Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic testing for inherited cardiac disease

Abstract

Over the past 2 decades, investigators in the field of cardiac genetics have evolved a complex understanding of the pathophysiological basis of inherited cardiac diseases, which predispose individuals to sudden cardiac death. In this Review, we describe the current status of gene discovery and the associations between phenotype and genotype in the cardiac channelopathies and cardiomyopathies. The various indications for genetic testing and its utility in the clinic are assessed in relation to diagnosis, cascade testing, guiding management, and prognosis. Some common problems exist across all phenotypes: the variable penetrance and expressivity of genetic disease, and the difficulty of assessing the functional and clinical effects of novel mutations. These issues will be of particular importance as the next-generation sequencing technologies are used by genetics laboratories to provide results from large panels of genes. The accurate interpretation of these results will be the main challenge for the future.

Key Points

  • Genetic testing for cardiac channelopathies and cardiomyopathies has developed substantially over the past 2 decades and is a potentially useful tool for clinicians, if used appropriately

  • Variable penetrance and expressivity of genetic disease are common and, combined with 'variants of unknown significance', complicate the interpretation of the results of genetic testing

  • The yield of genetic testing is never 100% for any given phenotype; as a diagnostic tool, therefore, genetic testing is largely limited to confirmation of disease

  • Genetic testing is, however, particularly useful in families in which a 'true' disease-causing mutation is found, and can be used to identify carriers and to reassure noncarriers

  • Genetic testing can be especially helpful in guiding therapy and assessing prognosis for long QT syndrome, but not in many other conditions

  • The future holds promise, but also challenges, for the interpretation of variants of unknown significance and the huge amount of genetic data that will be produced by next-generation sequencing technologies

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The main proteins involved in channelopathies.
Figure 2: Example electrocardiograms of various channelopathies.
Figure 3: The three main forms of cardiomyopathy.
Figure 4: The main proteins involved in cardiomyopathies.

Similar content being viewed by others

References

  1. Geisterfer-Lowrance, A. A. et al. A molecular basis for familial hypertrophic cardiomyopathy: a β cardiac myosin heavy chain gene missense mutation. Cell 62, 999–1006 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, Q. et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80, 805–811 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Curran, M. E. et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80, 795–803 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. van der Werf, C. et al. Diagnostic yield in sudden unexplained death and aborted cardiac arrest in the young: the experience of a tertiary referral center in the Netherlands. Heart Rhythm 7, 1383–1389 (2010).

    Article  PubMed  Google Scholar 

  5. Behr, E. R. et al. Sudden arrhythmic death syndrome: familial evaluation identifies inheritable heart disease in the majority of families. Eur. Heart J. 29, 1670–1680 (2008).

    Article  PubMed  Google Scholar 

  6. Hofman, N. et al. Active cascade screening in primary inherited arrhythmia syndromes, does it lead to prophylactic treatment? J. Am. Coll. Cardiol. 55, 2570–2576 (2010).

    Article  PubMed  Google Scholar 

  7. Schwartz, P. J., Moss, A. J., Vincent, G. M. & Crampton, R. S. Diagnostic criteria for the long QT syndrome: an update. Circulation 88, 782–784 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Hedley, P. L. et al. The genetic basis of long QT and short QT syndromes: a mutation update. Hum. Mutat. 30, 1486–1511 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Priori, S. G., Napolitano, C. & Schwartz, P. J. Low penetrance in the long-QT syndrome: clinical impact. Circulation 99, 529–533 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Ackerman, M. J. et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 13, 1077–1109 (2011).

    Article  PubMed  Google Scholar 

  11. Schwartz, P. J. et al. Genotype–phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 103, 89–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, L. et al. Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome: ECG findings identify genotypes. Circulation 102, 2849–2855 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Sauer, A. J. et al. Long QT syndrome in adults. J. Am. Coll. Cardiol. 49, 329–337 (2007).

    Article  PubMed  Google Scholar 

  14. Goldenberg, I. et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J. Am. Coll. Cardiol. 57, 51–59 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Priori, S. G. et al. Risk stratification in the long-QT syndrome. N. Engl. J. Med. 348, 1866–1874 (2003).

    Article  PubMed  Google Scholar 

  16. Goldenberg, I. et al. Risk factors for aborted cardiac arrest and sudden cardiac death in children with the congenital long-QT syndrome. Circulation 117, 2184–2191 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu, J. F. et al. Risk factors for recurrent syncope and subsequent fatal or near-fatal events in children and adolescents with long QT syndrome. J. Am. Coll. Cardiol. 57, 941–950 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Seth, R. et al. Long QT syndrome and pregnancy. J. Am. Coll. Cardiol. 49, 1092–1098 (2007).

    Article  PubMed  Google Scholar 

  19. Moss, A. J. et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation 115, 2481–2489 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moss, A. J. et al. Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation 105, 794–799 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Westenskow, P., Splawski, I., Timothy, K. W., Keating, M. T. & Sanguinetti, M. C. Compound mutations: a common cause of severe long-QT syndrome. Circulation 109, 1834–1841 (2004).

    Article  PubMed  Google Scholar 

  22. Tomas, M. et al. Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. J. Am. Coll. Cardiol. 55, 2745–2752 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Crotti, L. et al. NOS1AP is a genetic modifier of the long-QT syndrome. Circulation 120, 1657–1663 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amin, A. S. et al. Variants in the 3' untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner. Eur. Heart J. 33, 714–723 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Crotti, L. et al. KCNH2-K897T is a genetic modifier of latent congenital long-QT syndrome. Circulation 112, 1251–1258 (2005).

    Article  PubMed  Google Scholar 

  26. Roden, D. M. & Yang, T. Protecting the heart against arrhythmias: potassium current physiology and repolarization reserve. Circulation 112, 1376–1378 (2005).

    Article  PubMed  Google Scholar 

  27. CredibleMeds. Drugs lists by risk groups: Drugs that prolong the QT interval and/or induce torsades de pointes [online], (2013).

  28. Itoh, H. et al. Latent genetic backgrounds and molecular pathogenesis in drug-induced long-QT syndrome. Circ. Arrhythm. Electrophysiol. 2, 511–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Paulussen, A. D. et al. Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J. Mol. Med. (Berl.) 82, 182–188 (2004).

    Article  CAS  Google Scholar 

  30. Yang, P. et al. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 105, 1943–1948 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Splawski, I. et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 297, 1333–1336 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Kaab, S. et al. A large candidate gene survey identifies the KCNE1 D85N polymorphism as a possible modulator of drug-induced torsades de pointes. Circ. Cardiovasc. Genet. 5, 91–99 (2012).

    Article  PubMed  CAS  Google Scholar 

  33. Jamshidi, Y. et al. Common variation in the NOS1AP gene is associated with drug-induced QT prolongation and ventricular arrhythmia. J. Am. Coll. Cardiol. 60, 841–850 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goldenberg, I. et al. β-Blocker efficacy in high-risk patients with the congenital long-QT syndrome types 1 and 2: implications for patient management. J. Cardiovasc. Electrophysiol. 21, 893–901 (2010).

    PubMed  PubMed Central  Google Scholar 

  35. Barsheshet, A. et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to beta blocker therapy in type 1 long-QT syndrome. Circulation 125, 1988–1996 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Etheridge, S. P., Compton, S. J., Tristani-Firouzi, M. & Mason, J. W. A new oral therapy for long QT syndrome: long-term oral potassium improves repolarization in patients with HERG mutations. J. Am. Coll. Cardiol. 42, 1777–1782 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Makita, N. et al. The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J. Clin. Invest. 118, 2219–2229 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Remme, C. A. & Wilde, A. A. Late sodium current inhibition in acquired and inherited ventricular (dys)function and arrhythmias. Cardiovasc. Drugs Ther. 27, 91–101 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Behr, E. R. & Roden, D. M. Drug-induced arrhythmia: pharmacogenomic prescribing? Eur. Heart J. 34, 89–95 (2013).

    Article  PubMed  Google Scholar 

  40. Antzelevitch, C. et al. Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 111, 659–670 (2005).

    Article  PubMed  Google Scholar 

  41. Govindan, M. et al. Utility of high and standard right precordial leads during ajmaline testing for the diagnosis of Brugada syndrome. Heart 96, 1904–1908 (2010).

    Article  PubMed  Google Scholar 

  42. Schulze-Bahr, E. et al. Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: different incidences in familial and sporadic disease. Hum. Mutat. 21, 651–652 (2003).

    Article  PubMed  CAS  Google Scholar 

  43. Mizusawa, Y. & Wilde, A. A. M. Arrhythmogenic disorders of genetic origin: Brugada syndrome. Circ. Arrhythm. Electrophysiol. 5, 606–616 (2012).

    Article  PubMed  Google Scholar 

  44. Bastiaenen, R. & Behr, E. R. Sudden death and ion channel disease: pathophysiology and implications for management. Heart 97, 1365–1372 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Kapplinger, J. D. et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm 7, 33–46 (2010).

    Article  PubMed  Google Scholar 

  46. Bezzina, C. et al. A single Na+ channel mutation causing both long-QT and Brugada syndromes. Circ. Res. 85, 1206–1213 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Antzelevitch, C. et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 115, 442–449 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Crotti, L. et al. Spectrum and prevalence of mutations involving BrS1- through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing: implications for genetic testing. J. Am. Coll. Cardiol. 60, 1410–1418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Probst, V. et al. SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome. Circ. Cardiovasc. Genet. 2, 552–557 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Meregalli, P. G. et al. Type of SCN5A mutation determines clinical severity and degree of conduction slowing in loss-of-function sodium channelopathies. Heart Rhythm 6, 341–348 (2009).

    Article  PubMed  Google Scholar 

  51. Probst, V. et al. Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada syndrome registry. Circulation 121, 635–643 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Nishii, N., Ogawa, M. & Morita, H. et al. SCN5A mutation is associated with early and frequent recurrence of ventricular fibrillation in patients with Brugada syndrome. Circ. J. 74, 2572–2578 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Bezzina, C. R. et al. Common sodium channel promoter haplotype in Asian subjects underlies variability in cardiac conduction. Circulation 113, 338–344 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Leenhardt, A. et al. Catecholaminergic polymorphic ventricular tachycardia in children: a 7-year follow-up of 21 patients. Circulation 91, 1512–1519 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Priori, S. G. et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103, 196–200 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Laitinen, P. J. et al. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 103, 485–490 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Medeiros-Domingo, A. et al. Comprehensive open reading frame mutational analysis of the RYR2-encoded ryanodine receptor/calcium channel in patients diagnosed previously with either catecholaminergic polymorphic ventricular tachycardia or genotype negative, exercise-induced long QT syndrome. J. Am. Coll. Cardiol. 54, 2065–2074 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lahat, H. et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am. J. Hum. Genet. 69, 1378–1384 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cerrone, M., Napolitano, C. & Priori, S. G. Catecholaminergic polymorphic ventricular tachycardia: a paradigm to understand mechanisms of arrhythmias associated to impaired Ca2+ regulation. Heart Rhythm 6, 1652–1659 (2009).

    Article  PubMed  Google Scholar 

  60. Nyegaard, M. et al. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am. J. Hum. Genet. 91, 703–712 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Roux-Buisson, N. et al. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum. Mol. Genet. 21, 2759–2767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tester, D. J. et al. Genotypic heterogeneity and phenotypic mimicry among unrelated patients referred for catecholaminergic polymorphic ventricular tachycardia genetic testing. Heart Rhythm 3, 800–805 (2006).

    Article  PubMed  Google Scholar 

  63. Priori, S. G. et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 106, 69–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Hayashi, M. et al. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation 119, 2426–2434 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. van der Werf, C. et al. Familial evaluation in catecholaminergic polymorphic ventricular tachycardia: disease penetrance and expression in cardiac ryanodine receptor mutation-carrying relatives. Circ. Arrhythm. Electrophysiol. 5, 748–756 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Brugada, R. et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109, 30–35 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Bellocq, C. et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 109, 2394–2397 (2004).

    Article  PubMed  Google Scholar 

  68. Priori, S. G. et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ. Res. 96, 800–807 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Haïssaguerre, M. et al. Ventricular fibrillation with prominent early repolarization changes associated to a rare variant of KCNJ8/KATP channel. J. Cardiovasc. Electrophysiol. 20, 93–98 (2009).

    Article  PubMed  Google Scholar 

  70. Watanabe, H. et al. Electrocardiographic characteristics and SCN5A mutations in idiopathic ventricular fibrillation associated with early repolarization. Circ. Arrhythm. Electrophysiol. 4, 874–881 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Burashnikov, E. et al. Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death. Heart Rhythm 7, 1872–1882 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kruse, M. et al. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J. Clin. Invest. 119, 2737–2744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schott, J. J. et al. Cardiac conduction defects associate with mutations in SCN5A. Nat. Genet. 23, 20–21 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Alders, M. et al. Haplotype sharing analysis implicates chromosome 7q36 harboring DPP6 in familial idiopathic ventricular fibrillation. Am. J. Hum. Genet. 84, 468–476 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Chen, Y. H. et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299, 251–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Yang, Y. et al. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am. J. Hum. Genet. 75, 899–905 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xia, M. et al. A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem. Biophys. Res. Commun. 332, 1012–1019 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Bartos, D. C. et al. R231C mutation in KCNQ1 causes long QT syndrome type 1 and familial atrial fibrillation. Heart Rhythm 8, 48–55 (2011).

    Article  PubMed  Google Scholar 

  79. Schulze-Bahr, E. et al. Pacemaker channel dysfunction in a patient with sinus node disease. J. Clin. Invest. 111, 1537–1545 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Benson, D. W. et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J. Clin. Invest. 112, 1019–1028 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Laurent, G. et al. Multifocal ectopic Purkinje-related premature contractions: a new SCN5A-related cardiac channelopathy. J. Am. Coll. Cardiol. 60, 144–156 (2012).

    Article  PubMed  Google Scholar 

  82. Saffitz, J. E. The pathobiology of arrhythmogenic cardiomyopathy. Annu. Rev. Pathol. 6, 299–321 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Gersch, B. J. et al. ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 58, e212–e260 (2011).

    Article  Google Scholar 

  84. Christiaans, I. et al. Manifest disease, risk factors for sudden cardiac death, and cardiac events in a large nationwide cohort of predictively tested hypertrophic cardiomyopathy mutation carriers: determining the best cardiological screening strategy. Eur. Heart J. 32, 1161–1170 (2011).

    Article  PubMed  Google Scholar 

  85. Christiaans, I. et al. Risk stratification for sudden cardiac death in hypertrophic cardiomyopathy: systematic review of clinical risk markers. Europace 12, 313–321 (2010).

    Article  PubMed  Google Scholar 

  86. Watkins, H., Thierfelder, L. & Hwang, D. S. et al. Sporadic hypertrophic cardiomyopathy due to de novo myosin mutations. J. Clin. Invest. 90, 1666–1671 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Watkins, H. et al. Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. N. Engl. J. Med. 332, 1058–1064 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Watkins, H. et al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N. Engl. J. Med. 326, 1108–1114 (1992).

    Article  CAS  PubMed  Google Scholar 

  89. Varnava, A. M. et al. Hypertrophic cardiomyopathy: histopathological features of sudden death in cardiac troponin T disease. Circulation 104, 1380–1384 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Pasquale, F. et al. Long-term outcomes in hypertrophic cardiomyopathy caused by mutations in the cardiac troponin T gene. Circ. Cardiovasc. Genet. 5, 10–17 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Richard, P. et al. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107, 2227–2232 (2003).

    Article  PubMed  Google Scholar 

  92. Van Driest, S. L., Ommen, S. R., Tajik, A. J., Gersh, B. J. & Ackerman, M. J. Yield of genetic testing in hypertrophic cardiomyopathy. Mayo Clin. Proc. 80, 739–744 (2005).

    Article  PubMed  Google Scholar 

  93. Mestroni, L. et al. Guidelines for the study of familial dilated cardiomyopathies: collaborative research group of the European Human and Capital Mobility Project on familial dilated cardiomyopathy. Eur. Heart J. 20, 93–102 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. van Spaendonck-Zwarts, K. Y. et al. Genetic analysis in 418 index patients with idiopathic dilated cardiomyopathy: overview of 10 years' experience. Eur. J. Heart Fail. 15, 628–636 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Herman, D. S. et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 366, 619–628 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. van Rijsingen, I. A. et al. Risk factors for malignant ventricular arrhythmias in lamin A/C mutation carriers: a European cohort study. J. Am. Coll. Cardiol. 59, 493–500 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Basso, C., Corrado, D., Bauce, B. & Thiene, G. Arrhythmogenic right ventricular cardiomyopathy. Circ. Arrhythm. Electrophysiol. 5, 1233–1246 (2012).

    Article  PubMed  Google Scholar 

  98. Kapplinger, J. D. et al. Distinguishing arrhythmogenic right ventricular cardiomyopathy/dysplasia-associated mutations from background genetic noise. J. Am. Coll. Cardiol. 57, 2317–2327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Al-Jassar, C. et al. The nonlinear structure of the desmoplakin plakin domain and the effects of cardiomyopathy-linked mutations. J. Mol. Biol. 411, 1049–1061 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Quarta, G. et al. Familial evaluation in arrhythmogenic right ventricular cardiomyopathy: impact of genetics and revised task force criteria. Circulation 123, 2701–2709 (2011).

    Article  PubMed  Google Scholar 

  101. Cox, M. G. et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy: pathogenic desmosome mutations in index-patients predict outcome of family screening: Dutch Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Genotype–Phenotype Follow-up Study. Circulation 123, 2690–2700 (2011).

    Article  PubMed  Google Scholar 

  102. Semsarian, C. & Hamilton, R. M. Key role of the molecular autopsy in sudden unexpected death. Heart Rhythm 9, 145–150 (2012).

    Article  PubMed  Google Scholar 

  103. Raju, H. & Behr, E. R. Unexplained sudden death, focussing on genetics and family phenotyping. Curr. Opin. Cardiol. 28, 19–25 (2013).

    Article  PubMed  Google Scholar 

  104. Giudicessi, J. R. et al. Phylogenetic and physicochemical analyses enhance the classification of rare nonsynonymous single nucleotide variants in type 1 and 2 long-QT syndrome. Circ. Cardiovasc. Genet. 5, 519–528 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Andreasen, C. et al. New population-based exome data are questioning the pathogenicity of previously cardiomyopathy-associated genetic variants. Eur. J. Hum. Genet. http://dx.doi.org/10.1038/ejhg.2012.283.

  106. Refsgaard, L. et al. High prevalence of genetic variants previously associated with LQT syndrome in new exome data. Eur. J. Hum. Genet. 20, 905–908 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ingles, J. et al. The emerging role of the cardiac genetic counselor. Heart Rhythm 8, 1958–1962 (2011).

    Article  PubMed  Google Scholar 

  108. Hershberger, R. E. et al. Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circ. Cardiovasc. Genet. 3, 155–161 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ohno, S. et al. KCNE5 (KCNE1L) variants are novel modulators of Brugada syndrome and idiopathic ventricular fibrillation. Circ. Arrhythm. Electrophysiol. 4, 352–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Bartos, D. C. et al. A KCNQ1 mutation causes a high penetrance for familial atrial fibrillation. J. Cardiovasc. Electrophysiol. 24, 562–569 (2012).

    Article  Google Scholar 

  111. Yang, Y. et al. Identification of a Kir3.4 mutation in congenital long QT syndrome. Am. J. Hum. Genet. 86, 872–880 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Medeiros-Domingo, A. et al. Gain-of-function mutation S422L in the KCNJ8-encoded cardiac KATP channel Kir6.1 as a pathogenic substrate for J-wave syndromes. Heart Rhythm 7, 1466–1471 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Bienengraeber, M. et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat. Genet. 36, 382–387 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hayashi, T. et al. Identification and functional analysis of a caveolin-3 mutation associated with familial hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun. 313, 178–184 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Ishikawa, T. et al. A novel disease gene for Brugada syndrome: sarcolemmal membrane-associated protein gene mutations impair intracellular trafficking of hNav1.5. Circ. Arrhythm. Electrophysiol. 5, 1098–1107 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Koop, A., Goldmann, P., Chen, S. R. W., Thieleczek, R. & Varsányi, M. ARVC-related mutations in divergent region 3 alter functional properties of the cardiac ryanodine receptor. Biophys. J. 94, 4668–4677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Crotti, L. et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation 127, 1009–1017 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Landstrom, A. P. et al. Mutations in JPH2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. J. Mol. Cell. Cardiol. 42, 1026–1035 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Landstrom, A. P., Adekola, B. A., Bos, J. M., Ommen, S. R. & Ackerman, M. J. PLN-encoded phospholamban mutation in a large cohort of hypertrophic cardiomyopathy cases: summary of the literature and implications for genetic testing. Am. Heart J. 161, 165–171 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. van der Zwaag, P. A. et al. Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur. J. Heart Fail. 14, 1199–1207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, D. et al. Mutations of presenilin genes in dilated cardiomyopathy and heart failure. Am. J. Hum. Genet. 79, 1030–1039 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Landstrom, A. P. & Ackerman, M. J. Beyond the cardiac myofilament: hypertrophic cardiomyopathy-associated mutations in genes that encode calcium-handling proteins. Curr. Mol. Med. 12, 507–518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, H. et al. Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel. PLoS ONE 8, e54131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ueda, K. et al. Role of HCN4 channel in preventing ventricular arrhythmia. J. Hum. Genet. 54, 115–121 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Perrot, A. et al. Prevalence of cardiac β-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy. J. Mol. Med. (Berl.) 83, 468–477 (2005).

    Article  CAS  Google Scholar 

  126. Kaski, J. P. et al. Prevalence of sarcomere protein gene mutations in preadolescent children with hypertrophic cardiomyopathy. Circ. Cardiovasc. Genet. 2, 436–441 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Villard, E. et al. Mutation screening in dilated cardiomyopathy: prominent role of the β myosin heavy chain gene. Eur. Heart J. 26, 794–803 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Carniel, E. et al. α-Myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation 112, 54–59 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Karibe, A. et al. Hypertrophic cardiomyopathy caused by a novel α-tropomyosin mutation (V95A) is associated with mild cardiac phenotype, abnormal calcium binding to troponin, abnormal myosin cycling, and poor prognosis. Circulation 103, 65–71 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Watkins, H. et al. A de novo mutation in α-tropomyosin that causes hypertrophic cardiomyopathy. Circulation 91, 2302–2305 (1995).

    Article  CAS  PubMed  Google Scholar 

  131. Vasile, V. C. et al. Identification of a metavinculin missense mutation, R975W, associated with both hypertrophic and dilated cardiomyopathy. Mol. Genet. Metab. 87, 169–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Geier, C. et al. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Hum. Mol. Genet. 17, 2753–2765 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Hayashi, T. et al. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J. Am. Coll. Cardiol. 44, 2192–2201 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Duboscq-Bidot, L. et al. Mutations in the ANKRD1 gene encoding CARP are responsible for human dilated cardiomyopathy. Eur. Heart J. 30, 2128–2136 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Duboscq-Bidot, L. et al. Mutations in the Z-band protein myopalladin gene and idiopathic dilated cardiomyopathy. Cardiovasc. Res. 77, 118–125 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Mohapatra, B. et al. Mutations in the muscle LIM protein and α-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol. Genet. Metab. 80, 207–215 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Chiu, C. et al. Mutations in α-actinin-2 cause hypertrophic cardiomyopathy: a genome-wide analysis. J. Am. Coll. Cardiol. 55, 1127–1135 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Osio, A. et al. Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circ. Res. 100, 766–768 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ruggiero, A., Chen, S. N., Lombardi, R., Rodriguez, G. & Marian, A. J. Pathogenesis of hypertrophic cardiomyopathy caused by myozenin 2 mutations is independent of calcineurin activity. Cardiovasc. Res. 97, 44–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Hassel, D. et al. Nexilin mutations destabilize cardiac Z-disks and lead to dilated cardiomyopathy. Nat. Med. 15, 1281–1288 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Wang, H. et al. Mutations in NEXN, a Z-disc gene, are associated with hypertrophic cardiomyopathy. Am. J. Hum. Genet. 87, 687–693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Pilotto, A. et al. αB-crystallin mutation in dilated cardiomyopathies: low prevalence in a consecutive series of 200 unrelated probands. Biochem. Biophys. Res. Comm. 346, 1115–1117 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Sriram, C. S., Bos, J. M., Ommen, S. R. & Ackerman, M. J. Mutational analysis of CRYAB-encoded crystallin αB in hypertrophic cardiomyopathy [abstract 1625]. Circulation 116 (Suppl. II) 340 (2007).

    Google Scholar 

  144. Ferlini, A., Sewry, C., Melis, M. A., Mateddu, A. & Muntoni, F. X-linked dilated cardiomyopathy and the dystrophin gene. Neuromuscul. Disord. 9, 339–346 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Tse, H.-F. et al. Patient-specific induced-pluripotent stem cells-derived cardiomyocytes recapitulate the pathogenic phenotypes of dilated cardiomyopathy due to a novel DES mutation identified by whole exome sequencing. Hum. Mol. Genet 22, 1395–1403 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Arola, A. M. et al. Mutations in PDLIM3 and MYOZ1 encoding myocyte Z line proteins are infrequently found in idiopathic dilated cardiomyopathy. Mol. Genet. Metab. 90, 435–440 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Manouvrier, S. et al. Point mutation of the mitochondrial tRNA(Leu) gene (A 3243 G) in maternally inherited hypertrophic cardiomyopathy, diabetes mellitus, renal failure, and sensorineural deafness. J. Med. Genet. 32, 654–656 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Müller, T., Krasnianski, M., Witthaut, R., Deschauer, M. & Zierz, S. Dilated cardiomyopathy may be an early sign of the C826A Fukutin-related protein mutation. Neuromuscul. Disord. 15, 372–376 (2005).

    Article  PubMed  Google Scholar 

  149. Knöll, R. et al. Laminin-α4 and integrin-linked kinase mutations cause human cardiomyopathy via simultaneous defects in cardiomyocytes and endothelial cells. Circulation 116, 515–525 (2007).

    Article  PubMed  CAS  Google Scholar 

  150. Arimura, T. et al. Mutational analysis of fukutin gene in dilated cardiomyopathy and hypertrophic cardiomyopathy. Circ. J. 73, 158–161 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Payne, R. M. & Wagner, G. R. Cardiomyopathy in Friedreich ataxia: clinical findings and research. J. Child Neurol. 27, 1179–1186 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Tsubata, S. et al. Mutations in the human δ-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J. Clin. Invest. 106, 655–662 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Erhardt, A. et al. HFE mutations in idiopathic dilated cardiomyopathy. Med. Klin. (Munich) 101 (Suppl. 1), 135–138 (2006).

    CAS  Google Scholar 

  154. Hodgkinson, K. et al. The natural history of a genetic subtype of arrhythmogenic right ventricular cardiomyopathy caused by a p.S358L mutation in TMEM43. Clin. Genet. 83, 321–331 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Maron, B. J. et al. Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA 301, 1253–1259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Havndrup, O. et al. Fabry disease mimicking hypertrophic cardiomyopathy: genetic screening needed for establishing the diagnosis in women. Eur. J. Heart Fail. 12, 535–540 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Kelly, B. P., Russell, M. W., Hennessy, J. R. & Ensing, G. J. Severe hypertrophic cardiomyopathy in an infant with a novel PRKAG2 gene mutation: potential differences between infantile and adult onset presentation. Pediat. Cardiol. 30, 1176–1179 (2009).

    Article  Google Scholar 

  158. Carcavilla, A. et al. LEOPARD syndrome: a variant of Noonan syndrome strongly associated with hypertrophic cardiomyopathy. Rev. Esp. Cardiol. 6, 350–356 (2013).

    Article  Google Scholar 

  159. Pandit, B. et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat. Genet. 39, 1007–1012 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Davis, J. S. et al. The overall pattern of cardiac contraction depends on a spatial gradient of myosin regulatory light chain phosphorylation. Cell 107, 631–641 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Hershberger, R. E. et al. Genetic evaluation of cardiomyopathy—a Heart Failure Society of America practice guideline. J. Card. Fail. 15, 83–97 (2009).

    Article  PubMed  Google Scholar 

  162. Norgett, E. E. et al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum. Mol. Genet. 9, 2761–2766 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Elliott, P. et al. Prevalence of desmosomal protein gene mutations in patients with dilated cardiomyopathy. Circ. Cardiovasc. Genet. 3, 314–322 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Friedrich, F. W. et al. Evidence for FHL1 as a novel disease gene for isolated hypertrophic cardiomyopathy. Hum. Mol. Genet. 21, 3237–3254 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Binder, J. S. et al. Spongious hypertrophic cardiomyopathy in patients with mutations in the four-and-a-half LIM domain 1 gene. Circ. Cardiovasc. Genet. 5, 490–502 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Arimura, T. et al. Structural analysis of four and half LIM protein-2 in dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 357, 162–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Beffagna, G. et al. Missense mutations in desmocollin-2 N-terminus, associated with arrhythmogenic right ventricular cardiomyopathy, affect intracellular localization of desmocollin-2 in vitro. BMC Med. Genet. 8, 65 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Bione, S. et al. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat. Genet. 12, 385–389 (1996).

    Article  CAS  PubMed  Google Scholar 

  169. Arbustini, E. et al. Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am. J. Pathol. 153, 1501–1510 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Levitas, A. et al. Familial neonatal isolated cardiomyopathy caused by a mutation in the flavoprotein subunit of succinate dehydrogenase. Eur. J. Hum. Genet. 18, 1160–1165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Guo, W. et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat. Med. 18, 766–773 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Quarta, G. et al. Mutations in the lamin A/C gene mimic arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 33, 1128–1136 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Taylor, M. R. G. et al. Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum. Mut. 26, 566–574 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Theis, J. L. et al. Homozygosity mapping and exome sequencing reveal GATAD1 mutation in autosomal recessive dilated cardiomyopathy. Circ. Cardiovasc. Genet. 4, 585–594 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lefeber, D. J. et al. Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet. 7, e1002427 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Beffagna, G. et al. Regulatory mutations in transforming growth factor-β3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc. Res. 65, 366–373 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A. A. M. Wilde is also affiliated with the Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its contents, wrote the manuscript, and reviewed/edited the article before submission.

Corresponding author

Correspondence to Arthur A. M. Wilde.

Ethics declarations

Competing interests

A. A. M. Wilde declares that he is a member of the advisory board of Sorin. E. R. Behr declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilde, A., Behr, E. Genetic testing for inherited cardiac disease. Nat Rev Cardiol 10, 571–583 (2013). https://doi.org/10.1038/nrcardio.2013.108

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing