Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Personalized cardiovascular medicine: concepts and methodological considerations

Abstract

The primary goals of personalized medicine are to optimize diagnostic and treatment strategies by tailoring them to the specific characteristics of an individual patient. In this Review, we summarize basic concepts and methods of personalizing cardiovascular medicine. In-depth characterization of study participants and patients in general practice using standardized methods is a pivotal component of study design in personalized medicine. Standardization and quality assurance of clinical data are similarly important, but in daily practice imprecise definitions of clinical variables can reduce power and introduce bias, which limits the validity of the data obtained as well as their potential clinical applicability. Changes in statistical methods with personalized medicine include a shift from dichotomous outcomes towards continuously measured variables, predictive modelling, and individualized medical decisions, subgroup analyses, and data-mining strategies. A variety of approaches to personalized medicine exist in cardiovascular research and clinical practice that might have the potential to individualize diagnostic and therapeutic procedures. For some of the emerging methods, such as data mining, the most-efficient way to use these tools is not yet fully understood. In addition, the predictive models—although promising—are far from mature, and are likely to be greatly improved by using available large-scale data sets.

Key Points

  • The primary goals of personalized medicine are to optimize diagnostic and treatment strategies by tailoring them to the specific characteristics of an individual patient

  • With some exceptions in antiplatelet and anticoagulation therapy, knowledge of genetic markers currently has little practical application in personalizing cardiovascular medicine

  • Large, comprehensive, and standardized studies will uncover as yet unknown subgroups from apparently clinically homogeneous populations, but clinical applicability critically depends on standardization of diagnostic procedures in clinical practice

  • To enter clinical practice, novel risk markers generated from '-omics' or imaging technologies have to provide additional predictive value beyond established markers

  • Statistical methods are available to identify subgroups of patients characterized by specific combinations of predictors, but these methods are not commonly applied in cardiovascular research

  • The most-efficient way to use some emerging methods, such as data mining, is not yet fully understood, and the predicative models—although promising—are far from mature

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

  3. Graham, I. et al. European guidelines on cardiovascular disease prevention in clinical practice: full text. Fourth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Eur. J. Cardiovasc. Prev. Rehabil. 14 (Suppl. 2), S1–S113 (2007).

    PubMed  Google Scholar 

  4. Stergiou, G. S. & Salgami, E. V. New European, American and international guidelines for hypertension management: agreement and disagreement. Expert Rev. Cardiovasc. Ther. 2, 359–368 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Mancia, G. et al. 2007 guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart J. 28, 1462–1536 (2007).

    PubMed  Google Scholar 

  6. Bhatia, R. S. et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N. Engl. J. Med. 355, 260–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Owan, T. E. et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N. Engl. J. Med. 355, 251–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Borden, E. C. & Raghavan, D. Personalizing medicine for cancer: the next decade. Nat. Rev. Drug Discov. 9, 343–344 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Collins, F. Has the revolution arrived? Nature 464, 674–675 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O'Donnell, C. J. & Nabel, E. G. Cardiovascular genomics, personalized medicine, and the National Heart, Lung, and Blood Institute: part I: the beginning of an era. Circ. Cardiovasc. Genet. 1, 51–57 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vasan, R. S. et al. Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. JAMA 302, 168–178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reilly, M. P. et al. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet 377, 383–392 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Strawbridge, R. J. et al. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes 60, 2624–2634 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Villard, E. et al. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur. Heart J. 32, 1065–1076 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Manolio, T. A. Genomewide association studies and assessment of the risk of disease. N. Engl. J. Med. 363, 166–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Thanassoulis, G. & Vasan, R. S. Genetic cardiovascular risk prediction: will we get there? Circulation 122, 2323–2334 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ashley, E. A. et al. Clinical assessment incorporating a personal genome. Lancet 375, 1525–1535 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daly, A. K. Pharmacogenomics of anticoagulants: steps toward personal dosage. Genome Med. 1, 10 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cooper, G. M. et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 112, 1022–1027 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takeuchi, F. et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 5, e1000433 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Teichert, M. et al. A genome-wide association study of acenocoumarol maintenance dosage. Hum. Mol. Genet. 18, 3758–3768 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Roberts, J. D. et al. Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial. Lancet 379, 1705–1711 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Völzke, H. et al. Population imaging as valuable tool for personalized medicine. Clin. Pharmacol. Ther. 92, 422–424 (2012).

    Article  PubMed  Google Scholar 

  24. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Heid, I. M. et al. Meta-analysis identifies 13 new loci associated with waist–hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 42, 949–960 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Meschia, J. F. et al. Genomic risk profiling of ischemic stroke: results of an international genome-wide association meta-analysis. PLoS ONE 6, e23161 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Horne, B. D. et al. Genome-wide significance and replication of the chromosome 12p11.22 locus near the PTHLH gene for peripartum cardiomyopathy. Circ. Cardiovasc. Genet. 4, 359–366 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Link, E. et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N. Engl. J. Med. 359, 789–799 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Ho, R. H. et al. Effect of drug transporter genotypes on pravastatin disposition in European- and African–American participants. Pharmacogenet. Genomics 17, 647–656 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barber, M. J. et al. Genome-wide association of lipid-lowering response to statins in combined study populations. PLoS ONE 5, e9763 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gurwitz, D. & Pirmohamed, M. Pharmacogenomics: the importance of accurate phenotypes. Pharmacogenomics 11, 469–470 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Hutcheon, J. A., Chiolero, A. & Hanley, J. A. Random measurement error and regression dilution bias. BMJ 340, c2289 (2010).

    Article  PubMed  Google Scholar 

  35. Jensen, M. D. Role of body fat distribution and the metabolic complications of obesity. J. Clin. Endocrinol. Metab. 93 (Suppl. 1), S57–S63 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zimmermann, M. B. et al. Toward a consensus on reference values for thyroid volume in iodine-replete schoolchildren: results of a workshop on inter-observer and inter-equipment variation in sonographic measurement of thyroid volume. Eur. J. Endocrinol. 144, 213–220 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Völzke, H. et al. Are serum thyrotropin levels within the reference range associated with endothelial function? Eur. Heart J. 30, 217–224 (2009).

    Article  PubMed  CAS  Google Scholar 

  38. Catley, C., Stratti, H. & McGregor, C. Multi-dimensional temporal abstraction and data mining of medical time series data: trends and challenges. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008, 4322–4325 (2008).

    Google Scholar 

  39. Loukides, G., Gkoulalas-Divanis, A. & Malin, B. Anonymization of electronic medical records for validating genome-wide association studies. Proc. Natl Acad. Sci. USA 107, 7898–7903 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Epstein, R. S. et al. Warfarin genotyping reduces hospitalization rates: results from the MM-WES (Medco-Mayo Warfarin Effectiveness Study). J. Am. Coll. Cardiol. 55, 2804–2812 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Gläser, S. et al. Influence of age, sex, body size, smoking, and β blockade on key gas exchange exercise parameters in an adult population. Eur. J. Cardiovasc. Prev. Rehabil. 17, 469–476 (2010).

    Article  PubMed  Google Scholar 

  42. Ittermann, T. et al. Reference intervals for eight measurands of the blood count in a large population based study. Clin. Lab. 56, 9–19 (2010).

    CAS  PubMed  Google Scholar 

  43. Koch, B. et al. Reference values for cardiopulmonary exercise testing in healthy volunteers: the SHIP study. Eur. Respir. J. 33, 389–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Shahabi, P., Siest, G., Herbeth, B., Ndiaye, N. C. & Visvikis-Siest, S. Clinical necessity of partitioning of human plasma haptoglobin reference intervals by recently-discovered rs2000999. Clin. Chim. Acta 413, 1618–1624 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Steyerberg, E. W. et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 21, 128–138 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pearl, J. An introduction to causal inference. Int. J. Biostat. 6, Article 7 (2010).

    Article  PubMed Central  Google Scholar 

  47. Anderson, K. M., Odell, P. M., Wilson, P. W. & Kannel, W. B. Cardiovascular disease risk profiles. Am. Heart J. 121, 293–298 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Conroy, R. M. et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur. Heart J. 24, 987–1003 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Pencina, M. J., D'Agostino, R. B. Sr, Larson, M. G., Massaro, J. M. & Vasan, R. S. Predicting the 30-year risk of cardiovascular disease: the Framingham Heart Study. Circulation 119, 3078–3084 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Parikh, N. I. et al. A risk score for predicting near-term incidence of hypertension: the Framingham Heart Study. Ann. Intern. Med. 148, 102–110 (2008).

    Article  PubMed  Google Scholar 

  51. Schnabel, R. B. et al. Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. Lancet 373, 739–745 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Steyerberg, E. W. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating (Springer, 2009).

    Book  Google Scholar 

  53. Hlatky, M. A. et al. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation 119, 2408–2416 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. McGeechan, K., Macaskill, P., Irwig, L., Liew, G. & Wong, T. Y. Assessing new biomarkers and predictive models for use in clinical practice: a clinician's guide. Arch. Intern. Med. 168, 2304–2310 (2008).

    Article  PubMed  Google Scholar 

  55. Pencina, M. J., D'Agostino, R. B. Sr, D'Agostino, R. B. Jr & Vasan, R. S. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat. Med. 27, 157–172 (2008).

    Article  PubMed  Google Scholar 

  56. Pepe, M. S. et al. Integrating the predictiveness of a marker with its performance as a classifier. Am. J. Epidemiol. 167, 362–368 (2008).

    Article  PubMed  Google Scholar 

  57. Mihaescu, R. et al. Improvement of risk prediction by genomic profiling: reclassification measures versus the area under the receiver operating characteristic curve. Am. J. Epidemiol. 172, 353–361 (2010).

    Article  PubMed  Google Scholar 

  58. Goldstein, D. B. Common genetic variation and human traits. N. Engl. J. Med. 360, 1696–1698 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Schnabel, R. B., Baccarelli, A., Lin, H., Ellinor, P. T. & Benjamin, E. J. Next steps in cardiovascular disease genomic research—sequencing, epigenetics, and transcriptomics. Clin. Chem. 58, 113–126 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Tan, P.-N., Steinbach, M. & Kumar, V. Introduction to Data Mining (Pearson Education, 2006).

    Google Scholar 

  61. Longstreth, W. T. Jr et al. Cluster analysis and patterns of findings on cranial magnetic resonance imaging of the elderly: the Cardiovascular Health Study. Arch. Neurol. 58, 635–640 (2001).

    Article  PubMed  Google Scholar 

  62. Fukuoka, Y., Lindgren, T. G., Rankin, S. H., Cooper, B. A. & Carroll, D. L. Cluster analysis: a useful technique to identify elderly cardiac patients at risk for poor quality of life. Qual. Life Res. 16, 1655–1663 (2007).

    Article  PubMed  Google Scholar 

  63. Peters, R. M., Shanies, S. A. & Peters, J. C. Fuzzy cluster analysis of positive stress tests, a new method of combining exercise test variables to predict extent of coronary artery disease. Am. J. Cardiol. 76, 648–651 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Magidson, J. & Vermunt, J. K. Latent class models for clustering: a comparison with K-means. Can. J. Marketing Res. 20, 37–44 (2002).

    Google Scholar 

  65. Skrondal, A. & Rabe-Hesketh, S. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models (Monographs on Statistics and Applied Probability) (Chapman & Hall, 2004).

    Book  Google Scholar 

  66. Muthén, B. Beyond SEM: general latent variable modeling. Behaviometrika 29, 81–117 (2002).

    Article  Google Scholar 

  67. Cheng, S. et al. Correlates of echocardiographic indices of cardiac remodeling over the adult life course: longitudinal observations from the Framingham Heart Study. Circulation 122, 570–578 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lieb, W. et al. Longitudinal tracking of left ventricular mass over the adult life course: clinical correlates of short- and long-term change in the Framingham Offspring Study. Circulation 119, 3085–3092 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Snijders, T. A. B. & Bosker, E. J. Multilevel Analysis: An Introduction To Basic and Advanced Multilevel Modeling (Sage Publications, 1999).

    Google Scholar 

  70. Kerner, B. & Muthen, B. O. Growth mixture modelling in families of the Framingham Heart Study. BMC Proc. 3 (Suppl. 7), S114 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Muthen, B. et al. General growth mixture modeling for randomized preventive interventions. Biostatistics 3, 459–475 (2002).

    Article  PubMed  Google Scholar 

  72. Muthen, B. & Brown, H. C. Estimating drug effects in the presence of placebo response: causal inference using growth mixture modeling. Stat. Med. 28, 3363–3385 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shiroma, E. J. & Lee, I. M. Physical activity and cardiovascular health: lessons learned from epidemiological studies across age, gender, and race/ethnicity. Circulation 122, 743–752 (2010).

    Article  PubMed  Google Scholar 

  74. Luo, W. et al. Interaction of current alcohol consumption and abdominal obesity on hypertension risk. Physiol. Behav. http://dx.doi.org/10.1016/j.physbeh.2012.10.004.

  75. Cao, J. J. et al. Association of carotid artery intima–media thickness, plaques, and C-reactive protein with future cardiovascular disease and all-cause mortality: the Cardiovascular Health Study. Circulation 116, 32–38 (2007).

    Article  PubMed  Google Scholar 

  76. Ndiaye, N. C., Azimi Nehzad, M., El Shamieh, S., Stathopoulou, M. G. & Visvikis-Siest, S. Cardiovascular diseases and genome-wide association studies. Clin. Chim. Acta 412, 1697–1701 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Greenland, S. Interactions in epidemiology: relevance, identification, and estimation. Epidemiology 20, 14–17 (2009).

    Article  PubMed  Google Scholar 

  78. VanderWeele, T. J. Sufficient cause interactions and statistical interactions. Epidemiology 20, 6–13 (2009).

    Article  PubMed  Google Scholar 

  79. Mitchell, T. M. Machine Learning (McGraw-Hill Higher Education, 1997).

    Google Scholar 

  80. Wang, Y. et al. A classification approach for risk prognosis of patients on mechanical ventricular assistance. Proc. Int. Conf. Mach. Learn. Appl. 12, 293–298 (2010).

    Google Scholar 

  81. Vepa, J. Classification of heart murmurs using cepstral features and support vector machines. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 2539–2542 (2009).

    Google Scholar 

  82. Rodin, A., Mosley, T. H. Jr, Clark, A. G., Sing, C. F. & Boerwinkle, E. Mining genetic epidemiology data with Bayesian networks application to APOE gene variation and plasma lipid levels. J. Comput. Biol. 12, 1–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Vapnik, V. N. The Nature of Statistical Learning Theory (Springer, 1995).

    Book  Google Scholar 

  84. Witten, I. H., Frank, E. & Hall, M. A. Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn (Morgan Kaufmann, 2011).

    Google Scholar 

  85. Klein, T. E. et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 360, 753–764 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Xu, R. & Wunsch, D. 2nd Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645–678 (2005).

    Article  PubMed  Google Scholar 

  87. Ng, A. Y. & Jordan, M. I. On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. Advances in Neural Information Processing Systems 2, 841–848 (2002).

    Google Scholar 

  88. Qazi, M. et al. Automated heart wall motion abnormality detection from ultrasound images using Bayesian networks. Proc. IJCAI 519–525 (2007).

  89. Kim, J. et al. A novel data mining approach to the identification of effective drugs or combinations for targeted endpoints—application to chronic heart failure as a new form of evidence-based medicine. Cardiovasc. Drugs Ther. 18, 483–489 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Strandberg, T. E. Lipid-lowering drugs and heart failure: where do we go after the statin trials? Curr. Opin. Cardiol. 25, 385–393 (2010).

    Article  PubMed  Google Scholar 

  91. Kim, J. et al. Impact of blockade of histamine H2 receptors on chronic heart failure revealed by retrospective and prospective randomized studies. J. Am. Coll. Cardiol. 48, 1378–1384 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Liao, Y. et al. Control of plasma glucose with α-glucosidase inhibitor attenuates oxidative stress and slows the progression of heart failure in mice. Cardiovasc. Res. 70, 107–116 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is part of the research project Greifswald Approach to Individualized Medicine (GANI_MED). The GANI_MED consortium is funded by the Federal Ministry of Education and Research (03IS2061A/C) and the Ministry of Cultural Affairs of the Federal State of Mecklenburg–West Pomerania, Germany. Matthias Schwab is supported by the Deutsche Forschungsgemeinschaft (Grant SCHW 858/1-1). Henry Völzke, Marcus Dörr, and Stephan B. Felix are also members of the German Center for Cardiovascular Research at the partner site in Greifswald, Germany.

Author information

Authors and Affiliations

Authors

Contributions

H. Völzke, C. O. Schmidt, S. E. Baumeister, T. Ittermann, G. Fung, H. E. Meyer zu Schwabedissen, and M. Dörr researched data for the article and wrote the manuscript. M. Schwab and W. Lieb also researched data for the article. All the authors contributed substantially to discussion of its content, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Henry Völzke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Völzke, H., Schmidt, C., Baumeister, S. et al. Personalized cardiovascular medicine: concepts and methodological considerations. Nat Rev Cardiol 10, 308–316 (2013). https://doi.org/10.1038/nrcardio.2013.35

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.35

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research