Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optimal revascularization for complex coronary artery disease

Key Points

  • The choice of revascularization strategy for patients with complex coronary artery disease (CAD) impacts patients' prognosis and quality of life, but the optimal strategy remains controversial

  • Percutaneous coronary intervention (PCI) or CABG surgery can be offered to patients with multivessel CAD and SYNTAX score ≤22, and those with left main stem disease and SYNTAX score ≤32

  • CABG surgery should remain the standard therapy for patients with complex CAD, especially those with diabetes mellitus or left ventricular systolic dysfunction

  • Follow-up duration should be considered when comparing PCI with CABG surgery; some studies show a survival benefit over PCI at 5 years follow-up, which was not apparent at <3 years

  • Multiple risk-stratification tools are available to help decision making; the role of the heart team is vital

Abstract

Patients with major or symptomatic coronary artery disease (CAD) commonly undergo revascularization—either with CABG surgery, which has been the mainstay of revascularization for more than half a century, or with percutaneous coronary intervention (PCI), which has become the more-commonly used strategy in the past decade. PCI has been tested in more randomized clinical trials than any other procedure in contemporary practice. In general, PCI is the preferred option for treating patients with simple coronary artery lesions and CABG surgery remains the standard of care for patients with complex CAD. Technical advancements in PCI and CABG surgery make comparisons of historical data for these strategies difficult. In this Review, we evaluate the evidence-based use of PCI and CABG surgery in treating patients with multivessel and unprotected left main stem disease and for specific patient groups, including those with diabetes mellitus, chronic heart failure, or chronic kidney disease. Finally, we highlight the available tools to aid decision-making, including clinical guidelines, risk scoring systems, and the role of the 'heart team'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A potential revascularization pathway for patients with stable angina pectoris.
Figure 2: Meta-analysis of randomized clinical trials in which CABG surgery was compared with percutaneous coronary intervention using drug-eluting stents for unprotected left main stem coronary artery disease.
Figure 3: A pragmatic approach for the use of risk stratification models for patients with CAD.
Figure 4: Key factors in decision-making for revascularization strategy.

Similar content being viewed by others

References

  1. Ryan, T. J. et al. Guidelines for percutaneous transluminal coronary angioplasty. A report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Subcommittee on Percutaneous Transluminal Coronary Angioplasty). Circulation 78, 486–502 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Sianos, G. et al. The SYNTAX Score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention 1, 219–227 (2005).

    PubMed  Google Scholar 

  3. Mueller, R. L., Rosengart, T. K. & Isom, O. W. The history of surgery for ischemic heart disease. Ann. Thorac. Surg. 63, 869–878 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Yusuf, S. et al. Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration. Lancet 344, 563–570 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Jeremias, A., Kaul, S., Rosengart, T. K., Gruberg, L. & Brown, D. L. The impact of revascularization on mortality in patients with nonacute coronary artery disease. Am. J. Med. 122, 152–161 (2009).

    Article  PubMed  Google Scholar 

  6. Taggart, D. P., D'Amico, R. & Altman, D. G. Effect of arterial revascularisation on survival: a systematic review of studies comparing bilateral and single internal mammary arteries. Lancet 358, 870–875 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Tatoulis, J., Buxton, B. F. & Fuller, J. A. The right internal thoracic artery: the forgotten conduit—5,766 patients and 991 angiograms. Ann. Thorac. Surg. 92, 9–15 (2011).

    Article  PubMed  Google Scholar 

  8. Grau, J. B. et al. Propensity matched analysis of bilateral internal mammary artery versus single left internal mammary artery grafting at 17-year follow-up: validation of a contemporary surgical experience. Eur. J. Cardiothorac. Surg. 41, 770–775 (2012).

    Article  PubMed  Google Scholar 

  9. Loop, F. D. et al. Sternal wound complications after isolated coronary artery bypass grafting: early and late mortality, morbidity, and cost of care. Ann. Thorac. Surg. 49, 179–186 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Abu-Omar, Y. & Taggart, D. P. The present status of off-pump coronary artery bypass grafting. Eur. J. Cardiothorac. Surg. 36, 312–321 (2009).

    Article  PubMed  Google Scholar 

  11. Puskas, J. D. et al. Off-pump vs conventional coronary artery bypass grafting: early and 1-year graft patency, cost, and quality-of-life outcomes: a randomized trial. JAMA 291, 1841–1849 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Hueb, W. et al. Five-year follow-up of a randomized comparison between off-pump and on-pump stable multivessel coronary artery bypass grafting. The MASS III Trial. Circulation 122, S48–S52 (2010).

    Article  PubMed  Google Scholar 

  13. Hattler, B. et al. Off-pump coronary artery bypass surgery is associated with worse arterial and saphenous vein graft patency and less effective revascularization: results from the Veterans Affairs Randomized On/Off Bypass (ROOBY) trial. Circulation 125, 2827–2835 (2012).

    Article  PubMed  Google Scholar 

  14. Lamy, A. et al. Off-pump or on-pump coronary-artery bypass grafting at 30 days. N. Engl. J. Med. 366, 1489–1497 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Afilalo, J., Rasti, M., Ohayon, S. M., Shimony, A. & Eisenberg, M. J. Off-pump vs. on-pump coronary artery bypass surgery: an updated meta-analysis and meta-regression of randomized trials. Eur. Heart J. 33, 1257–1267 (2012).

    Article  PubMed  Google Scholar 

  16. Gruntzig, A. Transluminal dilatation of coronary-artery stenosis. Lancet 1, 263 (1978).

    Article  CAS  PubMed  Google Scholar 

  17. Iqbal, J., Gunn, J. & Serruys, P. W. Coronary stents: historical development, current status and future directions. Br. Med. Bull. 106, 193–211 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. McFadden, E. P. et al. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet 364, 1519–1521 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Daemen, J. et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet 369, 667–678 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Kedhi, E. et al. Stent thrombosis: insights on outcomes, predictors and impact of dual antiplatelet therapy interruption from the SPIRIT II, SPIRIT III, SPIRIT IV and COMPARE trials. EuroIntervention 8, 599–606 (2012).

    Article  PubMed  Google Scholar 

  21. Stefanini, G. G. et al. Biodegradable polymer drug-eluting stents reduce the risk of stent thrombosis at 4 years in patients undergoing percutaneous coronary intervention: a pooled analysis of individual patient data from the ISAR-TEST 3, ISAR-TEST 4, and LEADERS randomized trials. Eur. Heart J. 33, 1214–1222 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Stone, G. W. et al. Comparison of an everolimus-eluting stent and a paclitaxel-eluting stent in patients with coronary artery disease: a randomized trial. JAMA 299, 1903–1913 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Palmerini, T. et al. Stent thrombosis with drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. Lancet 379, 1393–1402 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Serruys, P. W. et al. Comparison of zotarolimus-eluting and everolimus-eluting coronary stents. N. Engl. J. Med. 363, 136–146 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Serruys, P. W., Garcia-Garcia, H. M. & Onuma, Y. From metallic cages to transient bioresorbable scaffolds: change in paradigm of coronary revascularization in the upcoming decade? Eur. Heart J. 33, 16–25 (2012).

    Article  PubMed  Google Scholar 

  26. Garg, S., Bourantas, C. & Serruys, P. W. New concepts in the design of drug-eluting coronary stents. Nat. Rev. Cardiol. 10, 248–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Boden, W. E. et al. Optimal medical therapy with or without PCI for stable coronary disease. N. Engl. J. Med. 356, 1503–1516 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Shaw, L. J. et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 117, 1283–1291 (2008).

    Article  PubMed  Google Scholar 

  29. Trikalinos, T. A., Alsheikh-Ali, A. A., Tatsioni, A., Nallamothu, B. K. & Kent, D. M. Percutaneous coronary interventions for non-acute coronary artery disease: a quantitative 20-year synopsis and a network meta-analysis. Lancet 373, 911–918 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stergiopoulos, K. & Brown, D. L. Initial coronary stent implantation with medical therapy vs medical therapy alone for stable coronary artery disease: meta-analysis of randomized controlled trials. Arch. Intern. Med. 172, 312–319 (2012).

    Article  PubMed  Google Scholar 

  31. De Bruyne, B. et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N. Engl. J. Med. 367, 991–1001 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. BARI 2D Study Group et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N. Engl. J. Med. 360, 2503–2515 (2009).

  33. Aziz, O. et al. Meta-analysis of minimally invasive internal thoracic artery bypass versus percutaneous revascularisation for isolated lesions of the left anterior descending artery. BMJ 334, 617 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kapoor, J. R. et al. Isolated disease of the proximal left anterior descending artery comparing the effectiveness of percutaneous coronary interventions and coronary artery bypass surgery. JACC Cardiovasc. Interv. 1, 483–491 (2008).

    Article  PubMed  Google Scholar 

  35. Kukreja, N. et al. Sirolimus-eluting stents, bare metal stents or coronary artery bypass grafting for patients with multivessel disease including involvement of the proximal left anterior descending artery: analysis of the Arterial Revascularization Therapies study part 2 (ARTS-II). Heart 95, 1061–1066 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Thiele, H. et al. Randomized comparison of minimally invasive direct coronary artery bypass surgery versus sirolimus-eluting stenting in isolated proximal left anterior descending coronary artery stenosis. J. Am. Coll. Cardiol. 53, 2324–2331 (2009).

    Article  PubMed  Google Scholar 

  37. Wijns, W. et al. Guidelines on myocardial revascularization. Eur. Heart J. 31, 2501–2555 (2010).

    Article  PubMed  Google Scholar 

  38. Hueb, W. et al. Ten-year follow-up survival of the Medicine, Angioplasty, or Surgery Study (MASS II): a randomized controlled clinical trial of 3 therapeutic strategies for multivessel coronary artery disease. Circulation 122, 949–957 (2010).

    Article  PubMed  Google Scholar 

  39. Serruys, P. W. et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N. Engl. J. Med. 360, 961–972 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Taggart, D. P. & Thomas, B. Ferguson Lecture. Coronary artery bypass grafting is still the best treatment for multivessel and left main disease, but patients need to know. Ann. Thorac. Surg. 82, 1966–1975 (2006).

    Article  PubMed  Google Scholar 

  41. Mohr, F. W. et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet 381, 629–638 (2013).

    Article  PubMed  Google Scholar 

  42. Weintraub, W. S. et al. Comparative effectiveness of revascularization strategies. N. Engl. J. Med. 366, 1467–1476 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hannan, E. L. et al. Drug-eluting stents vs coronary-artery bypass grafting in multivessel coronary disease. N. Engl. J. Med. 358, 331–341 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Yi, G., Joo, H. C., Youn, Y. N., Hong, S. & Yoo, K. J. Stent versus off-pump coronary bypass grafting in the second-generation drug-eluting stent era. Ann. Thorac. Surg. 96, 535–541 (2013).

    Article  PubMed  Google Scholar 

  45. Bravata, D. M. et al. Systematic review: the comparative effectiveness of percutaneous coronary interventions and coronary artery bypass graft surgery. Ann. Intern. Med. 147, 703–716 (2007).

    Article  PubMed  Google Scholar 

  46. Hlatky, M. A. et al. Coronary artery bypass surgery compared with percutaneous coronary interventions for multivessel disease: a collaborative analysis of individual patient data from ten randomised trials. Lancet 373, 1190–1197 (2009).

    Article  PubMed  Google Scholar 

  47. Daemen, J. et al. Long-term safety and efficacy of percutaneous coronary intervention with stenting and coronary artery bypass surgery for multivessel coronary artery disease: a meta-analysis with 5-year patient-level data from the ARTS, ERACI-II, MASS-II, and SoS trials. Circulation 118, 1146–1154 (2008).

    Article  PubMed  Google Scholar 

  48. Daemen, J., Kukreja, N. & Serruys, P. W. Drug-eluting stents vs. coronary-artery bypass grafting. N. Engl. J. Med. 358, 2641–2644 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Park, D. W. et al. Long-term comparison of drug-eluting stents and coronary artery bypass grafting for multivessel coronary revascularization: 5-year outcomes from the Asan Medical Center-Multivessel Revascularization Registry. J. Am. Coll. Cardiol. 57, 128–137 (2011).

    Article  PubMed  Google Scholar 

  50. Cohen, M. V. & Gorlin, R. Main left coronary artery disease. Clinical experience from 1964–1974. Circulation 52, 275–285 (1975).

    Article  CAS  PubMed  Google Scholar 

  51. Caracciolo, E. A. et al. Comparison of surgical and medical group survival in patients with left main equivalent coronary artery disease. Long-term CASS experience. Circulation 91, 2335–2344 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Silber, S. et al. Guidelines for percutaneous coronary interventions. The Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology. Eur. Heart J. 26, 804–847 (2005).

    Article  PubMed  Google Scholar 

  53. Smith, S. C. Jr et al. ACC/AHA/SCAI 2005 Guideline update for Percutaneous Coronary Intervention—summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to update the 2001 Guidelines for Percutaneous Coronary Intervention). Circulation 113, 156–175 (2006).

    Article  PubMed  Google Scholar 

  54. Taggart, D. P. et al. Revascularization for unprotected left main stem coronary artery stenosis stenting or surgery. J. Am. Coll. Cardiol. 51, 885–892 (2008).

    Article  PubMed  Google Scholar 

  55. Kandzari, D. E. et al. Revascularization for unprotected left main disease: evolution of the evidence basis to redefine treatment standards. J. Am. Coll. Cardiol. 54, 1576–1588 (2009).

    Article  PubMed  Google Scholar 

  56. Kushner, F. G. et al. 2009 Focused Updates: ACC/AHA Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction (updating the 2004 Guideline and 2007 Focused Update) and ACC/AHA/SCAI Guidelines on Percutaneous Coronary Intervention (updating the 2005 Guideline and 2007 Focused Update): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 120, 2271–2306 (2009).

    Article  PubMed  Google Scholar 

  57. Palmerini, T. et al. Comparison between coronary angioplasty and coronary artery bypass surgery for the treatment of unprotected left main coronary artery stenosis (the Bologna Registry). Am. J. Cardiol. 98, 54–59 (2006).

    Article  PubMed  Google Scholar 

  58. Chieffo, A. et al. Drug-eluting stent for left main coronary artery disease. The DELTA registry: a multicenter registry evaluating percutaneous coronary intervention versus coronary artery bypass grafting for left main treatment. JACC Cardiovasc. Interv. 5, 718–727 (2012).

    Article  PubMed  Google Scholar 

  59. Chieffo, A. et al. Percutaneous treatment with drug-eluting stent implantation versus bypass surgery for unprotected left main stenosis: a single-center experience. Circulation 113, 2542–2547 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Park, D. W. et al. Long-term safety and efficacy of stenting versus coronary artery bypass grafting for unprotected left main coronary artery disease: 5-year results from the MAIN-COMPARE (Revascularization for Unprotected Left Main Coronary Artery Stenosis: Comparison of Percutaneous Coronary Angioplasty Versus Surgical Revascularization) registry. J. Am. Coll. Cardiol. 56, 117–124 (2010).

    Article  PubMed  Google Scholar 

  61. US National Library of Medicine. Clinical Trials.gov [online], (2013).

  62. Buszman, P. E. et al. Acute and late outcomes of unprotected left main stenting in comparison with surgical revascularization. J. Am. Coll. Cardiol. 51, 538–545 (2008).

    Article  PubMed  Google Scholar 

  63. Boudriot, E. et al. Randomized comparison of percutaneous coronary intervention with sirolimus-eluting stents versus coronary artery bypass grafting in unprotected left main stem stenosis. J. Am. Coll. Cardiol. 57, 538–545 (2011).

    Article  PubMed  Google Scholar 

  64. Park, S. J. et al. Randomized trial of stents versus bypass surgery for left main coronary artery disease. N. Engl. J. Med. 364, 1718–1727 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Morice, M. C. et al. Outcomes in patients with de novo left main disease treated with either percutaneous coronary intervention using paclitaxel-eluting stents or coronary artery bypass graft treatment in the Synergy Between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery (SYNTAX) trial. Circulation 121, 2645–2653 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Ferrante, G. et al. Percutaneous coronary intervention versus bypass surgery for left main coronary artery disease: a meta-analysis of randomised trials. EuroIntervention 7, 738–746 (2011).

    Article  PubMed  Google Scholar 

  67. Valgimigli, M. et al. Short- and long-term clinical outcome after drug-eluting stent implantation for the percutaneous treatment of left main coronary artery disease: insights from the Rapamycin-Eluting and Taxus Stent Evaluated At Rotterdam Cardiology Hospital registries (RESEARCH and T-SEARCH). Circulation 111, 1383–1389 (2005).

    Article  PubMed  Google Scholar 

  68. Chieffo, A. et al. Favorable long-term outcome after drug-eluting stent implantation in nonbifurcation lesions that involve unprotected left main coronary artery: a multicenter registry. Circulation 116, 158–162 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Palmerini, T. et al. Ostial and midshaft lesions vs. bifurcation lesions in 1111 patients with unprotected left main coronary artery stenosis treated with drug-eluting stents: results of the survey from the Italian Society of Invasive Cardiology. Eur. Heart J. 30, 2087–2094 (2009).

    Article  PubMed  Google Scholar 

  70. Valgimigli, M. et al. Distal left main coronary disease is a major predictor of outcome in patients undergoing percutaneous intervention in the drug-eluting stent era: an integrated clinical and angiographic analysis based on the Rapamycin-Eluting Stent Evaluated At Rotterdam Cardiology Hospital (RESEARCH) and Taxus-Stent Evaluated At Rotterdam Cardiology Hospital (T-SEARCH) registries. J. Am. Coll. Cardiol. 47, 1530–1537 (2006).

    Article  PubMed  Google Scholar 

  71. Chang, K. et al. Long-term outcomes of percutaneous coronary intervention versus coronary artery bypass grafting for unprotected left main coronary bifurcation disease in the drug-eluting stent era. Heart 98, 799–805 (2012).

    Article  PubMed  Google Scholar 

  72. Bassand, J. P. et al. Guidelines for the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes. Eur. Heart J. 28, 1598–1660 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Mehta, S. R. et al. Routine vs selective invasive strategies in patients with acute coronary syndromes: a collaborative meta-analysis of randomized trials. JAMA 293, 2908–2917 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Giugliano, R. P. et al. Early versus delayed, provisional eptifibatide in acute coronary syndromes. N. Engl. J. Med. 360, 2176–2190 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Fox, K. A. et al. Long-term outcome of a routine versus selective invasive strategy in patients with non-ST-segment elevation acute coronary syndrome a meta-analysis of individual patient data. J. Am. Coll. Cardiol. 55, 2435–2445 (2010).

    Article  PubMed  Google Scholar 

  76. Tonino, P. A. et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 360, 213–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Gunn, J. & Taggart, D. P. Revascularisation for acute coronary syndromes: PCI or CABG? Heart 89, 967–970 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. O'Gara, P. T. et al. 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial InfarctionA Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 61, e78–e140 (2013).

    Article  PubMed  Google Scholar 

  79. Vlaar, P. J. et al. Culprit vessel only versus multivessel and staged percutaneous coronary intervention for multivessel disease in patients presenting with ST-segment elevation myocardial infarction: a pairwise and network meta-analysis. J. Am. Coll. Cardiol. 58, 692–703 (2011).

    Article  PubMed  Google Scholar 

  80. Keeley, E. C., Boura, J. A. & Grines, C. L. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet 361, 13–20 (2003).

    Article  PubMed  Google Scholar 

  81. Ndrepepa, G., Kastrati, A., Mehilli. J., Antoniucci, D. & Schömig, A. Mechanical reperfusion and long-term mortality in patients with acute myocardial infarction presenting 12 to 48 hours from onset of symptoms. JAMA 301, 487–488 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Hochman, J. S. et al. Coronary intervention for persistent occlusion after myocardial infarction. N. Engl. J. Med. 355, 2395–2407 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Widimsky, P. et al. Reperfusion therapy for ST elevation acute myocardial infarction in Europe: description of the current situation in 30 countries. Eur. Heart J. 31, 943–957 (2010).

    Article  PubMed  Google Scholar 

  84. Bonnefoy, E. et al. Comparison of primary angioplasty and pre-hospital fibrinolysis in acute myocardial infarction (CAPTIM) trial: a 5-year follow-up. Eur. Heart J. 30, 1598–1606 (2009).

    Article  PubMed  Google Scholar 

  85. ASSENT-4 PCI Investigators. Primary versus tenecteplase-facilitated percutaneous coronary intervention in patients with ST-segment elevation acute myocardial infarction (ASSENT-4 PCI): randomised trial. Lancet 367, 569–578 (2006).

  86. Ellis, S. G. et al. Facilitated PCI in patients with ST-elevation myocardial infarction. N. Engl. J. Med. 358, 2205–2217 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Gershlick, A. H. et al. Rescue angioplasty after failed thrombolytic therapy for acute myocardial infarction. N. Engl. J. Med. 353, 2758–2768 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Cantor, W. J. et al. Routine early angioplasty after fibrinolysis for acute myocardial infarction. N. Engl. J. Med. 360, 2705–2718 (2009).

    Article  PubMed  Google Scholar 

  89. Di Mario, C. et al. Immediate angioplasty versus standard therapy with rescue angioplasty after thrombolysis in the Combined Abciximab REteplase Stent Study in Acute Myocardial Infarction (CARESS-in-AMI): an open, prospective, randomised, multicentre trial. Lancet 371, 559–568 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Fernandez-Aviles, F. et al. Routine invasive strategy within 24 hours of thrombolysis versus ischaemia-guided conservative approach for acute myocardial infarction with ST-segment elevation (GRACIA-1): a randomised controlled trial. Lancet 364, 1045–1053 (2004).

    Article  PubMed  Google Scholar 

  91. Armstrong, P. W. et al. Fibrinolysis or primary PCI in ST-segment elevation myocardial infarction. N. Engl. J. Med. 368, 1379–1387 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Gu, Y. L. et al. Role of coronary artery bypass grafting during the acute and subacute phase of ST-elevation myocardial infarction. Neth. Heart J. 18, 348–354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ahmed, K. et al. Percutaneous coronary intervention with drug-eluting stent implantation vs. coronary artery bypass grafting for multivessel coronary artery disease in metabolic syndrome patients with acute myocardial infarction. Circ. J. 76, 721–728 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Weiss, E. S., Chang, D. D., Joyce, D. L., Nwakanma, L. U. & Yuh, D. D. Optimal timing of coronary artery bypass after acute myocardial infarction: a review of California discharge data. J. Thorac. Cardiovasc. Surg. 135, 503–511 (2008).

    Article  PubMed  Google Scholar 

  95. Farkouh, M. E. et al. Strategies for multivessel revascularization in patients with diabetes. N. Engl. J. Med. 367, 2375–2384 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Banning, A. P. et al. Diabetic and nondiabetic patients with left main and/or 3-vessel coronary artery disease: comparison of outcomes with cardiac surgery and paclitaxel-eluting stents. J. Am. Coll. Cardiol. 55, 1067–1075 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Kapur, A. et al. Randomized comparison of percutaneous coronary intervention with coronary artery bypass grafting in diabetic patients. 1-year results of the CARDia (Coronary Artery Revascularization in Diabetes) trial. J. Am. Coll. Cardiol. 55, 432–440 (2010).

    Article  PubMed  Google Scholar 

  98. Kappetein, A. P. et al. Treatment of complex coronary artery disease in patients with diabetes: 5-year results comparing outcomes of bypass surgery and percutaneous coronary intervention in the SYNTAX trial. Eur. J. Cardiothorac. Surg. 43, 1006–1013 (2013).

    Article  PubMed  Google Scholar 

  99. Yan, B. P. et al. Clinical characteristics and early mortality of patients undergoing coronary artery bypass grafting compared to percutaneous coronary intervention: insights from the Australasian Society of Cardiac and Thoracic Surgeons (ASCTS) and the Melbourne Interventional Group (MIG) Registries. Heart Lung Circ. 18, 184–190 (2009).

    Article  PubMed  Google Scholar 

  100. Legrand, V. M. et al. Influence of age on the clinical outcomes of coronary revascularisation for the treatment of patients with multivessel de novo coronary artery lesions: sirolimus-eluting stent vs. coronary artery bypass surgery and bare metal stent, insight from the multicentre randomised Arterial Revascularisation Therapy Study Part I (ARTS-I) and Part II (ARTS-II). EuroIntervention 6, 838–845 (2011).

    Article  PubMed  Google Scholar 

  101. Hochman, J. S. et al. One-year survival following early revascularization for cardiogenic shock. JAMA 285, 190–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Hochman, J. S. et al. Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. JAMA 295, 2511–2515 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  103. White, H. D. et al. Comparison of percutaneous coronary intervention and coronary artery bypass grafting after acute myocardial infarction complicated by cardiogenic shock: results from the Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock (SHOCK) trial. Circulation 112, 1992–2001 (2005).

    Article  PubMed  Google Scholar 

  104. Lee, M. S. et al. Outcome after surgery and percutaneous intervention for cardiogenic shock and left main disease. Ann. Thorac Surg. 86, 29–34 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chiu, F. C., Chang, S. N., Lin, J. W., Hwang, J. J. & Chen, Y. S. Coronary artery bypass graft surgery provides better survival in patients with acute coronary syndrome or ST-segment elevation myocardial infarction experiencing cardiogenic shock after percutaneous coronary intervention: a propensity score analysis. J. Thorac. Cardiovasc. Surg. 138, 1326–1330 (2009).

    Article  PubMed  Google Scholar 

  106. Iqbal, J. et al. Incidence and predictors of stent thrombosis: a single-centre study of 5,833 consecutive patients undergoing coronary artery stenting. EuroIntervention 9, 62–69 (2013).

    Article  PubMed  Google Scholar 

  107. Allman, K. C., Shaw, L. J., Hachamovitch, R. & Udelson, J. E. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J. Am. Coll. Cardiol. 39, 1151–1158 (2002).

    Article  PubMed  Google Scholar 

  108. Velazquez, E. J. et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N. Engl. J. Med. 364, 1607–1616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Farooq, V. et al. Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II. Lancet 381, 639–650 (2013).

    Article  PubMed  Google Scholar 

  110. Xue, Z. M. et al. Coronary stenting versus bypass surgery in heart failure patients with preserved ejection fraction. Chin. Med. J. (Engl.) 125, 1000–1004 (2012).

    CAS  Google Scholar 

  111. Charytan, D. M., Li, S., Liu, J. & Herzog, C. A. Risks of death and end-stage renal disease after surgical compared with percutaneous coronary revascularization in elderly patients with chronic kidney disease. Circulation 126, S164–S169 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ashrith, G., Lee, V. V., Elayda, M. A., Reul, R. M. & Wilson, J. M. Short- and long-term outcomes of coronary artery bypass grafting or drug-eluting stent implantation for multivessel coronary artery disease in patients with chronic kidney disease. Am. J. Cardiol. 106, 348–353 (2010).

    Article  PubMed  Google Scholar 

  113. Wang, Z. J. et al. Comparison of drug-eluting stents and coronary artery bypass grafting for the treatment of multivessel coronary artery disease in patients with chronic kidney disease. Circ. J. 73, 1228–1234 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Abu-Omar, Y. et al. The impact of off-pump coronary artery bypass surgery on postoperative renal function. Perfusion 27, 127–131 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Rodes-Cabau, J. et al. Nonrandomized comparison of coronary artery bypass surgery and percutaneous coronary intervention for the treatment of unprotected left main coronary artery disease in octogenarians. Circulation 118, 2374–2381 (2008).

    Article  PubMed  Google Scholar 

  116. Singh, M. et al. Influence of frailty and health status on outcomes in patients with coronary disease undergoing percutaneous revascularization. Circ. Cardiovasc. Qual. Outcomes 4, 496–502 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lee, D. H., Buth, K. J., Martin, B. J., Yip, A. M. & Hirsch, G. M. Frail patients are at increased risk for mortality and prolonged institutional care after cardiac surgery. Circulation 121, 973–978 (2010).

    Article  PubMed  Google Scholar 

  118. Iqbal, J., Denvir, M. & Gunn, J. Frailty assessment in elderly people. Lancet 381, 1985–1986 (2013).

    Article  PubMed  Google Scholar 

  119. Stefanini, G. G. et al. Impact of sex on clinical and angiographic outcomes among patients undergoing revascularization with drug-eluting stents. JACC Cardiovasc. Interv. 5, 301–310 (2012).

    Article  PubMed  Google Scholar 

  120. Farooq, V. et al. Incidence and multivariable correlates of long-term mortality in patients treated with surgical or percutaneous revascularization in the synergy between percutaneous coronary intervention with taxus and cardiac surgery (SYNTAX) trial. Eur. Heart J. 33, 3105–3113 (2012).

    Article  PubMed  Google Scholar 

  121. Head, S. J. et al. The rationale for Heart Team decision-making for patients with stable complex coronary artery disease. Eur. Heart J. 34, 2510–2518 (2013).

    Article  PubMed  Google Scholar 

  122. Patel, M. R., Dehmer, G. J., Hirshfeld, J. W., Smith, P. K. & Spertus, J. A. ACCF/SCAI/STS/AATS/AHA/ASNC 2009 Appropriateness Criteria for Coronary Revascularization: a report by the American College of Cardiology Foundation Appropriateness Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, and the American Society of Nuclear Cardiology Endorsed by the American Society of Echocardiography, the Heart Failure Society of America, and the Society of Cardiovascular Computed Tomography. J. Am. Coll. Cardiol. 53, 530–553 (2009).

    Article  PubMed  Google Scholar 

  123. Patel, M. R. et al. ACCF/SCAI/STS/AATS/AHA/ASNC/HFSA/SCCT 2012 appropriate use criteria for coronary revascularization focused update: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, American Society of Nuclear Cardiology, and the Society of Cardiovascular Computed Tomography. J. Thorac. Cardiovasc. Surg. 143, 780–803 (2012).

    Article  PubMed  Google Scholar 

  124. Chan, P. S. et al. Appropriateness of percutaneous coronary intervention. JAMA 306, 53–61 (2011).

    CAS  PubMed  Google Scholar 

  125. King, S. B. 3rd Appropriate use criteria (AUC) versus the heart team: to lump or to split. JACC Cardiovasc. Interv. 5, 801–802 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

J. Iqbal is supported by National Institute of Health Research (NIHR), UK and a Fellowship from European Society of Cardiology.

Author information

Authors and Affiliations

Authors

Contributions

J. Iqbal researched data, made substantial contribution to discussion of the content, and wrote the article. P. W. Serruys and D. P. Taggart made substantial contribution to discussion of the content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to David P. Taggart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, J., Serruys, P. & Taggart, D. Optimal revascularization for complex coronary artery disease. Nat Rev Cardiol 10, 635–647 (2013). https://doi.org/10.1038/nrcardio.2013.138

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing