Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Assessment and management of blood-pressure variability

A Correction to this article was published on 01 April 2014

This article has been updated

Abstract

Blood pressure (BP) is characterized by marked short-term fluctuations occurring within a 24 h period (beat-to-beat, minute-to-minute, hour-to-hour, and day-to-night changes) and also by long-term fluctuations occurring over more-prolonged periods of time (days, weeks, months, seasons, and even years). Rather than representing 'background noise' or a randomly occurring phenomenon, these variations have been shown to be the result of complex interactions between extrinsic environmental and behavioural factors and intrinsic cardiovascular regulatory mechanisms. Although the adverse cardiovascular consequences of hypertension largely depend on absolute BP values, evidence from observational studies and post-hoc analyses of data from clinical trials have indicated that these outcomes might also depend on increased BP variability (BPV). Increased short-term and long-term BPV are associated with the development, progression, and severity of cardiac, vascular, and renal damage and with an increased risk of cardiovascular events and mortality. Of particular interest are the findings from post-hoc analyses of large intervention trials in hypertension, showing that within-patient visit-to-visit BPV is strongly prognostic for cardiovascular morbidity and mortality. This result has prompted discussion on whether antihypertensive treatment should be targeted not only towards reducing mean BP levels but also to stabilizing BPV with the aim of achieving consistent BP control over time, which might favour cardiovascular protection.

Key Points

  • Blood-pressure variability (BPV) is a complex phenomenon that includes short-term fluctuations occurring within a 24 h period as well as blood pressure changes over more-prolonged periods of time

  • The underlying mechanisms, clinical significance, and prognostic implications differ between types of BPV; thus, when interpreting BPV, the method and time interval of its measurement should be taken into account

  • Mounting evidence indicates that the adverse cardiovascular consequences of high blood pressure could also be the result of increased BPV, and not only of elevation of mean blood pressure values

  • Short-term and long-term BPV are independently associated with the development, progression, and severity of cardiac, vascular, and renal damage and with an increased risk of cardiovascular events and mortality

  • Post-hoc analyses of large intervention trials in patients with hypertension have shown that intraindividual and interindividual visit-to-visit BPVs are strong predictors of cardiovascular morbidity and mortality

  • Whether treatment with antihypertensive agents should be targeted towards stabilizing BPV in addition to controlling mean blood pressure values, to achieve maximum cardiovascular protection, is uncertain

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Various types of BPV, their determinants, and prognostic relevance for cardiovascular and renal outcomes.
Figure 2: Short-term BPV and subclinical organ damage (cross-sectional study).
Figure 3: Short-term BPV and subclinical organ damage (longitudinal study).
Figure 4: Hazard ratio (HR) for MI or stroke according to the percentage of clinic visits with BP <140/90 mmHg.
Figure 5: Measurement and prognostic relevance of SI.
Figure 6: Visit-to-visit BPV, carotid atherosclerosis, and cardiovascular events in the European Lacidipine Study on Atherosclerosis.121

Change history

  • 01 April 2014

    In the version of this article originally published, the author affiliations were incorrectly stated. The addresses should have been: Department of Cardiology, S. Luca Hospital, IRCCS, Istituto Auxologico Italiano, Piazza Brescia 20, Milan 20149, Italy (G. Parati, J. E. Ochoa, C. Lombardi, G. Bilo). University of Milano-Bicocca, Via Cador 48, Monza 20900, Italy (G. Parati, J. E. Ochoa). This error has been corrected in the HTML and PDF versions of the article.

References

  1. Mancia, G. Short- and long-term blood pressure variability: present and future. Hypertension 60, 512–517 (2012).

    CAS  PubMed  Article  Google Scholar 

  2. Rothwell, P. M. et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet 375, 895–905 (2010).

    PubMed  Article  Google Scholar 

  3. Mancia, G. et al. Arterial baroreflexes and blood pressure and heart rate variabilities in humans. Hypertension 8, 147–153 (1986).

    CAS  PubMed  Article  Google Scholar 

  4. Conway, J., Boon, N., Davies, C., Jones, J. V. & Sleight, P. Neural and humoral mechanisms involved in blood pressure variability. J. Hypertens. 2, 203–208 (1984).

    CAS  PubMed  Article  Google Scholar 

  5. Schillaci, G. et al. Relationship between short-term blood pressure variability and large-artery stiffness in human hypertension: findings from 2 large databases. Hypertension 60, 369–377 (2012).

    CAS  PubMed  Article  Google Scholar 

  6. Mancia, G. et al. in Handbook of Hypertension: Pathophysiology of Hypertension (eds Mancia, G. & Zanchetti, A.) 117–169 (Elsevier Science, Amsterdam, 1997).

    Google Scholar 

  7. Mancia, G. & Grassi, G. Mechanisms and clinical implications of blood pressure variability. J. Cardiovasc. Pharmacol. 35, S15–S19 (2000).

    CAS  PubMed  Article  Google Scholar 

  8. Parati, G., Saul, J. P., Di Rienzo, M. & Mancia, G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension 25, 1276–1286 (1995).

    CAS  PubMed  Article  Google Scholar 

  9. Parati, G., Faini, A. & Valentini, M. Blood pressure variability: its measurement and significance in hypertension. Curr. Hypertens. Rep. 8, 199–204 (2006).

    PubMed  Article  Google Scholar 

  10. Kotsis, V. et al. Arterial stiffness and 24 h ambulatory blood pressure monitoring in young healthy volunteers: the early vascular ageing Aristotle University Thessaloniki Study (EVA-ARIS Study). Atherosclerosis 219, 194–199 (2011).

    CAS  PubMed  Article  Google Scholar 

  11. Fukui, M. et al. Home blood pressure variability on one occasion is a novel factor associated with arterial stiffness in patients with type 2 diabetes. Hypertens. Res. http://dx.doi.org/10.1038/hr.2012.177.

  12. Parati, G. et al. Sequential spectral analysis of 24-hour blood pressure and pulse interval in humans. Hypertension 16, 414–421 (1990).

    CAS  PubMed  Article  Google Scholar 

  13. Berge, K. E. & Berg, K. No effect of a BglI polymorphism at the renin (REN) locus on blood pressure level or variability. Clin. Genet. 46, 436–438 (1994).

    CAS  PubMed  Article  Google Scholar 

  14. Berge, K. E. & Berg, K. No effect on blood pressure level or variability of polymorphisms in DNA at the locus for atrial natriuretic factor (ANF). Clin. Genet. 46, 433–435 (1994).

    CAS  PubMed  Article  Google Scholar 

  15. Berge, K. E. & Berg, K. No effect of insertion/deletion polymorphism at the ACE locus on normal blood pressure level or variability. Clin. Genet. 45, 169–174 (1994).

    CAS  PubMed  Article  Google Scholar 

  16. Julve, R. et al. Polymorphism insertion/deletion of the ACE gene and ambulatory blood pressure circadian variability in essential hypertension. Blood Press. Monit. 6, 27–32 (2001).

    CAS  PubMed  Article  Google Scholar 

  17. Etzel, J. P. et al. Genetic variation at the human alpha2B-adrenergic receptor locus: role in blood pressure variation and yohimbine response. Hypertension 45, 1207–1213 (2005).

    CAS  PubMed  Article  Google Scholar 

  18. Jira, M. et al. Association of eNOS gene polymorphisms T-786C and G894T with blood pressure variability in man. Physiol. Res. 60, 193–197 (2011).

    CAS  PubMed  Article  Google Scholar 

  19. Friedman, O. & Logan, A. G. Nocturnal blood pressure profiles among normotensive, controlled hypertensive and refractory hypertensive subjects. Can. J. Cardiol. 25, e312–e316 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  20. Pickering, T. G. et al. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension 45, 142–161 (2005).

    CAS  PubMed  Article  Google Scholar 

  21. Narkiewicz, K. et al. Relationship between muscle sympathetic nerve activity and diurnal blood pressure profile. Hypertension 39, 168–172 (2002).

    PubMed  Article  Google Scholar 

  22. Fujii, T. et al. Circadian rhythm of natriuresis is disturbed in nondipper type of essential hypertension. Am. J. Kidney Dis. 33, 29–35 (1999).

    CAS  PubMed  Article  Google Scholar 

  23. Verdecchia, P. et al. Blunted nocturnal fall in blood pressure in hypertensive women with future cardiovascular morbid events. Circulation 88, 986–992 (1993).

    CAS  PubMed  Article  Google Scholar 

  24. Haynes, W. G. Role of leptin in obesity-related hypertension. Exp. Physiol. 90, 683–688 (2005).

    CAS  Article  PubMed  Google Scholar 

  25. Quinaglia, T. et al. Non-dipping pattern relates to endothelial dysfunction in patients with uncontrolled resistant hypertension. J. Hum. Hypertens. 25, 656–664 (2011).

    CAS  PubMed  Article  Google Scholar 

  26. Holt-Lunstad, J. & Steffen, P. R. Diurnal cortisol variation is associated with nocturnal blood pressure dipping. Psychosom. Med. 69, 339–343 (2007).

    PubMed  Article  Google Scholar 

  27. Panarelli, M. et al. 24-hour profiles of blood pressure and heart rate in Cushing's syndrome. Evidence for differential control of cardiovascular variables by glucocorticoids. Ann. Ital. Med. Int. 5, 18–25 (1990).

    CAS  PubMed  Google Scholar 

  28. Murakami, S. et al. Weekly variation of home and ambulatory blood pressure and relation between arterial stiffness and blood pressure measurements in community-dwelling hypertensives. Clin. Exp. Hypertens. 27, 231–239 (2005).

    PubMed  Article  Google Scholar 

  29. Muntner, P. et al. Reproducibility of visit-to-visit variability of blood pressure measured as part of routine clinical care. J. Hypertens. 29, 2332–2338 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Muntner, P. et al. The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from NHANES III, 1988 to 1994. Hypertension 57, 160–166 (2011).

    CAS  PubMed  Article  Google Scholar 

  31. Mancia, G. et al. Blood pressure control and improved cardiovascular outcomes in the International Verapamil SR-Trandolapril Study. Hypertension 50, 299–305 (2007).

    CAS  PubMed  Article  Google Scholar 

  32. Okada, H. et al. Visit-to-visit variability in systolic blood pressure is correlated with diabetic nephropathy and atherosclerosis in patients with type 2 diabetes. Atherosclerosis 220, 155–159 (2012).

    CAS  PubMed  Article  Google Scholar 

  33. Nagai, M., Hoshide, S., Ishikawa, J., Shimada, K. & Kario, K. Visit-to-visit blood pressure variations: new independent determinants for carotid artery measures in the elderly at high risk of cardiovascular disease. J. Am. Soc. Hypertens. 5, 184–192 (2011).

    PubMed  Article  Google Scholar 

  34. Parati, G. & Bilo, G. Calcium antagonist added to angiotensin receptor blocker: a recipe for reducing blood pressure variability? Evidence from day-by-day home blood pressure monitoring. Hypertension 59, 1091–1093 (2012).

    CAS  PubMed  Article  Google Scholar 

  35. Sega, R. et al. Seasonal variations in home and ambulatory blood pressure in the PAMELA population. Pressione Arteriose Monitorate E Loro Associazioni. J. Hypertens. 16, 1585–1592 (1998).

    CAS  PubMed  Article  Google Scholar 

  36. Modesti, P. A. et al. Weather-related changes in 24-hour blood pressure profile: effects of age and implications for hypertension management. Hypertension 47, 155–161 (2006).

    CAS  PubMed  Article  Google Scholar 

  37. Mancia, G. et al. Blood pressure and heart rate variabilities in normotensive and hypertensive human beings. Circ. Res. 53, 96–104 (1983).

    CAS  PubMed  Article  Google Scholar 

  38. Parati, G., Pomidossi, G., Albini, F., Malaspina, D. & Mancia, G. Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J. Hypertens. 5, 93–98 (1987).

    CAS  PubMed  Article  Google Scholar 

  39. Parati, G., Omboni, S., Rizzoni, D., Agabiti-Rosei, E. & Mancia, G. The smoothness index: a new, reproducible and clinically relevant measure of the homogeneity of the blood pressure reduction with treatment for hypertension. J. Hypertens. 16, 1685–1691 (1998).

    CAS  PubMed  Article  Google Scholar 

  40. Mancia, G., Di Rienzo, M. & Parati, G. Ambulatory blood pressure monitoring use in hypertension research and clinical practice. Hypertension 21, 510–524 (1993).

    CAS  PubMed  Article  Google Scholar 

  41. Bilo, G. et al. A new method for assessing 24-h blood pressure variability after excluding the contribution of nocturnal blood pressure fall. J. Hypertens. 25, 2058–2066 (2007).

    CAS  PubMed  Article  Google Scholar 

  42. Mancia, G. et al. Long-term prognostic value of blood pressure variability in the general population: results of the Pressioni Arteriose Monitorate e Loro Associazioni Study. Hypertension 49, 1265–1270 (2007).

    CAS  PubMed  Article  Google Scholar 

  43. Mena, L. et al. A reliable index for the prognostic significance of blood pressure variability. J. Hypertens. 23, 505–511 (2005).

    CAS  PubMed  Article  Google Scholar 

  44. Stolarz-Skrzypek, K. et al. Blood pressure variability in relation to outcome in the International Database of Ambulatory blood pressure in relation to Cardiovascular Outcome. Hypertens. Res. 33, 757–766 (2010).

    PubMed  Article  Google Scholar 

  45. Boggia, J. et al. Prognostic accuracy of day versus night ambulatory blood pressure: a cohort study. Lancet 370, 1219–1229 (2007).

    PubMed  Article  Google Scholar 

  46. Hansen, T. W. et al. Predictive role of the nighttime blood pressure. Hypertension 57, 3–10 (2011).

    CAS  PubMed  Article  Google Scholar 

  47. Lurbe, E. et al. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N. Engl. J. Med. 347, 797–805 (2002).

    CAS  PubMed  Article  Google Scholar 

  48. Verdecchia, P. et al. Day-night dip and early-morning surge in blood pressure in hypertension: prognostic implications. Hypertension 60, 34–42 (2012).

    CAS  PubMed  Article  Google Scholar 

  49. Parati, G. et al. European Society of Hypertension guidelines for blood pressure monitoring at home: a summary report of the Second International Consensus Conference on Home Blood Pressure Monitoring. J. Hypertens. 26, 1505–1526 (2008).

    CAS  PubMed  Article  Google Scholar 

  50. McManus, R. J. et al. Targets and self monitoring in hypertension: randomised controlled trial and cost effectiveness analysis. BMJ 331, 493 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Mancia, G., Facchetti, R., Parati, G. & Zanchetti, A. Visit-to-visit blood pressure variability in the European Lacidipine Study on Atherosclerosis: methodological aspects and effects of antihypertensive treatment. J. Hypertens. 30, 1241–1251 (2012).

    CAS  PubMed  Article  Google Scholar 

  52. Stergiou, G. S. & Nasothimiou, E. G. Home monitoring is the optimal method for assessing blood pressure variability. Hypertens. Res. 34, 1246–1248 (2011).

    PubMed  Article  Google Scholar 

  53. Cappuccio, F. P., Kerry, S. M., Forbes, L. & Donald, A. Blood pressure control by home monitoring: meta-analysis of randomised trials. BMJ 329, 145 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  54. Rogers, M. A. et al. Home monitoring service improves mean arterial pressure in patients with essential hypertension. A randomized, controlled trial. Ann. Intern. Med. 134, 1024–1032 (2001).

    CAS  PubMed  Article  Google Scholar 

  55. Mancia, G. et al. 2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens. 25, 1105–1187 (2007).

    CAS  PubMed  Article  Google Scholar 

  56. Whitworth, J. A. for the World Health Organization, International Society of Hypertension Writing Group. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J. Hypertens. 21, 1983–1992 (2003).

    Article  PubMed  Google Scholar 

  57. Imai, Y. et al. Japanese society of hypertension (JSH) guidelines for self-monitoring of blood pressure at home. Hypertens. Res. 26, 771–782 (2003).

    PubMed  Article  Google Scholar 

  58. Parati, G. et al. Home blood pressure telemonitoring improves hypertension control in general practice. The TeleBPCare study. J. Hypertens. 27, 198–203 (2009).

    CAS  PubMed  Article  Google Scholar 

  59. Mancia, G. et al. Relation between blood pressure variability and carotid artery damage in hypertension: baseline data from the European Lacidipine Study on Atherosclerosis (ELSA). J. Hypertens. 19, 1981–1989 (2001).

    CAS  PubMed  Article  Google Scholar 

  60. Mancia, G. & Parati, G. The role of blood pressure variability in end-organ damage. J. Hypertens. 21, S17–S23 (2003).

    CAS  Article  Google Scholar 

  61. Sega, R. et al. Blood pressure variability and organ damage in a general population: results from the PAMELA study (Pressioni Arteriose Monitorate E Loro Associazioni). Hypertension 39, 710–714 (2002).

    CAS  PubMed  Article  Google Scholar 

  62. Tatasciore, A. et al. Awake systolic blood pressure variability correlates with target-organ damage in hypertensive subjects. Hypertension 50, 325–332 (2007).

    CAS  PubMed  Article  Google Scholar 

  63. Manios, E. et al. Time rate of blood pressure variation is associated with impaired renal function in hypertensive patients. J. Hypertens. 27, 2244–2248 (2009).

    CAS  PubMed  Article  Google Scholar 

  64. Frattola, A., Parati, G., Cuspidi, C., Albini, F. & Mancia, G. Prognostic value of 24-hour blood pressure variability. J. Hypertens. 11, 1133–1137 (1993).

    CAS  PubMed  Article  Google Scholar 

  65. Sander, D., Kukla, C., Klingelhofer, J., Winbeck, K. & Conrad, B. Relationship between circadian blood pressure patterns and progression of early carotid atherosclerosis: a 3-year follow-up study. Circulation 102, 1536–1541 (2000).

    CAS  PubMed  Article  Google Scholar 

  66. Dawson, S. L., Manktelow, B. N., Robinson, T. G., Panerai, R. B. & Potter, J. F. Which parameters of beat-to-beat blood pressure and variability best predict early outcome after acute ischemic stroke? Stroke 31, 463–468 (2000).

    CAS  PubMed  Article  Google Scholar 

  67. Pringle, E. et al. Systolic blood pressure variability as a risk factor for stroke and cardiovascular mortality in the elderly hypertensive population. J. Hypertens. 21, 2251–2257 (2003).

    CAS  PubMed  Article  Google Scholar 

  68. Kario, K. et al. Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation 107, 1401–1406 (2003).

    PubMed  Article  Google Scholar 

  69. Kario, K. et al. Morning hypertension: the strongest independent risk factor for stroke in elderly hypertensive patients. Hypertens. Res. 29, 581–587 (2006).

    PubMed  Article  Google Scholar 

  70. Verdecchia, P., Angeli, F., Gattobigio, R., Rapicetta, C. & Reboldi, G. Impact of blood pressure variability on cardiac and cerebrovascular complications in hypertension. Am. J. Hypertens. 20, 154–161 (2007).

    PubMed  Article  Google Scholar 

  71. Hansen, T. W. et al. Prognostic value of reading-to-reading blood pressure variability over 24 hours in 8,938 subjects from 11 populations. Hypertension 55, 1049–1057 (2010).

    CAS  PubMed  Article  Google Scholar 

  72. Kikuya, M. et al. Prognostic significance of blood pressure and heart rate variabilities: the Ohasama study. Hypertension 36, 901–906 (2000).

    CAS  PubMed  Article  Google Scholar 

  73. Stolarz-Skrzypek, K. et al. Short-term blood pressure variability in relation to outcome in the International Database of Ambulatory blood pressure in relation to Cardiovascular Outcome (IDACO). Acta Cardiol. 66, 701–706 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  74. Staessen, J. A. et al. Predicting cardiovascular risk using conventional vs ambulatory blood pressure in older patients with systolic hypertension. JAMA 282, 539–546 (1999).

    CAS  PubMed  Article  Google Scholar 

  75. Sega, R. et al. Prognostic value of ambulatory and home blood pressures compared with office blood pressure in the general population: follow-up results from the Pressioni Arteriose Monitorate e Loro Associazioni (PAMELA) study. Circulation 111, 1777–1783 (2005).

    PubMed  Article  Google Scholar 

  76. Clement, D. L. et al. Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. N. Engl. J. Med. 348, 2407–2415 (2003).

    PubMed  Article  Google Scholar 

  77. Fagard, R. H., Van Den Broeke, C. & De Cort, P. Prognostic significance of blood pressure measured in the office, at home and during ambulatory monitoring in older patients in general practice. J. Hum. Hypertens. 19, 801–807 (2005).

    CAS  PubMed  Article  Google Scholar 

  78. Redon, J. et al. Prognostic value of ambulatory blood pressure monitoring in refractory hypertension: a prospective study. Hypertension 31, 712–718 (1998).

    CAS  PubMed  Article  Google Scholar 

  79. Kikuya, M. et al. Ambulatory blood pressure and 10-year risk of cardiovascular and noncardiovascular mortality: the Ohasama study. Hypertension 45, 240–245 (2005).

    CAS  PubMed  Article  Google Scholar 

  80. Fagard, R. H. et al. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension 51, 55–61 (2008).

    CAS  PubMed  Article  Google Scholar 

  81. Dolan, E. et al. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension 46, 156–161 (2005).

    CAS  PubMed  Article  Google Scholar 

  82. Hansen, T. W., Jeppesen, J., Rasmussen, S., Ibsen, H. & Torp-Pedersen, C. Ambulatory blood pressure and mortality: a population-based study. Hypertension 45, 499–504 (2005).

    CAS  PubMed  Article  Google Scholar 

  83. Kawai, T. et al. Differences between daytime and nighttime blood pressure variability regarding systemic atherosclerotic change and renal function. Hypertens. Res. http://dx.doi.org/10.1038/hr.2012.162.

  84. Metoki, H. et al. Prognostic significance for stroke of a morning pressor surge and a nocturnal blood pressure decline: the Ohasama study. Hypertension 47, 149–154 (2006).

    CAS  PubMed  Article  Google Scholar 

  85. Ohkubo, T. et al. Relation between nocturnal decline in blood pressure and mortality. The Ohasama Study. Am. J. Hypertens. 10, 1201–1207 (1997).

    CAS  PubMed  Article  Google Scholar 

  86. Willich, S. N., Goldberg, R. J., Maclure, M., Perriello, L. & Muller, J. E. Increased onset of sudden cardiac death in the first three hours after awakening. Am. J. Cardiol. 70, 65–68 (1992).

    CAS  Article  PubMed  Google Scholar 

  87. Rocco, M. B. et al. Circadian variation of transient myocardial ischemia in patients with coronary artery disease. Circulation 75, 395–400 (1987).

    CAS  PubMed  Article  Google Scholar 

  88. Muller, J. E. et al. Circadian variation in the frequency of onset of acute myocardial infarction. N. Engl. J. Med. 313, 1315–1322 (1985).

    CAS  PubMed  Article  Google Scholar 

  89. Elliott, W. J. Circadian variation in the timing of stroke onset: a meta-analysis. Stroke 29, 992–996 (1998).

    CAS  PubMed  Article  Google Scholar 

  90. Amici, A. et al. Exaggerated morning blood pressure surge and cardiovascular events. A 5-year longitudinal study in normotensive and well-controlled hypertensive elderly. Arch. Gerontol. Geriatr. 49, e105–e109 (2009).

    CAS  PubMed  Article  Google Scholar 

  91. Matsui, Y. et al. Maximum value of home blood pressure: a novel indicator of target organ damage in hypertension. Hypertension 57, 1087–1093 (2011).

    CAS  PubMed  Article  Google Scholar 

  92. Kikuya, M. et al. Day-by-day variability of blood pressure and heart rate at home as a novel predictor of prognosis: the Ohasama study. Hypertension 52, 1045–1050 (2008).

    CAS  PubMed  Article  Google Scholar 

  93. Johansson, J. K., Niiranen, T. J., Puukka, P. J. & Jula, A. M. Prognostic value of the variability in home-measured blood pressure and heart rate: the Finn-Home Study. Hypertension 59, 212–218 (2012).

    CAS  PubMed  Article  Google Scholar 

  94. Masugata, H. et al. Visit-to-visit variability in blood pressure over a 1-year period is a marker of left ventricular diastolic dysfunction in treated hypertensive patients. Hypertens. Res. 34, 846–850 (2011).

    PubMed  Article  Google Scholar 

  95. Kilpatrick, E. S., Rigby, A. S. & Atkin, S. L. The role of blood pressure variability in the development of nephropathy in type 1 diabetes. Diabetes Care 33, 2442–2247 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  96. Kawai, T. et al. The impact of visit-to-visit variability in blood pressure on renal function. Hypertens. Res. 35, 239–243 (2012).

    PubMed  Article  Google Scholar 

  97. Yokota, K. et al. Impact of visit-to-visit variability of blood pressure on deterioration of renal function in patients with non-diabetic chronic kidney disease. Hypertens. Res. http://dx.doi.org/10.1038/hr.2012.145.

  98. Brickman, A. M. et al. Long-term blood pressure fluctuation and cerebrovascular disease in an elderly cohort. Arch. Neurol. 67, 564–569 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  99. Diaz, K. M. et al. Relationship of visit-to-visit and ambulatory blood pressure variability to vascular function in African Americans. Hypertens. Res. 35, 55–61 (2012).

    CAS  PubMed  Article  Google Scholar 

  100. Nagai, M., Hoshide, S., Ishikawa, J., Shimada, K. & Kario, K. Visit-to-visit blood pressure variations: new independent determinants for cognitive function in the elderly at high risk of cardiovascular disease. J. Hypertens. 30, 1556–1563 (2012).

    CAS  PubMed  Article  Google Scholar 

  101. Hata, Y. et al. Office blood pressure variability as a predictor of brain infarction in elderly hypertensive patients. Hypertens. Res. 23, 553–560 (2000).

    CAS  PubMed  Article  Google Scholar 

  102. Rothwell, P. M. et al. Effects of beta blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol. 9, 469–480 (2010).

    CAS  PubMed  Article  Google Scholar 

  103. Eguchi, K., Hoshide, S., Schwartz, J. E., Shimada, K. & Kario, K. Visit-to-visit and ambulatory blood pressure variability as predictors of incident cardiovascular events in patients with hypertension. Am. J. Hypertens. 25, 962–968 (2012).

    PubMed  Article  Google Scholar 

  104. Hata, Y. et al. Office blood pressure variability as a predictor of acute myocardial infarction in elderly patients receiving antihypertensive therapy. J. Hum. Hypertens. 16, 141–146 (2002).

    CAS  PubMed  Article  Google Scholar 

  105. Schutte, R. et al. Within-subject blood pressure level—not variability—predicts fatal and nonfatal outcomes in a general population. Hypertension 60, 1138–1147 (2012).

    CAS  PubMed  Article  Google Scholar 

  106. Muntner, P. et al. Within-visit variability of blood pressure and all-cause and cardiovascular mortality among US adults. J. Clin. Hypertens. (Greenwich) 14, 165–171 (2012).

    Article  Google Scholar 

  107. Liu, J. G., Xu, L. P., Chu, Z. X., Miao, C. Y. & Su, D. F. Contribution of blood pressure variability to the effect of nitrendipine on end-organ damage in spontaneously hypertensive rats. J. Hypertens. 21, 1961–1967 (2003).

    CAS  PubMed  Article  Google Scholar 

  108. Xie, H. H., Miao, C. Y., Jiang, Y. Y. & Su, D. F. Synergism of atenolol and nitrendipine on hemodynamic amelioration and organ protection in hypertensive rats. J. Hypertens. 23, 193–201 (2005).

    CAS  PubMed  Article  Google Scholar 

  109. Xie, H. H. et al. Reduction of blood pressure variability by combination therapy in spontaneously hypertensive rats. J. Hypertens. 25, 2334–2344 (2007).

    CAS  PubMed  Article  Google Scholar 

  110. Ferrari, A. et al. Labetalol and 24-hour monitoring of arterial blood pressure in hypertensive patients. J. Cardiovasc. Pharmacol. 3 (Suppl. 1), S42–S52 (1981).

    PubMed  Article  Google Scholar 

  111. Mancia, G. et al. Evaluation of a slow-release clonidine preparation by direct continuous blood pressure recording in essential hypertensive patients. J. Cardiovasc. Pharmacol. 3, 1193–1202 (1981).

    CAS  PubMed  Article  Google Scholar 

  112. Mancia, G. et al. Twenty-four-hour blood pressure profile and blood pressure variability in untreated hypertension and during antihypertensive treatment by once-a-day nadolol. Am. Heart J. 108, 1078–1083 (1984).

    CAS  PubMed  Article  Google Scholar 

  113. Pomidossi, G., Parati, G., Motolese, M., Mancia, G. & Zanchetti, A. Hemodynamic effects of once a day administration of combined chlorthalidone and metoprolol slow-release in essential hypertension. Int. J. Clin. Pharmacol. Ther. Toxicol. 22, 665–671 (1984).

    CAS  PubMed  Google Scholar 

  114. Pomidossi, G. et al. Antihypertensive effect of a new formulation of slow release oxprenolol in essential hypertension. J. Cardiovasc. Pharmacol. 10, 593–598 (1987).

    CAS  PubMed  Article  Google Scholar 

  115. Parati, G. et al. 24-h ambulatory non-invasive blood pressure monitoring in the assessment of the antihypertensive action of celiprolol. J. Int. Med. Res. 16 (Suppl. 1), 52A–61A (1988).

    PubMed  Google Scholar 

  116. Mancia, G. et al. Evaluation of the antihypertensive effect of once-a-day trandolapril by 24-hour ambulatory blood pressure monitoring. The Italian Trandolapril Study Group. Am. J. Cardiol. 70, 60D–66D (1992).

    CAS  PubMed  Article  Google Scholar 

  117. Mancia, G., Omboni, S., Ravogli, A., Parati, G. & Zanchetti, A. Ambulatory blood pressure monitoring in the evaluation of antihypertensive treatment: additional information from a large data base. Blood Press. 4, 148–156 (1995).

    CAS  PubMed  Article  Google Scholar 

  118. Rizzoni, D. et al. The smoothness index, but not the trough-to-peak ratio predicts changes in carotid artery wall thickness during antihypertensive treatment. J. Hypertens. 19, 703–711 (2001).

    CAS  PubMed  Article  Google Scholar 

  119. Collins, R. et al. Blood pressure, stroke, and coronary heart disease. Part 2, Short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet 335, 827–838 (1990).

    CAS  PubMed  Article  Google Scholar 

  120. Turnbull, F. for the Blood Pressure Lowering Treatment Trialists' Collaboration. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet 362, 1527–1535 (2003).

    CAS  PubMed  Article  Google Scholar 

  121. Mancia, G., Facchetti, R., Parati, G. & Zanchetti, A. Visit-to-visit blood pressure variability, carotid atherosclerosis, and cardiovascular events in the European Lacidipine Study on Atherosclerosis. Circulation 126, 569–578 (2012).

    PubMed  Article  Google Scholar 

  122. Matsui, Y. et al. Combined effect of angiotensin II receptor blocker and either a calcium channel blocker or diuretic on day-by-day variability of home blood pressure: the Japan Combined Treatment With Olmesartan and a Calcium-Channel Blocker Versus Olmesartan and Diuretics Randomized Efficacy Study. Hypertension 59, 1132–1138 (2012).

    CAS  PubMed  Article  Google Scholar 

  123. Webb, A. J. & Rothwell, P. M. Effect of dose and combination of antihypertensives on interindividual blood pressure variability: a systematic review. Stroke 42, 2860–2865 (2011).

    CAS  PubMed  Article  Google Scholar 

  124. Webb, A. J., Fischer, U., Mehta, Z. & Rothwell, P. M. Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis. Lancet 375, 906–915 (2010).

    CAS  PubMed  Article  Google Scholar 

  125. Zanchetti, A. Wars, war games, and dead bodies on the battlefield: variations on the theme of blood pressure variability. Stroke 42, 2722–2724 (2011).

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors substantially contributed to the research, writing, and reviewing of the manuscript.

Corresponding author

Correspondence to Gianfranco Parati.

Ethics declarations

Competing interests

G. Parati has received honoraria from Pfizer. The other authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parati, G., Ochoa, J., Lombardi, C. et al. Assessment and management of blood-pressure variability. Nat Rev Cardiol 10, 143–155 (2013). https://doi.org/10.1038/nrcardio.2013.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.1

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing