5, e106 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ørom, U. A. & Shiekhattar, R. Long coding RNAs usher in a new era in the biology of enhancers. Cell 154, 1190–1193 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Viereck, J., Bang, C., Foinquinos, A. & Thum, T. Regulatory RNAs and paracrine networks in the heart. Cardiovasc. Res. 102, 290–301 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Kumarswamy, R. et al. Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21. Arterioscler. Thromb. Vasc. Biol. 32, 361–369 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Volkmann, I. et al. MicroRNA-mediated epigenetic silencing of sirtuin1 contributes to impaired angiogenic responses. Circ. Res. 113, 997–1003 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Thum, T., Haverich, A., Borlak, J. Cellular dedifferentiation of endothelium is linked to activation and silencing of certain nuclear transcription factors: implications for endothelial dysfunction and vascular biology. FASEB J. 14, 740–751 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Ghosh, A. K., Nagpal, V., Covington, J. W., Michaels, M. A. & Vaughan, D. E. Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT. Cell. Signal. 24, 1031–1036 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. da Costa Martins, P. A. et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 118, 1567–1576 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Roy, S. et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res. 82, 21–29 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liang, H. et al. A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis. Int. J. Biochem. Cell Biol. 44, 2152–2160 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Brønnum, H. et al. miR-21 promotes fibrogenic epithelial-to-mesenchymal transition of epicardial mesothelial cells involving programmed cell death 4 and sprouty-1. PLoS ONE 8, e56280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Villar, A. V., Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. Int. J. Cardiol. 167, 2875–2881 (2013).

    Article  PubMed  Google Scholar 

  28. Patrick, D. M. et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J. Clin. Invest. 120, 3912–3916 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thum, T. et al. Comparison of different miR-21 inhibitor chemistries in a cardiac disease model. J. Clin. Invest. 121, 461–462 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, G. et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med. 207, 1589–1597 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chau, B. N. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med. 4, 121ra18 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Queirós, A. M. et al. Sex- and estrogen-dependent regulation of a miRNA network in the healthy and hypertrophied heart. Int. J. Cardiol. 169, 331–338 (2013).

    Article  PubMed  Google Scholar 

  33. Bang, C. et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Invest. 124, 2136–2146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Rooij, E. et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA 105, 13027–13032 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Boon, R. A. et al. MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circ. Res. 109, 1115–1119 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Melo, S. F. et al. Expression of microRNA-29 and collagen in cardiac muscle after swimming training in myocardial-infarcted rats. Cell. Physiol. Biochem. 33, 657–669 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Zhu, J. N. et al. Smad3 inactivation and MiR-29b upregulation mediate the effect of carvedilol on attenuating the acute myocardium infarction-induced myocardial fibrosis in rat. PLoS ONE 8, e75557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abonnenc, M. et al. Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c. Circ. Res. 113, 1138–1147 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Kumarswamy, R. et al. SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur. Heart J. 33, 1067–1075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Karakikes, I et al. Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J. Am. Heart Assoc. 2, e000078 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Carè, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Matkovich, S. J. et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ. Res. 106, 166–175 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, S. et al. Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J. Cell. Mol. Med. 18, 415–421 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Castoldi, G. et al. MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J. Cell. Physiol. 227, 850–856 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Duisters, R. F. et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res. 104, 170–178 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Daniels, A., van Bilsen, M., Goldschmeding, R., van der Vusse, G. J., & van Nieuwenhoven, F. A. Connective tissue growth factor and cardiac fibrosis. Acta Physiol. (Oxf.) 195, 321–338 (2009).

    Article  CAS  Google Scholar 

  47. Pan, Z. et al. MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway. Circulation 126, 840–850 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Heymans, S. et al. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 128, 1420–1432 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Katare, R. et al. Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ. Res. 109, 894–906 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Akat, K. M. et al. Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proc. Natl Acad. Sci. USA 111, 11151–11156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marfella, R. et al. Circulating microRNA changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non-responders. Eur. J. Heart Fail. 15, 1277–1288 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Morley-Smith, A. et al. 178 circulating microRNAs for predicting and monitoring response to mechanical circulatory support from a left ventricular assist device. Heart 100 (Suppl. 3), A100–A101 (2014).

    Google Scholar 

  53. Yang, K. C. et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation 129, 1009–1021 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nattel, S., Harada, M. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J. Am. Coll. Cardiol. 63, 2335–2345 (2014).

    Article  PubMed  Google Scholar 

  55. Lip, G. Y., Tse, H. F. & Lane, D. A. Atrial fibrillation. Lancet 379, 648–661 (2012).

    Article  PubMed  Google Scholar 

  56. Nishi, H. et al. Impact of microRNA expression in human atrial tissue in patients with atrial fibrillation undergoing cardiac surgery. PLoS ONE 8, e73397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cardin, S. et al. Role for microRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure. Circ. Arrhythm. Electrophysiol. 5, 1027–1035 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Adam, O. et al. Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res. Cardiol. 107, 278 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Shan, H. et al. Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc. Res. 83, 465–472 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Leite-Moreira, A. F. et al. ESC working group on myocardial function position paper: how to study the right ventricle in experimental models. Eur. J. Heart Fail. 16, 509–518 (2014).

    Article  PubMed  Google Scholar 

  61. Santangeli, P. et al. Fragmented and delayed electrograms within fibrofatty scar predict arrhythmic events in arrhythmogenic right ventricular cardiomyopathy: results from a prospective risk stratification study. Heart Rhythm 9, 1200–1206 (2012).

    Article  PubMed  Google Scholar 

  62. Vacchi-Suzzi, C. et al. Heart structure-specific transcriptomic atlas reveals conserved microRNA-mRNA interactions. PLoS ONE 8, e52442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Drake, J. I. et al. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am. J. Respir. Cell. Mol. Biol. 45, 1239–1247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reddy, S. et al. Dynamic microRNA expression during the transition from right ventricular hypertrophy to failure. Physiol. Genomics 44, 562–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Boon, R. A. et al. MicroRNA-34a regulates cardiac ageing and function. Nature 495, 107–110 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Gupta, S. K., Piccoli, M. T., Thum, T. Non-coding RNAs in cardiovascular ageing. Ageing Res. Rev. http://dx.doi.org/10.1016/j.arr.2014.01.002.

  67. Jazbutyte, V. et al. MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age (Dordr.) 35, 747–762 (2013).

    Article  CAS  Google Scholar 

  68. Huang, Z. P. et al. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ. Res. 112, 1234–1243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. van Almen, G. C. et al. MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. Aging Cell 10, 769–779 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Vassalli, G, Milano, G. & Moccetti, T. Role of mitogen-activated protein kinases in myocardial ischemia-reperfusion injury during heart transplantation. J. Transplant. 2012, 928954 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lorenzen, J. M., Batkai, S. & Thum, T. Regulation of cardiac and renal ischemia-reperfusion injury by microRNAs. Free Radic. Biol. Med. 64, 78–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Zhou, L. et al. MicroRNA and mRNA signatures in ischemia reperfusion injury in heart transplantation. PLoS ONE 8, e79805 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Holmberg, F. E. et al. Conditioning techniques and ischemic reperfusion injury in relation to on-pump cardiac surgery. Scand. Cardiovasc. J. 48, 241–248 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, E. et al. Circulating miRNAs reflect early myocardial injury and recovery after heart transplantation. J. Cardiothorac Surg. 8, 165 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sagar, S., Liu, P. P. & Cooper, L. T. Jr. Myocarditis. Lancet 379, 738–747 (2012).

    Article  PubMed  Google Scholar 

  76. Corsten, M. F. et al. MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circ. Res. 111, 415–425 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Cooper, L., Johnson, C., Burslem, F. & Martin, P. Wound healing and inflammation genes revealed by array analysis of macrophageless PU.1 null mice. Genome Biol. 6, R5 (2005).

    Article  PubMed  Google Scholar 

  78. Ewer, M. S. & Ewer, S. M. Cardiotoxicity of anticancer treatments: what the cardiologist needs to know. Nat. Rev. Cardiol. 7, 564–575 (2010).

    Article  PubMed  Google Scholar 

  79. Horie, T. et al. Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway. Cardiovasc. Res. 87, 656–664 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fu, J. et al. Let-7 g is involved in doxorubicin induced myocardial injury. Environ. Toxicol. Pharmacol. 33, 312–317 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Song, K. et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485, 599–604 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Qian, L. et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485, 593–598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nam, Y. J. et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc. Natl Acad. Sci. USA 110, 5588–5593 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wada, R. et al. Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc. Natl Acad. Sci. USA 110, 12667–12672 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chen, J. X. et al. Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5. Circ. Res. 111, 50–55 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jayawardena, T. M. et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ. Res. 110, 1465–1473 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xue, Y. et al. Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 152, 82–96 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gupta, S. K., Bang, C. & Thum, T. Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circ. Cardiovasc. Genet. 3, 484–488 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Jaguszewski, M. et al. A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction. Eur. Heart J. 35, 999–1006 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Lorenzen, J. M., Martino, F. & Thum, T. Detection and transport mechanisms of circulating microRNAs in neurological, cardiac and kidney diseases. Curr. Med. Chem. 20, 3623–3628 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Widera, C. et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J. Mol. Cell. Cardiol. 51, 872–875 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Roncarati, R. et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 63, 920–927 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Dawson, K. et al. MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation 127, 1466–1475 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Hergenreider, E. et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat. Cell Biol. 14, 249–256 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Sahoo, S. & Losordo, D. W. Exosomes and cardiac repair after myocardial infarction. Circ. Res. 114, 333–344 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Ounzain, S. et al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehu180.

  97. Wang, K. et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ. Res. 114, 1377–1388 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Michalik, K. M. et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ. Res. 114, 1389–1397 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Thum, T. MicroRNA therapeutics in cardiovascular medicine. EMBO Mol. Med. 4, 3–14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hinkel, R. et al. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation 128, 1066–1075 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Quattrocelli, M. et al. Long-term miR-669a therapy alleviates chronic dilated cardiomyopathy in dystrophic mice. J. Am. Heart Assoc. 2, e000284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pihlmann, M. et al. Adeno-associated virus-delivered polycistronic microRNA-clusters for knockdown of vascular endothelial growth factor in vivo. J. Gene Med. 14, 328–338 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Wei, C. et al. NF-κB mediated miR-26a regulation in cardiac fibrosis. J. Cell. Physiol. 228, 1433–1442 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Bernardo, B. C. et al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc. Natl Acad. Sci. USA 109, 17615–17620 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Beaumont, J. et al. microRNA-122 down-regulation may play a role in severe myocardial fibrosis in human aortic stenosis through TGF-β1 up-regulation. Clin. Sci. (Lond.) 126, 497–506 (2014).

    Article  CAS  Google Scholar 

  106. da Costa Martins, P. A. MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat. Cell Biol. 12, 1220–1227 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Aurora, A. B. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca²+ overload and cell death. J. Clin. Invest. 122, 1222–1232 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.T. acknowledges support from the European Commission-funded FIBROTARGET project, the Integrated Research and Treatment Centre Transplantation (grant number 01EO1302), and Fondation Leducq (Project MIRVAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Thum.

Ethics declarations

Competing interests

T.T. declares that he holds patents relating to the diagnostic and therapeutic use of ncRNAs in cardiovascular diseases.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thum, T. Noncoding RNAs and myocardial fibrosis. Nat Rev Cardiol 11, 655–663 (2014). https://doi.org/10.1038/nrcardio.2014.125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.125

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research