Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiac contractility modulation therapy in advanced systolic heart failure

A Correction to this article was published on 04 February 2014

This article has been updated

Abstract

Cardiac contractility modulation (CCM) is the application of nonexcitatory electrical signals to the myocardium, during the absolute refractory period of the action potential, to elicit a positive inotropic effect without increasing myocardial oxygen consumption. These effects are independent of QRS duration; consequently, CCM device therapy might benefit symptomatic patients with reduced left ventricular ejection fraction who are not candidates for cardiac resynchronization therapy. Preclinical studies have demonstrated a rapid positive inotropic effect of CCM, which seems to be mediated by modulation of cardiomyocyte Ca2+ fluxes and alterations in the phosphorylation of cardiac phospholamban. In vivo translational and clinical studies that utilized double biphasic voltage pulses to the right ventricular aspect of the interventricular septum have demonstrated positive global effects on cardiac reverse remodelling and contractility. Long-term application of CCM seems to improve patients' exercise tolerance and quality of life. These benefits are apparently accomplished with an acceptable safety profile; however, to date, no data have demonstrated reductions in hospitalizations for heart failure or mortality. CCM is currently available in Europe and ongoing studies are attempting to identify the ideal target population and accumulate additional outcome data.

Key Points

  • Cardiac contractility modulation (CCM) is the application of nonexcitatory electrical signals to the myocardium, during the absolute refractory period of the action potential, to augment contraction without increasing oxygen consumption

  • Preclinical studies evolved from using high-amplitude monophasic current pulses to using double-biphasic voltage pulses; the latter have been used in all clinical trials

  • The mechanisms underpinning the effects of CCM are still unclear but might be partly mediated by alterations in myocyte Ca2+ transients and cardiac phospholamban phosphorylation

  • In patients with NYHA class III–IV heart failure, CCM improves reverse remodelling and contractility, independent of QRS duration; these benefits are additive to those of cardiac resynchronization therapy (CRT)

  • CCM improves peak oxygen consumption and quality of life, and these benefits are of a comparable magnitude to those achieved using cardiac resynchronization therapy in patients with prolonged QRS duration

  • Ongoing studies of CCM are generating clinical outcome data and aim to identify the ideal target population for this therapy

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of experimental CCM protocols on myocardial function.
Figure 2: Ca2+ cycling in the failing and CCM-treated cardiomyocyte, based on observations from preclinical studies of high-amplitude current pulses.
Figure 3: The cardiac sympathetic nerve stimulation hypothesis for CCM-mediated positive inotropic effects.
Figure 4: Acute and chronic effects of clinical biphasic CCM voltage pulses in vivo in experimental models of heart failure.
Figure 5: The conjectured influence of CCM electrical pulses on intact ventricular myocardium.
Figure 6: Comparison of the effects of CCM and CRT on peak VO2 in clinical trials.

Similar content being viewed by others

Change history

  • 04 February 2014

    In the version of this article originally published, the address for Alexander R. Lyon was incorrectly stated. The address should have been: NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK. This error has been corrected in the HTML and PDF versions of the article.

References

  1. Swedberg, K. et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 376, 875–885 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Wood, E. H., Heppner, R. L. & Weidmann, S. Inotropic effects of electric currents. Circ. Res. 24, 409–445 (1969).

    Article  CAS  PubMed  Google Scholar 

  3. Aiba, T. et al. Electrophysiological consequences of dyssynchronous heart failure and its restoration by resynchronization therapy. Circulation 119, 1220–1230 (2009).

    PubMed  PubMed Central  Google Scholar 

  4. Birks, E. J. et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N. Engl. J. Med. 355, 1873–1884 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Kawase, Y. et al. Reversal of cardiac dysfunction after long-yerm expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J. Am. Coll. Cardiol. 51, 1112–1119 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Terracciano, C. M. N. et al. Clinical recovery from end-stage heart failure using left-ventricular assist device and pharmacological therapy correlates with increased sarcoplasmic reticulum calcium content but not with regression of cellular hypertrophy. Circulation 109, 2263–2265 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. O'Connor, C. M. et al. Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan International Randomized Survival Trial (FIRST). Am. Heart J. 138, 78–86 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Packer, M. et al. Effect of oral milrinone on mortality in severe chronic heart failure. N. Engl. J. Med. 325, 1468–1475 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. del Monte, F. et al. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca2+-ATPase in a rat model of heart failure. Circulation 104, 1424–1429 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burniston, J. G. et al. Relative toxicity of cardiotonic agents: some induce more cardiac and skeletal myocyte apoptosis and necrosis in vivo than others. Cardiovasc. Toxicol. 5, 355–364 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Mohri, S. et al. Electric currents applied during refractory period enhance contractility and systolic calcium in the ferret heart. Am. J. Physiol. Heart Circ. Physiol. 284, H1119–H1123 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Brunckhorst, C. B., Shemer, I., Mika, Y., Ben-Haim, S. A. & Burkhoff, D. Cardiac contractility modulation by non-excitatory currents: Studies in isolated cardiac muscle. Eur. J. Heart Fail. 8, 7–15 (2006).

    Article  PubMed  Google Scholar 

  13. Winter, J., Brack, K. E. & Ng, G. A. The acute inotropic effects of cardiac contractility modulation (CCM) are associated with action potential duration shortening and mediated by β-adrenoceptor signalling. J. Mol. Cell. Cardiol. 51, 252–262 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cannell, M. B. & Kong, C. H. T. Local control in cardiac E-C coupling. J. Mol. Cell. Cardiol. 52, 298–303 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Marks, A. R. Calcium cycling proteins and heart failure: mechanisms and therapeutics. J. Clin. Invest. 123, 46–52 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eisner, D., Bode, E., Venetucci, L. & Trafford, A. Calcium flux balance in the heart. J. Mol. Cell. Cardiol. 58, 110–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, Z. et al. Revisiting the ionic mechanisms of early afterdepolarizations in cardiomyocytes: predominant by Ca waves or Ca currents? Am. J. Physiol. Heart Circ. Physiol. 302, H1636–H1644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xie, L. H. & Weiss, J. N. Arrhythmogenic consequences of intracellular calcium waves. Am. J. Physiol. Heart Circ. Physiol. 297, H997–H1002 (2009).

    Article  CAS  Google Scholar 

  19. Chaudhri, B., del Monte, F., Hajjar, R.J. & Harding, S. E. Contractile effects of adenovirally-mediated increases in SERCA2a activity: a comparison between rat and rabbit ventricular myocytes. Mol. Cell. Biochem. 251, 103–109 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Erickson, J. R., He, B. J., Grumbach, I. M. & Anderson, M. E. CaMKII in the cardiovascular system: sensing redox states. Physiol. Rev. 91, 889–915 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Kho, C. et al. SUMO1-dependent modulation of SERCA2a in heart failure. Nature 477, 601–605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Imai, M. et al. Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure. J. Am. Coll. Cardiol. 49, 2120–2128 (2007).

    Article  PubMed  Google Scholar 

  23. Meyer, C. et al. Augmentation of left ventricular contractility by cardiac sympathetic neural stimulation. Circulation 121, 1286–1294 (2010).

    Article  PubMed  Google Scholar 

  24. Lohse, M. J., Engelhardt, S. & Eschenhagen, T. What is the role of beta-adrenergic signalling in heart failure? Circ. Res. 93, 896–906 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Mohri, S. et al. Cardiac contractility modulation by electric currents applied during the refractory period. Am. J. Physiol. Heart Circ. Physiol. 282, H1642–H1647 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Gupta, R. C. et al. Ca2+-binding proteins in dogs with heart failure: effects of cardiac contractility modulation electrical signals. Clin. Transl. Sci. 2, 211–215 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gupta, R. C. et al. Cardiac contractility modulation electrical signals normalize activity, expression, and phosphorylation of the Na+–Ca2+ exchanger in heart failure. J. Card. Fail. 15, 48–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Butter, C. et al. Enhanced inotropic state of the failing left ventricle by cardiac contractility modulation electrical signals is not associated with increased myocardial oxygen consumption. J. Card. Fail. 13, 137–142 (2007).

    Article  PubMed  Google Scholar 

  29. Sakata, S. et al. Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. J. Mol. Cell. Cardiol. 42, 852–861 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morita, H. et al. Long-term effects of non-excitatory cardiac contractility modulation electric signals on the progression of heart failure in dogs. Eur. J. Heart Fail. 6, 145–150 (2004).

    Article  PubMed  Google Scholar 

  31. Butter, C. et al. Cardiac contractility modulation electrical signals improve myocardial gene expression in patients with heart failure. J. Am. Coll. Cardiol. 51, 1784–1789 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Kumarswamy, R. et al. SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur. Heart J. 33, 1067–1075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lyon, A. R. et al. SERCA2a gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure. Circ. Arrhythm. Electrophysiol. 4, 362–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lyon, A. R. et al. Plasticity of surface structures and β2-adrenergic receptor localization in failing ventricular cardiomyocytes during recovery from heart failure. Circ. Heart Fail. 5, 357–365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pleger, S. T. et al. Stable myocardial-specific AAV6–S100A1 gene therapy results in chronic functional heart failure rescue. Circulation 115, 2506–2515 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Pleger, S. T. et al. Cardiac AAV9–S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci. Transl. Med. 3, 92ra64 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rastogi, S. et al. Effects of chronic therapy with cardiac contractility modulation electrical signals on cytoskeletal proteins and matrix metalloproteinases in dogs with heart failure. Cardiology 110, 230–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Pappone, C. et al. Cardiac contractility modulation by electric currents applied during the refractory period in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 90, 1307–1313 (2002).

    Article  PubMed  Google Scholar 

  39. Nelson, G. S. et al. Left ventricular or biventricular pacing improves cardiac function at diminished energy cost in patients with dilated cardiomyopathy and left bundle-branch block. Circulation 102, 3053–3059 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Askenazi, J., Alexander, J. H., Koenigsberg, D. I., Belic, N. & Lesch, M. Alteration of left ventricular performance by left bundle branch block simulated with atrioventricular sequential pacing. Am. J. Cardiol. 53, 99–104 (1984).

    Article  CAS  PubMed  Google Scholar 

  41. Lawo, T. et al. Electrical signals applied during the absolute refractory period: an investigational treatment for advanced heart failure in patients with normal QRS duration. J. Am. Coll. Cardiol. 46, 2229–2236 (2005).

    Article  PubMed  Google Scholar 

  42. Pappone, C. et al. First human chronic Experience with cardiac contractility modulation by nonexcitatory electrical currents for treating systolic heart failure. J. Cardiovasc. Electrophysiol. 15, 418–427 (2004).

    Article  PubMed  Google Scholar 

  43. Stix, G. et al. Chronic electrical stimulation during the absolute refractory period of the myocardium improves severe heart failure. Eur. Heart J. 25, 650–655 (2004).

    Article  PubMed  Google Scholar 

  44. Yu, C. M. et al. Impact of cardiac contractility modulation on left ventricular global and regional function and remodeling. JACC Cardiovasc. Imaging 2, 1341–1349 (2009).

    Article  PubMed  Google Scholar 

  45. Zhang, Q. et al. Comparison of left ventricular reverse remodeling induced by cardiac contractility modulation and cardiac resynchronization therapy in heart failure patients with different QRS durations. Int. J. Cardiol. 167, 889–893 (2013).

    Article  PubMed  Google Scholar 

  46. Neelagaru, S. B. et al. Nonexcitatory, cardiac contractility modulation electrical impulses: feasibility study for advanced heart failure in patients with normal QRS duration. Heart Rhythm 3, 1140–1147 (2006).

    Article  PubMed  Google Scholar 

  47. Abraham, W. T. et al. Cardiac resynchronization in chronic heart failure. N. Engl. J. Med. 346, 1845–1853 (2002).

    Article  PubMed  Google Scholar 

  48. Borggrefe, M. M. et al. Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. Eur. Heart J. 29, 1019–1028 (2008).

    Article  PubMed  Google Scholar 

  49. Cazeau, S. et al. Effects of Multisite Biventricular Pacing in Patients with Heart Failure and Intraventricular Conduction Delay. N. Engl. J. Med. 344, 873–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Kadish, A. et al. A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. Am. Heart J. 161, 329–337 (2011).

    Article  PubMed  Google Scholar 

  51. Higgins, S. L. et al. Cardiac resynchronization therapy for the treatment of heart failure in patients with intraventricular conduction delay and malignant ventricular tachyarrhythmias. J. Am. Coll. Cardiol. 42, 1454–1459 (2003).

    Article  PubMed  Google Scholar 

  52. Myers, J. et al. The ventilatory anaerobic threshold in heart failure: a multicenter evaluation of reliability. J. Card. Fail. 16, 76–83 (2010).

    Article  PubMed  Google Scholar 

  53. Poggio, R., Arazi, H. C., Giorgi, M. & Miriuka, S. G. Prediction of severe cardiovascular events by VE/VCO2 slope versus peak VO2 in systolic heart failure: A meta-analysis of the published literature. Am. Heart J. 160, 1004–1014 (2010).

    Article  PubMed  Google Scholar 

  54. Burkhoff, D. Does contractility modulation have a role in the treatment of heart failure? Curr. Heart Fail. Rep. 8, 260–265 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Kwong, J. S. W., Sanderson, J. E. & Yu, C.-M. Cardiac contractility modulation for heart failure: a meta-analysis of randomized controlled trials. Pacing Clin. Electrophysiol. 35, 1111–1118 (2012).

    Article  PubMed  Google Scholar 

  56. Cleland, J. G. F. et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med. 352, 1539–1549 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Schau, T., Seifert, M., Meyhöfer, J., Neuss, M. & Butter, C. Long-term outcome of cardiac contractility modulation in patients with severe congestive heart failure. Europace 13, 1436–1444 (2011).

    Article  PubMed  Google Scholar 

  58. Levy, W. C. et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation 113, 1424–1433 (2006).

    Article  PubMed  Google Scholar 

  59. Auricchio, A. et al. Clinical efficacy of cardiac resynchronization therapy using left ventricular pacing in heart failure patients stratified by severity of ventricular conduction delay. J. Am. Coll. Cardiol. 42, 2109–2116 (2003).

    Article  PubMed  Google Scholar 

  60. Abraham, W. T. et al. Subgroup analysis of a randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. J. Card. Fail. 17, 710–717 (2011).

    Article  PubMed  Google Scholar 

  61. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  62. Dupont, E. et al. Altered connexin expression in human congestive heart failure. J. Mol. Cell. Cardiol. 33, 359–371 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N. Engl. J. Med. 327, 685–691 (1992).

  64. Butter, C., Meyhöfer, J., Seifert, M., Neuss, M. & Minden, H.-H. First use of cardiac contractility modulation (CCM) in a patient failing CRT therapy: Clinical and technical aspects of combined therapies. Eur. J. Heart Fail. 9, 955–958 (2007).

    Article  PubMed  Google Scholar 

  65. Nagele, H., Behrens, S. & Eisermann, C. Cardiac contractility modulation in non-responders to cardiac resynchronization therapy. Europace 10, 1375–1380 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Bogaard, M. D. et al. Baseline left ventricular dP/dtmax rather than the acute improvement in dP/dtmax predicts clinical outcome in patients with cardiac resynchronization therapy. Eur. J. Heart Fail. 13, 1126–1132 (2011).

    Article  PubMed  Google Scholar 

  67. Yu, C. M. et al. Left ventricular reverse remodeling but not clinical improvement predicts long-term survival after cardiac resynchronization therapy. Circulation 112, 1580–1586 (2005).

    Article  PubMed  Google Scholar 

  68. Blumenthal, J. A. et al. Effects of exercise training on depressive symptoms in patients with chronic heart failure: The HF-ACTION randomized trial. JAMA 308, 465–474 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Anker, S. D. et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 361, 2436–2448 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Paur, H. et al. High levels of circulating epinephrine trigger apical cardiodepression in a β2-adrenergic receptor/Gi–dependent manner/clinical perspective. Circulation 126, 697–706 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to researching data for the article, and made substantial contributions to discussion of the content, writing, review, and editing of the manuscript before submission.

Corresponding author

Correspondence to David S. Feldman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyon, A., Samara, M. & Feldman, D. Cardiac contractility modulation therapy in advanced systolic heart failure. Nat Rev Cardiol 10, 584–598 (2013). https://doi.org/10.1038/nrcardio.2013.114

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing