Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease—an evidence-based guideline

Abstract

Over the past 5 years, the advent of echocardiographic screening for rheumatic heart disease (RHD) has revealed a higher RHD burden than previously thought. In light of this global experience, the development of new international echocardiographic guidelines that address the full spectrum of the rheumatic disease process is opportune. Systematic differences in the reporting of and diagnostic approach to RHD exist, reflecting differences in local experience and disease patterns. The World Heart Federation echocardiographic criteria for RHD have, therefore, been developed and are formulated on the basis of the best available evidence. Three categories are defined on the basis of assessment by 2D, continuous-wave, and color-Doppler echocardiography: 'definite RHD', 'borderline RHD', and 'normal'. Four subcategories of 'definite RHD' and three subcategories of 'borderline RHD' exist, to reflect the various disease patterns. The morphological features of RHD and the criteria for pathological mitral and aortic regurgitation are also defined. The criteria are modified for those aged over 20 years on the basis of the available evidence. The standardized criteria aim to permit rapid and consistent identification of individuals with RHD without a clear history of acute rheumatic fever and hence allow enrollment into secondary prophylaxis programs. However, important unanswered questions remain about the importance of subclinical disease (borderline or definite RHD on echocardiography without a clinical pathological murmur), and about the practicalities of implementing screening programs. These standardized criteria will help enable new studies to be designed to evaluate the role of echocardiographic screening in RHD control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic images of the MV in systole.
Figure 2: Schematic images of the MV in diastole.

Similar content being viewed by others

References

  1. Carapetis, J. R., Steer, A. C., Mulholland, E. K. & Weber, M. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 5, 685–694 (2005).

    Article  PubMed  Google Scholar 

  2. Special Writing Group of the Committee on Rheumatic Fever and Kawasaki Disease of the Council on Cardiovascular Disease in the Young of the American Heart Association. Guidelines for the diagnosis of rheumatic fever. Jones Criteria, 1992 update. JAMA 268, 2069–2073 (1992).

  3. World Health Organisation. Rheumatic Fever and Rheumatic Heart Disease: Report of a WHO Expert Consultation, Geneva, 29 October–1 November 2001. WHO [online] (2010).

  4. National Heart Foundation of Australia and the Cardiac Society of Australia and New Zealand. Diagnosis and management of acute rheumatic fever and rheumatic heart disease in Australia—an evidence-based review. Heart Foundation [online] (2006).

  5. Heart Foundation of New Zealand and Cardiac Society of Australia and New Zealand. New Zealand guidelines for rheumatic fever 1: diagnosis, management and secondary prevention. Heart Foundation [online] (2006).

  6. Feinstein, A. R. et al. Rheumatic fever in children and adolescents. A long-term epidemiologic study of subsequent prophylaxis, streptococcal infections, and clinical sequelae. vi. Clinical features of streptococcal infections and rheumatic recurrences. Ann. Intern. Med. 60 (Suppl. 5), 68–86 (1964).

    Article  Google Scholar 

  7. Tompkins, D. G., Boxerbaum, B. & Liebman, J. Long-term prognosis of rheumatic fever patients receiving regular intramuscular benzathine penicillin. Circulation 45, 543–551 (1972).

    Article  CAS  PubMed  Google Scholar 

  8. Kassem, A. S., el-Walili, T. M., Zaher, S. R. & Ayman, M. Reversibility of mitral regurgitation following rheumatic fever: Clinical profile and echocardiographic evaluation. Indian J. Pediatr. 62, 717–723 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Milliken, A. The short term morbidity of acute rheumatic fever in children and youth under the age of 20 years at first diagnosis in Auckland, 1998–1999 (The University of Auckland, Auckland, 2003).

  10. Talbot, R. G. Rheumatic fever and rheumatic heart disease in the Hamilton health district: II. Long term follow-up and secondary prophylaxis. N. Z. Med. J. 97, 634–637 (1984).

    CAS  PubMed  Google Scholar 

  11. Abbasi, A. S., Hashmi, J. A., Robinson, R. D. Jr., Suraya, S. & Syed, S. A. Prevalence of heart disease in school children of Karachi. Am. J. Cardiol. 18, 544–547 (1966).

    Article  CAS  PubMed  Google Scholar 

  12. Maharaj, B. et al. Screening for rheumatic heart disease amongst black school children in Inanda, South Africa. J. Trop. Pediatr. 33, 60–61 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Kumar, P., Garhwal, S. & Chaudhary, V. Rheumatic heart disease: a school survey in a rural area of Rajasthan. Indian Heart J. 44, 245–246 (1992).

    CAS  PubMed  Google Scholar 

  14. Steer, A. C., Adams, J., Carlin, J., Nolan, T. & Shann, F. Rheumatic heart disease in school children in Samoa. Arch. Dis. Child. 81, 372 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Steer, A. C. et al. High prevalence of rheumatic heart disease by clinical and echocardiographic screening among children in Fiji. J. Heart Valve Dis. 18, 327–335 (2009).

    PubMed  Google Scholar 

  16. Marijon, E. et al. Rheumatic heart disease screening by echocardiography: The inadequacy of world health organization criteria for optimizing the diagnosis of subclinical disease. Circulation 120, 663–668 (2009).

    Article  PubMed  Google Scholar 

  17. Carapetis, J. R. et al. Evaluation of a screening protocol using auscultation and portable echocardiography to detect asymptomatic rheumatic heart disease in Tongan schoolchildren. Nat. Clin. Pract. Cardiovasc. Med. 5, 411–417 (2008).

    Article  PubMed  Google Scholar 

  18. Paar, J. A. et al. Prevalence of rheumatic heart disease in children and young adults in Nicaragua. Am. J. Cardiol. 105, 1809–1814 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Webb, R. H. et al. Optimising echocardiographic screening for rheumatic heart disease in New Zealand: not all valve disease is rheumatic. Cardiol. Young 21, 436–443 (2011).

    Article  PubMed  Google Scholar 

  20. Reeves, B. M., Kado, J. & Brook, M. High prevalence of rheumatic heart disease in Fiji detected by echocardiography screening. J. Paediatr. Child Health 47, 473–478 (2011).

    Article  PubMed  Google Scholar 

  21. Bhaya, M., Panwar, S., Beniwal, R. & Panwar, R. B. High prevalence of rheumatic heart disease detected by echocardiography in school children. Echocardiography 27, 448–453 (2010).

    Article  PubMed  Google Scholar 

  22. Marijon, E. et al. Prevalence of rheumatic heart disease detected by echocardiographic screening. N. Engl. J. Med. 357, 470–476 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Carapetis, J., Parr, J. & Cherian, T. Standardization of epidemiologic protocols for surveillance of post-streptococcal sequelae: acute rheumatic fever, rheumatic heart disease and acute post-streptococcal glomerulonephritis. Department of Health and Human Services, National Institutes of Health [online] (2010).

    Google Scholar 

  24. Nair, R., Aggarwal, R. & Khanna, D. Methods of formal consensus in classification/diagnostic criteria and guideline development. Semin. Arthritis Rheum. 41, 95–105 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Scottish Intercollegiate Guidelines Network. SIGN 50: a guideline developer's handbook. Scottish Intercollegiate Guidelines Network [online] (2011).

  26. Jaine, R., Baker, M. & Venugopal, K. Epidemiology of acute rheumatic fever in New Zealand 1996–2005. J. Paediatr. Child Health 44, 564–571 (2008).

    Article  PubMed  Google Scholar 

  27. Spinetto, H., Lennon, D. & Horsburgh, M. Rheumatic fever recurrence prevention: a nurse led programme of 28 day penicillin in an area of high endemnicity. J. Paediatr. Child Health 47, 228–234 (2011).

    Article  PubMed  Google Scholar 

  28. Jaine, R., Baker, M. & Venugopal, K. Acute rheumatic fever associated with household crowding in a developed country. Pediatr. Infect. Dis. J. 30, 315–319 (2011).

    Article  PubMed  Google Scholar 

  29. Longo-Mbenza, B. et al. Survey of rheumatic heart disease in school children of Kinshasa town. Int. J. Cardiol. 63, 287–294 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Sultan, F. A. et al. Rheumatic tricuspid valve disease: an evidence-based systematic overview. J. Heart Valve Dis. 19, 374–382 (2010).

    PubMed  Google Scholar 

  31. Alkhalifa, M. S., Ibrahim, S. A. & Osman, S. H. Pattern and severity of rheumatic valvular lesions in children in Khartoum, Sudan. East. Mediterr. Health J. 14, 1015–1021 (2007).

    Google Scholar 

  32. Saleh, H. K. Pattern of rheumatic heart disease in Southern Yemen. Saudi Med. J. 28, 108–113 (2007).

    PubMed  Google Scholar 

  33. Aurakzai, H. A. et al. Echocardiographic profile of rheumatic heart disease at a tertiary cardiac centre. J. Ayub Med. Coll. Abbottabad. 21, 122–126 (2009).

    PubMed  Google Scholar 

  34. Marcus, R. H., Sareli, P., Pocock, W. A. & Barlow, J. B. The spectrum of severe rheumatic mitral valve disease in a developing country. Correlations among clinical presentation, surgical pathological findings, and hemodynamic sequelae. Ann. Intern. Med. 120, 177–183 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Vasan, R. S. et al. Echocardiographic evaluation of patients with acute rheumatic fever and rheumatic carditis. Circulation 94, 73–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Yuko-Jowi, C. & Bakari, M. Echocardiographic patterns of juvenile rheumatic heart disease at the Kenyatta National Hospital, Nairobi. East Afr. Med. J. 82, 514–519 (2005).

    CAS  PubMed  Google Scholar 

  37. Lembo, N. J. et al. Mitral valve prolapse in patients with prior rheumatic fever. Circulation. 77, 830–836 (1988).

    Article  CAS  PubMed  Google Scholar 

  38. Atalay, S., Ucar, T., Ozcelik, N., Ekici, F. & Tutar, E. Echocardiographic evaluation of mitral valve in patients with pure rheumatic mitral regurgitation. Turk. J. Pediatr. 49, 148–153 (2007).

    PubMed  Google Scholar 

  39. Vijayalakshmi, I. B., Vishnuprabhu, R. O., Chitra, N., Rajasri, R. & Anuradha, T. V. The efficacy of echocardiographic criterions for the diagnosis of carditis in acute rheumatic fever. Cardiol. Young 18, 586–592 (2008).

    Article  PubMed  Google Scholar 

  40. Camara, E. J., Neubauer, C., Camara, G. F. & Lopes, A. A. Mechanisms of mitral valvar insufficiency in children and adolescents with severe rheumatic heart disease: an echocardiographic study with clinical and epidemiological correlations. Cardiol. Young 14, 527–532 (2004).

    Article  PubMed  Google Scholar 

  41. Kalangos, A. et al. Anterior mitral leaflet prolapse as a primary cause of pure rheumatic mitral insufficiency. Ann. Thorac. Surg. 69, 755–761 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Chauvaud, S. et al. Long-term (29 years) results of reconstructive surgery in rheumatic mitral valve insufficiency. Circulation 104 (12 Suppl. 1), I12–I15 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Skoularigis, J., Sinovich, V., Joubert, G. & Sareli, P. Evaluation of the long-term results of mitral valve repair in 254 young patients with rheumatic mitral regurgitation. Circulation 90 (5 Pt 2), II167–II174 (1994).

    CAS  PubMed  Google Scholar 

  44. Tomaru, T. et al. Postinflammatory mitral and aortic valve prolapse: a clinical and pathological study. Circulation 76, 68–76 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Ungar, H. & Ben-Ishay, Z. Rheumatic and age changes of the heart in Israel: pathological and statistical study. Isr. J. Med. Sci. 1, 50–61 (1965).

    CAS  PubMed  Google Scholar 

  46. van der Bel-Kahn, J. & Becker, A. E. The surgical pathology of rheumatic and floppy mitral valves. Distinctive morphologic features upon gross examination. Am. J. Surg. Pathol. 10, 282–292 (1986).

    Article  CAS  PubMed  Google Scholar 

  47. Feigenbaum, H., Armstrong, W. F. & Ryan, T. (Eds) Feigenbaum's Echocardiography, 6th edn Vol. 1 (Lippincott Williams & Wilkins, Philadelphia, 2005).

    Google Scholar 

  48. Waller, B. F., Howard, J. & Fess, S. Pathology of mitral valve stenosis and pure mitral regurgitation—Part I. Clin. Cardiol. 17, 330–336 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Iung, B. et al. Valvular heart disease in the community: a European experience. Curr. Prob. Cardiol. 32, 609–661 (2007).

    Article  Google Scholar 

  50. Olson, L. J., Subramanian, R., Ackermann, D. M., Orszulak, T. A. & Edwards, W. D. Surgical pathology of the mitral valve: a study of 712 cases spanning 21 years. Mayo Clin. Proc. 62, 22–34 (1984).

    Article  Google Scholar 

  51. Ratnakar, K. S., Rajagopal, P. & Somaraju, B. Surgical pathology of mitral valves—the Indian scene. Int. J. Cardiol. 24, 124–126 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Wilkins, G. T., Weyman, A. E., Abascal, V. M., Block, P. C. & Palacios, I. F. Percutaneous balloon dilatation of the mitral valve: an analysis of echocardiographic variables related to outcome and the mechanism of dilatation. Br. Heart J. 60, 299–308 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moore, P. et al. Valvular heart disease: severe congenital mitral stenosis in infants. Circulation 89, 2099–2106 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. McElhinney, D. B. et al. Current management of severe congenital mitral stenosis: outcomes of transcatheter and surgical therapy in 108 infants and children. Circulation 112, 707–714 (2005).

    Article  PubMed  Google Scholar 

  55. Serraf, A. et al. Congenital mitral stenosis with or without associated defects: an evolving surgical strategy. Circulation 102 (19 Suppl. 3), III166–III171 (2000).

    CAS  PubMed  Google Scholar 

  56. Selamet Tierney, E. S. et al. Echocardiographic predictors of mitral stenosis-related death or intervention in infants. Am. Heart J. 156, 384–390 (2008).

    Article  PubMed  Google Scholar 

  57. Akram, M. R., Chan, T., McAuliffe, S. & Chenzbraun, A. Non-rheumatic annular mitral stenosis: prevalence and characteristics. Eur. J. Echocardiogr. 10, 103–105 (2009).

    Article  PubMed  Google Scholar 

  58. Chockalingam, A., Gnanavelu, G., Elangovan, S. & Chockalingam, V. Clinical spectrum of chronic rheumatic heart disease in India. J. Heart Valve Dis. 12, 577–581 (2003).

    PubMed  Google Scholar 

  59. Tantchou Tchoumi, J. C. & Butera, G. Rheumatic valvulopathies occurence, pattern and follow-up in rural area: the experience of the Shisong Hospital, Cameroon. Bull. Soc. Pathol. Exot. 102, 155–158 (2009).

    CAS  PubMed  Google Scholar 

  60. Essien, I. O. et al. One year echocardiographic study of rheumatic heart disease at Enugu, Nigeria. Niger. Postgrad. Med. J. 15, 175–178 (2008).

    CAS  PubMed  Google Scholar 

  61. Sani, M. U., Karaye, K. M. & Borodo, M. M. Prevalence and pattern of rheumatic heart disease in the Nigerian savannah: an echocardiographic study. Cardiovasc. J. Afr. 18, 295–299 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Deshpande, J., Vaideeswar, P., Amonkar, G. & Vasandani, S. Rheumatic heart disease in the past decade: an autopsy analysis. Ind. Heart J. 54, 676–680 (2002).

    Google Scholar 

  63. Ozer, O., Davutoglu, V., Sari, I., Akkoyun, D. C. & Sucu, M. The spectrum of rheumatic heart disease in the southeastern Anatolia endemic region: results from 1900 patients. J. Heart Valve Dis. 18, 68–72 (2009).

    PubMed  Google Scholar 

  64. Clawson, B. J. Rheumatic heart disease. An analysis of 796 cases. Am. Heart J. 20, 454–474 (1940).

    Article  Google Scholar 

  65. Ba-Saddik, I. A. et al. Prevalence of rheumatic heart disease among school-children in Aden, Yemen. Ann. Trop. Paediatr. 31, 37–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Ravisha, M. S., Tullu, M. S. & Kamat, J. R. Rheumatic fever and rheumatic heart disease: clinical profile of 550 cases in India. Arch. Med. Res. 34, 382–387 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Dawber, T. R. & Stokes, J. 3rd. Rheumatic heart disease in the Framingham study. N. Engl. J. Med. 255, 1228–1233 (1956).

    Article  CAS  PubMed  Google Scholar 

  68. Veasy, L. G., Tani, L. Y. & Hill, H. R. Persistence of acute rheumatic fever in the intermountain area of the United States. J. Pediatr. 124, 9–16 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Olson, L. J., Subramanian, R. & Edwards, W. D. Surgical pathology of pure aortic insufficiency: a study of 225 cases. Mayo Clin. Proc. 59, 835–841 (1984).

    Article  CAS  PubMed  Google Scholar 

  70. Fox, E. R. et al. Epidemiology of pure valvular regurgitation in the large middle-aged African American cohort of the Atherosclerosis Risk in Communities study. Am. Heart J. 154, 1229–1234 (2007).

    Article  PubMed  Google Scholar 

  71. Reid, C. L., Anton-Culver, H., Yunis, C. & Gardin, J. M. Prevalence and clinical correlates of isolated mitral, isolated aortic regurgitation, and both in adults aged 21 to 35 years (from the CARDIA study). Am. J. Cardiol. 99, 830–834 (2007).

    Article  PubMed  Google Scholar 

  72. Singh, J. P. et al. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am. J. Cardiol. 83, 897–902 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Palmieri, V. et al. Aortic root dilatation at sinuses of valsalva and aortic regurgitation in hypertensive and normotensive subjects: the Hypertension Genetic Epidemiology Network Study. Hypertension 37, 1229–1235 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Klein, A. L. et al. Age-related prevalence of valvular regurgitation in normal subjects: a comprehensive color flow examination of 118 volunteers. J. Am. Soc. Echocardiogr. 3, 54–63 (1990).

    Article  CAS  PubMed  Google Scholar 

  75. Sahasakul, Y., Edwards, W. D., Naessens, J. M. & Tajik, A. J. Age-related changes in aortic and mitral valve thickness: implications for two-dimensional echocardiography based on an autopsy study of 200 normal human hearts. Am. J. Cardiol. 62, 424–430 (1988).

    Article  CAS  PubMed  Google Scholar 

  76. Yaghoubi, A. R. & Raeesi, K. Surgical pathology of excised heart valves in a referral hospital in Iran. RMJ 32, 70–72 (2007).

    Google Scholar 

  77. Yaghoubi, A. R. et al. A multi-center study of the pathologies of valvular heart diseases: 5 year analysis of more than 3400 patients in Iran. J. Cardiovasc. Thorac. Res. 2, 21–27 (2010).

    Google Scholar 

  78. Webb, R., Gentles, T., Stirling, J. & Wilson, N. Echocardiographic findings in a low risk population for rheumatic heart disease (RHD): implications for screening [Abstract; page 283]. XVIII Lancefield International Symposium [online], (2011).

    Google Scholar 

  79. Brand, A., Dollberg, S. & Keren, A. The prevalence of valvular regurgitation in children with structurally normal hearts: a color Doppler echocardiographic study. Am. Heart J. 123, 177–180 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Marcus, R. H. et al. Functional anatomy of severe mitral regurgitation in active rheumatic carditis. Am. J. Cardiol. 63, 577–584 (1989).

    Article  CAS  PubMed  Google Scholar 

  81. Wilson, N. J. & Neutze, J. M. Echocardiographic diagnosis of subclinical carditis in acute rheumatic fever. Int. J. Cardiol. 50, 1–6 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Choong, C. Y. et al. Prevalence of valvular regurgitation by Doppler echocardiography in patients with structurally normal hearts by two-dimensional echocardiography. Am. Heart J. 117, 636–642 (1989).

    Article  CAS  PubMed  Google Scholar 

  83. Yoshida, K. et al. Color Doppler evaluation of valvular regurgitation in normal subjects. Circulation 78, 840–847 (1988).

    Article  CAS  PubMed  Google Scholar 

  84. Akasaka TMD. et al. Age-related valvular regurgitation: a study by pulsed Doppler echocardiography. Circulation 76, 262–265 (1987).

    Article  CAS  PubMed  Google Scholar 

  85. Berger, M., Hecht, S. R., Van Tosh, A. & Lingam, U. Pulsed and continuous wave Doppler echocardiographic assessment of valvular regurgitation in normal subjects. J. Am. Coll. Cardiol. 13, 1540–1545 (1989).

    Article  CAS  PubMed  Google Scholar 

  86. Caldas, A. M. et al. The case for utilizing more strict quantitative Doppler echocardiographic criterions for diagnosis of subclinical rheumatic carditis. Cardiol. Young 17, 42–47 (2007).

    Article  PubMed  Google Scholar 

  87. Lanna, C. C. D., Tonelli, E., Barros, M. V. L., Goulart, E. M. A. & Mota, C. C. C. Subclinical rheumatic valvitis: a long-term follow-up. Cardiol. Young. 13, 431–438 (2003).

    PubMed  Google Scholar 

  88. Carpentier, A. Cardiac valve surgery—the “French correction”. J. Thorac. Cardiovasc. Surg. 86, 323–337 (1983).

    CAS  PubMed  Google Scholar 

  89. Anwar, A. M. et al. Validation of a new score for the assessment of mitral stenosis using real-time three-dimensional echocardiography. J. Am. Soc. Echocardiogr. 23, 13–22 (2010).

    Article  PubMed  Google Scholar 

  90. Umeda, T., Kuwako, K. & Machii, K. M-mode and cross-sectional echocardiographic evaluation of rheumatic mitral valve disease. Jpn. Circ. J. 43, 297–304 (1979).

    Article  CAS  PubMed  Google Scholar 

  91. Wann, L. S., Feigenbaum, H., Weyman, A. E. & Dillon, J. C. Cross-sectional echocardiographic detection of rheumatic mitral regurgitation. Am. J. Cardiol. 41, 1258–1263 (1978).

    Article  CAS  PubMed  Google Scholar 

  92. Naito, M., Morganroth, J., Mardelli, T. J., Chen, C. C. & Dreifus, L. S. Rheumatic mitral stenosis:cross-sectional echocardiographic analysis. Am. Heart J. 100, 34–40 (1980).

    Article  CAS  PubMed  Google Scholar 

  93. Kabukcu, M., Arslantas, E., Ates, I., Demircioglu, F. & Ersel, F. Clinical, echocardiographic, and hemodynamic characteristics of rheumatic mitral valve stenosis and atrial fibrillation. Angiology 56, 159–163 (2005).

    Article  PubMed  Google Scholar 

  94. Reid, C. L., McKay, C. R., Chandraratna, P. A., Kawanishi, D. T. & Rahimtoola, S. H. Mechanisms of increase in mitral valve area and influence of anatomic features in double-balloon, catheter balloon valvuloplasty in adults with rheumatic mitral stenosis: a Doppler and two-dimensional echocardiographic study. Circulation 76, 628–636 (1987).

    Article  CAS  PubMed  Google Scholar 

  95. Zhou, L. Y. & Lu, K. Inflammatory valvular prolapse produced by acute rheumatic carditis: echocardiographic analysis of 66 cases of acute rheumatic carditis. Int. J. Cardiol. 58, 175–178 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Murala, J. S. K. & Kumar, A. S. Long-term results of cusp-level chordal shortening for anterior mitral leaflet prolapse. Tex. Heart Inst. J. 31, 246–250 (2004).

    PubMed  PubMed Central  Google Scholar 

  97. van der Bel-Kahn, J. M. D. & Becker, A. E. M. D. The surgical pathology of rheumatic and floppy mitral valves: distinctive morphologic features upon gross examination. Am. J. Surg. Pathol. 10, 282–292 (1986).

    Article  CAS  PubMed  Google Scholar 

  98. Nazarian, I. H. & Aryanpur, I. Pathology of chronic rheumatic mitral valvulitis in Iran and its surgical implications. Jpn. Heart J. 19, 1–11 (1979).

    Article  Google Scholar 

  99. Leong, S. W. et al. Morphological findings in 192 surgically excised native mitral valves. Can. J. Cardiol. 22, 1055–1061 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Gorgulu, S. et al. Influence of different echocardiographic imaging modes on the assessment of anterior mitral leaflet thickness. J. Heart Valve Dis. 14, 204–208 (2005).

    PubMed  Google Scholar 

  101. Hirata, K. et al. Pitfalls of echocardiographic measurement in tissue harmonic imaging: in vitro and in vivo study. J. Am. Soc. Echocardiogr. 15, 1038–1044 (2002).

    Article  PubMed  Google Scholar 

  102. Prior, D. L. et al. Impact of tissue harmonic imaging on the assessment of rheumatic mitral stenosis. Am. J. Cardiol. 86, 573–576 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Hawkins, K., Henry, J. S. & Krasuski, R. A. Tissue harmonic imaging in echocardiography: better valve imaging, but at what cost? Echocardiography 25, 119–123 (2008).

    Article  PubMed  Google Scholar 

  104. Webb, R., Lean, F., Zeng, I. & Wilson, N. Objective measurement of mitral valve thickness with and without rheumatic heart disease [Abstract]. 5th World congress of paediatric cardiology and cardiac surgery [online], (2009).

    Google Scholar 

  105. Weissman, N. J. et al. In vivo mitral valve morphology and motion in mitral valve prolapse. Am. J. Cardiol. 73, 1080–1088 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. Freed, L. A. et al. Mitral valve prolapse in the general population: the benign nature of echocardiographic features in the Framingham Heart Study. J. Am. Coll. Cardiol. 40, 1298–1304 (2002).

    Article  PubMed  Google Scholar 

  107. Uysal, S., Baysal, K., Balat, A. & Yukel, M. The relationship between mitral valve prolapse and acute rheumatic fever in pediatric patients. Jpn. Heart J. 33, 585–590 (1992).

    Article  CAS  PubMed  Google Scholar 

  108. Wu, M. H., Lue, H. C., Wang, J. K. & Wu, J. M. Implications of mitral valve prolapse in children with rheumatic mitral regurgitation. J. Am. Coll. Cardiol. 23, 1199–1203 (1994).

    Article  CAS  PubMed  Google Scholar 

  109. Gometza, B., al-Halees, Z., Shahid, M., Hatle, L. K. & Duran, C. M. Surgery for rheumatic mitral regurgitation in patients below twenty years of age. An analysis of failures. J. Heart Valve Dis. 5, 294–301 (1996).

    CAS  PubMed  Google Scholar 

  110. Perier, P. Surgical repair of the prolapsing anterior leaflet with chordal shortening. Sem. Thorac. Cardiovasc. Surg. 16, 174–181 (2004).

    Article  Google Scholar 

  111. Kumar, A. S., Talwar, S., Saxena, A., Singh, R. & Velayoudam, D. Results of mitral valve repair in rheumatic mitral regurgitation. Interact. Cardiovasc. Thorac. Surg. 5, 356 (2006).

    Article  PubMed  Google Scholar 

  112. Bernal, J. M., Rabasa, J. M., Vilchez, F. G., Cagigas, J. C. & Revuelta, J. M. Mitral valve repair in rheumatic disease. The flexible solution. Circulation 88, 1746–1753 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. Stark, J., De Leval, M., Tsang, V. T. (Eds) Surgery for Congenital Heart Defects 3rd edn (John Wiley & Sons Ltd, London, 2006).

    Book  Google Scholar 

  114. Barlow, J. B. Aspects of active rheumatic carditis. Aust. N. Z. J. Med. 22 (5 Suppl.), 592–600 (1992).

    Article  CAS  PubMed  Google Scholar 

  115. American College of Cardiology/American Heart Association Task Force on Practice Guidelines et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 guidelines for the management of patients with valvular heart disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation 114, e84–e231 (2006).

  116. Baird, C. W., Constantinos, C., Lansford, E. & Pigula, F. A. Mitral valve chordal rupture masquerades as endocarditis. Pediatr. Cardiol. 28, 297–299 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Jeresaty, R. M., Edwards, J. E. & Chawla, S. K. Mitral valve prolapse and ruptured chordae tendineae. Am. J. Cardiol. 55, 138–142 (1985).

    Article  CAS  PubMed  Google Scholar 

  118. Weidenbach, M., Brenner, R., Rantamaki, T. & Redel, D. A. Acute mitral regurgitation due to chordal rupture in a patient with neonatal Marfan syndrome caused by a deletion in exon 29 of the FBN1 gene. Pediatr. Cardiol. 20, 382–385 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Gabbay, U. & Yosefy, C. The underlying causes of chordae tendinae rupture: a systematic review. Int. J. Cardiol. 143, 113–118 (2010).

    Article  PubMed  Google Scholar 

  120. Cohen, G. I. et al. Color Doppler and two-dimensional echocardiographic determination of the mechanism of aortic regurgitation with surgical correlation. J. Am. Soc. Echocardiogr. 9, 508–515 (1996).

    Article  CAS  PubMed  Google Scholar 

  121. Myers, P. O. et al. Aortic valve repair by cusp extension for rheumatic aortic insufficiency in children: long-term results and impact of extension material. J. Thorac. Cardiovasc. Surg. 140, 836–844 (2010).

    Article  PubMed  Google Scholar 

  122. Bernal, J. M. et al. Repair of nonsevere rheumatic aortic valve disease during other valvular procedures: is it safe? J. Thorac. Cardiovasc. Surg. 115, 1130–1135 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Talwar, S., Saikrishna, C., Saxena, A. & Kumar, A. S. Aortic valve repair for rheumatic aortic valve disease. Ann. Thorac. Surg. 79, 1921–1925 (2005).

    Article  PubMed  Google Scholar 

  124. Bozbuga, N. et al. Midterm results of aortic valve repair with the pericardial cusp extension technique in rheumatic valve disease. Ann. Thorac. Surg. 77, 1272–1276 (2004).

    Article  PubMed  Google Scholar 

  125. Grinda, J. M. et al. Aortic cusp extension valvuloplasty for rheumatic aortic valve disease: midterm results. Ann. Thorac. Surg. 74, 438–443 (2002).

    Article  PubMed  Google Scholar 

  126. Tekumit, H. et al. Cusp shaving for concomitant mild to moderate rheumatic aortic insufficiency. J. Cardiac Surg. 25, 16–22 (2010).

    Article  Google Scholar 

  127. Sashida, Y. et al. Ethnic differences in aortic valve thickness and related clinical factors. Am. Heart J. 159, 698–704 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Shapiro, L. M., Thwaites, B., Westgate, C. & Donaldson, R. Prevalence and clinical significance of aortic valve prolapse. Br. Heart J. 54, 179–183 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bhaya, M., Beniwal, R., Panwar, S. & Panwar, R. B. Two years of follow-up validates the echocardiographic criteria for the diagnosis and screening of rheumatic heart disease in asymptomatic populations. Echocardiography 28, 929–933 (2011).

    Article  PubMed  Google Scholar 

  130. Carapetis, J. R., Brown, A., Wilson, N. J. & Edwards, K. N. An Australian guideline for rheumatic fever and rheumatic heart disease: an abridged outline. Med. J. Aust. 186, 581–586 (2007).

    PubMed  Google Scholar 

  131. Council of Europe Committee of Ministers. Recommendation no. R(94)11 of the Committee of Ministers to the Member Sates on screening as a tool of preventative medicine. Council of Europe [online] (1994).

  132. McDonald, M., Brown, A., Noonan, S. & Carapetis, J. R. Preventing recurrent rheumatic fever: the role of register based programmes. Heart 91, 1131–1133 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Galderisi, M. et al. Improved cardiovascular diagnostic accuracy by pocket size imaging device in non-cardiologic outpatients: the NaUSiCa (Naples Ultrasound Stethoscope in Cardiology) study. Cardiovasc. Ultrasound 8, 51 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Sicari, R. et al. The use of pocket-size imaging devices: a position statement of the European Association of Echocardiography. Eur. J. Echocardiogr. 12, 85–87 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of RHDAustralia and Heart Association of Thailand in coordinating the investigators' meeting. B. Reményi's research position was funded by research scholarships from the National Heart Foundation of New Zealand and the Lowitja Institute of Australia. N. Wilson was funded part time by the Green Lane Research and Education Fund in 2010. L. Zühlke is supported by the NIH through the international clinical scholars and fellow program (R24 TW007988). Project grants were received from the Medtronic Foundation for the investigators' meeting and from the Green Lane Research and Education Fund for the website development.

Author information

Authors and Affiliations

Authors

Contributions

B. Reményi wrote the article. All authors researched data for the article, substantially contributed to discussion of the content, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Bo Reményi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Concise summary of the 2012 World Heart Federation criteria for the echocardiographic diagnosis of rheumatic heart disease (PDF 116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reményi, B., Wilson, N., Steer, A. et al. World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease—an evidence-based guideline. Nat Rev Cardiol 9, 297–309 (2012). https://doi.org/10.1038/nrcardio.2012.7

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing