Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Potassium-channel mutations and cardiac arrhythmias—diagnosis and therapy

Abstract

The coordinated generation and propagation of action potentials within cardiomyocytes creates the intrinsic electrical stimuli that are responsible for maintaining the electromechanical pump function of the human heart. The synchronous opening and closing of cardiac Na+, Ca2+, and K+ channels corresponds with the activation and inactivation of inward depolarizing (Na+ and Ca2+) and outward repolarizing (K+) currents that underlie the various phases of the cardiac action potential (resting, depolarization, plateau, and repolarization). Inherited mutations in pore-forming α subunits and accessory β subunits of cardiac K+ channels can perturb the atrial and ventricular action potential and cause various cardiac arrhythmia syndromes, including long QT syndrome, short QT syndrome, Brugada syndrome, and familial atrial fibrillation. In this Review, we summarize the current understanding of the molecular and cellular mechanisms that underlie K+-channel-mediated arrhythmia syndromes. We also describe translational advances that have led to the emerging role of genetic testing and genotype-specific therapy in the diagnosis and clinical management of individuals who harbor pathogenic mutations in genes that encode α or β subunits of cardiac K+ channels.

Key Points

  • K+ channels represent the largest and most-functionally diverse family of ion channels encoded in the human genome and have a critical role in the restitution of cardiac action potentials

  • Loss-of-function mutations in the α and β subunits that conduct IKs, IKr, and IK1 are associated with long QT syndrome (LQTS)

  • Genotype-specific approaches to the diagnosis, risk stratification, and treatment of patients with LQTS type 1 or type 2 should be utilized

  • Gain-of-function mutations in the α and β subunits that conduct Ito, IKs, IKr, IK1, and IKATP are associated with short QT syndrome, J-wave syndromes, and familial atrial fibrillation

  • The entire clinical picture should be assessed during the diagnosis of K+ channelopathies, including a 12-lead electrocardiogram, genetic tests, and a patient's clinical and family history

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Normal electrical activity of the heart.
Figure 2: Predicted protein topology of cardiac K+-channel α subunits.
Figure 3: Classification of cardiac K+ channelopathies stemming from mutations in α or β subunits on the basis of currents and channels.
Figure 4: Pathophysiological mechanisms of K+-channel-mediated arrhythmias at the ionic and cellular level.
Figure 5: The spectrum of QTc values and associated clinical indications for adults with a QTc value in the prolonged, borderline-prolonged, normal, borderline-short, and extremely short ranges.
Figure 6: The probabilistic nature of LQTS genetic testing.

Similar content being viewed by others

References

  1. Nerbonne, J. M. & Kass, R. S. Molecular physiology of cardiac repolarization. Physiol. Rev. 85, 1205–1253 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, Q. et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 12, 17–23 (1996).

    Article  PubMed  Google Scholar 

  3. Curran, M. E. et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80, 795–803 (1995).

    CAS  PubMed  Google Scholar 

  4. Plaster, N. M. et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell 105, 511–519 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Hedley, P. L. et al. The genetic basis of Brugada syndrome: a mutation update. Hum. Mutat. 30, 1256–1266 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Campuzano, O. & Brugada, R. Genetics of familial atrial fibrillation. Europace 11, 1267–1271 (2009).

    Article  PubMed  Google Scholar 

  7. Gollob, M. H., Redpath, C. J. & Roberts, J. D. The short QT syndrome: proposed diagnostic criteria. J. Am. Coll. Cardiol. 57, 802–812 (2011).

    Article  PubMed  Google Scholar 

  8. Ravens, U. & Cerbai, E. Role of potassium currents in cardiac arrhythmias. Europace 10, 1133–1137 (2008).

    Article  PubMed  Google Scholar 

  9. Clancy, C. E. & Kass, R. S. Inherited and acquired vulnerability to ventricular arrhythmias: cardiac Na+ and K+ channels. Physiol. Rev. 85, 33–47 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Patel, C. & Antzelevitch, C. Pharmacological approach to the treatment of long and short QT syndromes. Pharmacol. Ther. 118, 138–151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wulff, H., Castle, N. A. & Pardo, L. A. Voltage-gated potassium channels as therapeutic targets. Nat. Rev. Drug Discov. 8, 982–1001 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coetzee, W. A. et al. Molecular diversity of K+ channels. Ann. N. Y. Acad. Sci. 868, 233–285 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Snyders, D. J. Structure and function of cardiac potassium channels. Cardiovasc. Res. 42, 377–390 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. MacKinnon, R. Pore loops: an emerging theme in ion channel structure. Neuron 14, 889–892 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Bezanilla, F. & Stefani, E. Gating currents. Methods Enzymol. 293, 331–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Tamargo, J., Caballero, R., Gomez, R., Valenzuela, C. & Delpon, E. Pharmacology of cardiac potassium channels. Cardiovasc. Res. 62, 9–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Pongs, O. & Schwarz, J. R. Ancillary subunits associated with voltage-dependent K+ channels. Physiol. Rev. 90, 755–796 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Giles, W. R. & Imaizumi, Y. Comparison of potassium currents in rabbit atrial and ventricular cells. J. Physiol. 405, 123–145 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schram, G., Pourrier, M., Melnyk, P. & Nattel, S. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ. Res. 90, 939–950 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Wettwer, E., Amos, G. J., Posival, H. & Ravens, U. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ. Res. 75, 473–482 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Litovsky, S. H. & Antzelevitch, C. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ. Res. 62, 116–126 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Shinagawa, Y., Satoh, H. & Noma, A. The sustained inward current and inward rectifier K+ current in pacemaker cells dissociated from rat sinoatrial node. J. Physiol. 523, 593–605 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anumonwo, J. M., Delmar, M. & Jalife, J. Electrophysiology of single heart cells from the rabbit tricuspid valve. J. Physiol. 425, 145–167 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mangoni, M. E. & Nargeot, J. Genesis and regulation of the heart automaticity. Physiol. Rev. 88, 919–982 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Ackerman, M. J. & Clapham, D. E. Ion channels--basic science and clinical disease. N. Engl. J. Med. 336, 1575–1586 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Morita, H., Wu, J. & Zipes, D. P. The QT syndromes: long and short. Lancet 372, 750–763 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Antzelevitch, C. Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes. Am. J. Physiol. Heart Circ. Physiol. 293, H2024–H2038 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Moss, A. J. Long QT Syndrome. JAMA 289, 2041–2044 (2003).

    Article  PubMed  Google Scholar 

  29. Schwartz, P. J. et al. Prevalence of the congenital long-QT syndrome. Circulation 120, 1761–1767 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schwartz, P. J. et al. The Jervell and Lange–Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation 113, 783–790 (2006).

    Article  PubMed  Google Scholar 

  31. Splawski, I. et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 102, 1178–1185 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Tester, D. J., Will, M. L., Haglund, C. M. & Ackerman, M. J. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm 2, 507–517 (2005).

    Article  PubMed  Google Scholar 

  33. Barhanin, J. et al. KVLQT1 and lsK (minK) proteins associate to form the IKs cardiac potassium current. Nature 384, 78–80 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Sanguinetti, M. C. et al. Coassembly of KVLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384, 80–83 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Gouas, L. et al. New KCNQ1 mutations leading to haploinsufficiency in a general population; defective trafficking of a KvLQT1 mutant. Cardiovasc. Res. 63, 60–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Schmitt, N. et al. A recessive C-terminal Jervell and Lange–Nielsen mutation of the KCNQ1 channel impairs subunit assembly. EMBO J. 19, 332–340 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marx, S. O. et al. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1–KCNE1 potassium channel. Science 295, 496–499 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Park, K. H. et al. Impaired KCNQ1–KCNE1 and phosphatidylinositol-4,5-bisphosphate interaction underlies the long QT syndrome. Circ. Res. 96, 730–739 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Labro, A. J., Boulet, I. R., Timmermans, J. P., Ottschytsch, N. & Snyders, D. J. The rate-dependent biophysical properties of the LQT1 H258R mutant are counteracted by a dominant negative effect on channel trafficking. J. Mol. Cell. Cardiol. 48, 1096–1104 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, J. et al. A dual mechanism for IKs current reduction by the pathogenic mutation KCNQ1–S277L. Pacing Clin. Electrophysiol. 34, 1652–1664 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lo, C. F. & Numann, R. Independent and exclusive modulation of cardiac delayed rectifying K+ current by protein kinase C and protein kinase A. Circ. Res. 83, 995–1002 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, L. et al. Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc. Natl Acad. Sci. U. S. A. 104, 20990–20995 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schwartz, P. J. et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 103, 89–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Moss, A. J. et al. ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 92, 2929–2934 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Shimizu, W. et al. Epinephrine unmasks latent mutation carriers with LQT1 form of congenital long-QT syndrome. J. Am. Coll. Cardiol. 41, 633–642 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Horner, J. M., Horner, M. M. & Ackerman, M. J. The diagnostic utility of recovery phase QTc during treadmill exercise stress testing in the evaluation of long QT syndrome. Heart Rhythm 8, 1698–1704 (2011).

    Article  PubMed  Google Scholar 

  47. Vyas, H., Hejlik, J. & Ackerman, M. J. Epinephrine QT stress testing in the evaluation of congenital long-QT syndrome: diagnostic accuracy of the paradoxical QT response. Circulation 113, 1385–1392 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Vincent, G. M., Jaiswal, D. & Timothy, K. W. Effects of exercise on heart rate, QT, QTc and QT/QS2 in the Romano-Ward inherited long QT syndrome. Am. J. Cardiol. 68, 498–503 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Ackerman, M. J. et al. Epinephrine-induced QT interval prolongation: a gene-specific paradoxical response in congenital long QT syndrome. Mayo Clin. Proc. 77, 413–421 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Wong, J. A. et al. Utility of treadmill testing in identification and genotype prediction in long-QT syndrome. Circ. Arrhythm. Electrophysiol. 3, 120–125 (2010).

    Article  PubMed  Google Scholar 

  51. Jones, E. M., Roti Roti, E. C., Wang, J., Delfosse, S. A. & Robertson, G. A. Cardiac IKr channels minimally comprise hERG 1a and 1b subunits. J. Biol. Chem. 279, 44690–44694 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Phartiyal, P., Jones, E. M. & Robertson, G. A. Heteromeric assembly of human ether-a-go-go-related gene (hERG) 1a/1b channels occurs cotranslationally via N-terminal interactions. J. Biol. Chem. 282, 9874–9882 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Roden, D. M. & Viswanathan, P. C. Genetics of acquired long QT syndrome. J. Clin. Invest. 115, 2025–2032 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abbott, G. W. et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97, 175–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Isbrandt, D. et al. Identification and functional characterization of a novel KCNE2 (MiRP1) mutation that alters HERG channel kinetics. J. Mol. Med. 80, 524–532 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Gordon, E. et al. A KCNE2 mutation in a patient with cardiac arrhythmia induced by auditory stimuli and serum electrolyte imbalance. Cardiovasc. Res. 77, 98–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Lu, Y., Mahaut-Smith, M. P., Huang, C. L. & Vandenberg, J. I. Mutant MiRP1 subunits modulate HERG K+ channel gating: a mechanism for pro-arrhythmia in long QT syndrome type 6. J. Physiol. 551, 253–262 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weerapura, M., Nattel, S., Chartier, D., Caballero, R. & Hebert, T. E. A comparison of currents carried by HERG, with and without coexpression of MiRP1, and the native rapid delayed rectifier current. Is MiRP1 the missing link? J. Physiol. 540, 15–27 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pourrier, M., Zicha, S., Ehrlich, J., Han, W. & Nattel, S. Canine ventricular KCNE2 expression resides predominantly in Purkinje fibers. Circ. Res. 93, 189–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Jiang, M. et al. KCNE2 protein is expressed in ventricles of different species, and changes in its expression contribute to electrical remodeling in diseased hearts. Circulation 109, 1783–1788 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Zhou, Z., Gong, Q., Epstein, M. L. & January, C. T. HERG channel dysfunction in human long QT syndrome. Intracellular transport and functional defects. J. Biol. Chem. 273, 21061–21066 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Anderson, C. L. et al. Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 113, 365–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Rajamani, S., Anderson, C. L., Anson, B. D. & January, C. T. Pharmacological rescue of human K+ channel long-QT2 mutations: human ether-a-go-go-related gene rescue without block. Circulation 105, 2830–2835 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Yao, Y. et al. Aminoglycoside antibiotics restore functional expression of truncated HERG channels produced by nonsense mutations. Heart Rhythm 6, 553–560 (2009).

    Article  PubMed  Google Scholar 

  65. Paulussen, A. et al. A novel mutation (T65P) in the PAS domain of the human potassium channel HERG results in the long QT syndrome by trafficking deficiency. J. Biol. Chem. 277, 48610–48616 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Robertson, G. A. & January, C. T. HERG trafficking and pharmacological rescue of LQTS-2 mutant channels. Handb. Exp. Pharmacol. 171, 349–355 (2006).

    Article  CAS  Google Scholar 

  67. Wilde, A. A. et al. Auditory stimuli as a trigger for arrhythmic events differentiate HERG-related (LQTS2) patients from KVLQT1-related patients (LQTS1). J. Am. Coll. Cardiol. 33, 327–332 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Rashba, E. J. et al. Influence of pregnancy on the risk for cardiac events in patients with hereditary long QT syndrome. Circulation 97, 451–456 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Khositseth, A., Tester, D. J., Will, M. L., Bell, C. M. & Ackerman, M. J. Identification of a common genetic substrate underlying postpartum cardiac events in congenital long QT syndrome. Heart Rhythm 1, 60–64 (2004).

    Article  PubMed  Google Scholar 

  70. Zhang, L. et al. Electrocardiographic features in Andersen–Tawil syndrome patients with KCNJ2 mutations: characteristic T–U-wave patterns predict the KCNJ2 genotype. Circulation 111, 2720–2726 (2005).

    Article  PubMed  Google Scholar 

  71. Arizona Center for Education and Research on Therapeutics. QT Drug Lists by Risk Groups [online], (2012).

  72. Rautaharju, P. M. et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part IV: the ST segment, T and U waves, and the QT interval: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society: endorsed by the International Society for Computerized Electrocardiology. Circulation 119, e241–e250 (2009).

    Article  PubMed  Google Scholar 

  73. Priori, S. G., Napolitano, C. & Schwartz, P. J. Low penetrance in the long-QT syndrome: clinical impact. Circulation 99, 529–533 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Taggart, N. W., Haglund, C. M., Tester, D. J. & Ackerman, M. J. Diagnostic miscues in congenital long-QT syndrome. Circulation 115, 2613–2620 (2007).

    Article  PubMed  Google Scholar 

  75. Bazett, H. C. The time relations of the blood-pressure changes after excision of the adrenal glands, with some observations on blood volume changes. J. Physiol. 53, 320–339 (1920).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Postema, P. G., De Jong, J. S., Van der Bilt, I. A. & Wilde, A. A. Accurate electrocardiographic assessment of the QT interval: teach the tangent. Heart Rhythm 5, 1015–1018 (2008).

    Article  PubMed  Google Scholar 

  77. Schwartz, P. J., Moss, A. J., Vincent, G. M. & Crampton, R. S. Diagnostic criteria for the long QT syndrome. An update. Circulation 88, 782–784 (1993).

    Article  CAS  PubMed  Google Scholar 

  78. Ackerman, M. J. et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 8, 1308–1339 (2011).

    Article  PubMed  Google Scholar 

  79. Priori, S. G. et al. Risk stratification in the long-QT syndrome. N. Engl. J. Med. 348, 1866–1874 (2003).

    Article  PubMed  Google Scholar 

  80. Schwartz, P. J. et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation 92, 3381–3386 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Khositseth, A., Hejlik, J., Shen, W. K. & Ackerman, M. J. Epinephrine-induced T-wave notching in congenital long QT syndrome. Heart Rhythm 2, 141–146 (2005).

    Article  PubMed  Google Scholar 

  82. Sauer, A. J. et al. Long QT syndrome in adults. J. Am. Coll. Cardiol. 49, 329–337 (2007).

    Article  PubMed  Google Scholar 

  83. Moss, A. J. et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation 115, 2481–2489 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Moss, A. J. et al. Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation 105, 794–799 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Shimizu, W. et al. Genotype-phenotype aspects of type 2 long QT syndrome. J. Am. Coll. Cardiol. 54, 2052–2062 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jons, C. et al. Mutations in conserved amino acids in the KCNQ1 channel and risk of cardiac events in type-1 long-QT syndrome. J. Cardiovasc. Electrophysiol. 20, 859–865 (2009).

    Article  PubMed  Google Scholar 

  87. Kapa, S. et al. Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation 120, 1752–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tester, D. J. & Ackerman, M. J. Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice. Circulation 123, 1021–1037 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Crotti, L. et al. KCNH2–K897T is a genetic modifier of latent congenital long-QT syndrome. Circulation 112, 1251–1258 (2005).

    Article  PubMed  Google Scholar 

  90. Lahtinen, A. M., Marjamaa, A., Swan, H. & Kontula, K. KCNE1 D85N polymorphism—a sex-specific modifier in type 1 long QT syndrome? BMC Med. Genet. 12, 11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tomas, M. et al. Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. J. Am. Coll. Cardiol. 55, 2745–2752 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Moss, A. J. et al. Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation 101, 616–623 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Schwartz, P. J. Cutting nerves and saving lives. Heart Rhythm 6, 760–763 (2009).

    Article  PubMed  Google Scholar 

  94. Collura, C. A., Johnson, J. N., Moir, C. & Ackerman, M. J. Left cardiac sympathetic denervation for the treatment of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia using video-assisted thoracic surgery. Heart Rhythm 6, 752–759 (2009).

    Article  PubMed  Google Scholar 

  95. Schwartz, P. J. et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation 109, 1826–1833 (2004).

    Article  PubMed  Google Scholar 

  96. Goldenberg, I. et al. Beta-blocker efficacy in high-risk patients with the congenital long-QT syndrome types 1 and 2: implications for patient management. J. Cardiovasc. Electrophysiol. 21, 893–901 (2010).

    PubMed  PubMed Central  Google Scholar 

  97. Priori, S. G. et al. Association of long QT syndrome loci and cardiac events among patients treated with β-blockers. JAMA 292, 1341–1344 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Etheridge, S. P., Compton, S. J., Tristani-Firouzi, M. & Mason, J. W. A new oral therapy for long QT syndrome: long-term oral potassium improves repolarization in patients with HERG mutations. J. Am. Coll. Cardiol. 42, 1777–1782 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Horner, J. M. et al. Implantable cardioverter defibrillator therapy for congenital long QT syndrome: a single-center experience. Heart Rhythm 7, 1616–1622 (2010).

    Article  PubMed  Google Scholar 

  100. Zareba, W. et al. Implantable cardioverter defibrillator in high-risk long QT syndrome patients. J. Cardiovasc. Electrophysiol. 14, 337–341 (2003).

    Article  PubMed  Google Scholar 

  101. Gussak, I. et al. Idiopathic short QT interval: a new clinical syndrome? Cardiology 94, 99–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Bjerregaard, P. & Gussak, I. Short QT syndrome: mechanisms, diagnosis and treatment. Nat. Clin. Pract. Cardiovasc. Med. 2, 84–87 (2005).

    Article  PubMed  Google Scholar 

  103. Patel, C., Yan, G. X. & Antzelevitch, C. Short QT syndrome: from bench to bedside. Circ. Arrhythm. Electrophysiol. 3, 401–408 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Giustetto, C. et al. Long-term follow-up of patients with short QT syndrome. J. Am. Coll. Cardiol. 58, 587–595 (2011).

    Article  PubMed  Google Scholar 

  105. Brugada, R. et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109, 30–35 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Bellocq, C. et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 109, 2394–2397 (2004).

    Article  PubMed  Google Scholar 

  107. Priori, S. G. et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ. Res. 96, 800–807 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Patel, C. & Antzelevitch, C. Cellular basis for arrhythmogenesis in an experimental model of the SQT1 form of the short QT syndrome. Heart Rhythm 5, 585–590 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sun, Y. et al. A novel mutation in the KCNH2 gene associated with short QT syndrome. J. Mol. Cell Cardiol. 50, 433–441 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Itoh, H. et al. A novel KCNH2 mutation as a modifier for short QT interval. Int. J. Cardiol. 137, 83–85 (2009).

    Article  PubMed  Google Scholar 

  111. Hong, K. et al. De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc. Res. 68, 433–440 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Wolpert, C. et al. Further insights into the effect of quinidine in short QT syndrome caused by a mutation in HERG. J. Cardiovasc. Electrophysiol. 16, 54–58 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Giustetto, C. et al. Short QT syndrome: clinical findings and diagnostic-therapeutic implications. Eur. Heart J. 27, 2440–2447 (2006).

    Article  PubMed  Google Scholar 

  114. Schimpf, R., Bauersfeld, U., Gaita, F. & Wolpert, C. Short QT syndrome: successful prevention of sudden cardiac death in an adolescent by implantable cardioverter-defibrillator treatment for primary prophylaxis. Heart Rhythm 2, 416–417 (2005).

    Article  PubMed  Google Scholar 

  115. Milberg, P. et al. Reduction of dispersion of repolarization and prolongation of postrepolarization refractoriness explain the antiarrhythmic effects of quinidine in a model of short QT syndrome. J. Cardiovasc. Electrophysiol. 18, 658–664 (2007).

    Article  PubMed  Google Scholar 

  116. Schimpf, R. et al. In vivo effects of mutant HERG K+ channel inhibition by disopyramide in patients with a short QT-1 syndrome: a pilot study. J. Cardiovasc. Electrophysiol. 18, 1157–1160 (2007).

    Article  PubMed  Google Scholar 

  117. Mizobuchi, M. et al. Nifekalant and disopyramide in a patient with short QT syndrome: evaluation of pharmacological effects and electrophysiological properties. Pacing Clin. Electrophysiol. 31, 1229–1232 (2008).

    Article  PubMed  Google Scholar 

  118. Antzelevitch, C. & Yan, G. X. J wave syndromes. Heart Rhythm 7, 549–558 (2010).

    Article  PubMed  Google Scholar 

  119. Brugada, P. & Brugada, J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J. Am. Coll. Cardiol. 20, 1391–1396 (1992).

    Article  CAS  PubMed  Google Scholar 

  120. Nademanee, K. et al. Arrhythmogenic marker for the sudden unexplained death syndrome in Thai men. Circulation 96, 2595–2600 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Antzelevitch, C. et al. Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 111, 659–670 (2005).

    Article  PubMed  Google Scholar 

  122. Wasserburger, R. H. & Alt, W. J. The normal RS–T segment elevation variant. Am. J. Cardiol. 8, 184–192 (1961).

    Article  CAS  PubMed  Google Scholar 

  123. Mehta, M. C. & Jain, A. C. Early repolarization on scalar electrocardiogram. Am. J. Med. Sci. 309, 305–311 (1995).

    Article  CAS  PubMed  Google Scholar 

  124. Haissaguerre, M. et al. Sudden cardiac arrest associated with early repolarization. N. Engl. J. Med. 358, 2016–2023 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Rosso, R. et al. J-point elevation in survivors of primary ventricular fibrillation and matched control subjects: incidence and clinical significance. J. Am. Coll. Cardiol. 52, 1231–1238 (2008).

    Article  PubMed  Google Scholar 

  126. Chen, P. S. & Priori, S. G. The Brugada syndrome. J. Am. Coll. Cardiol. 51, 1176–1180 (2008).

    Article  PubMed  Google Scholar 

  127. Probst, V. et al. Long-term prognosis of patients diagnosed with Brugada syndrome: Results from the FINGER Brugada Syndrome Registry. Circulation 121, 635–643 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Hoogendijk, M. G. et al. The Brugada ECG pattern: a marker of channelopathy, structural heart disease, or neither? Toward a unifying mechanism of the Brugada syndrome. Circ. Arrhythm. Electrophysiol. 3, 283–290 (2010).

    Article  PubMed  Google Scholar 

  129. Haissaguerre, M. et al. Ventricular fibrillation with prominent early repolarization associated with a rare variant of KCNJ8/KATP channel. J. Cardiovasc. Electrophysiol. 20, 93–98 (2009).

    Article  PubMed  Google Scholar 

  130. Medeiros-Domingo, A. et al. Gain-of-function mutation S422L in the KCNJ8-encoded cardiac KATP channel Kir6.1 as a pathogenic substrate for J-wave syndromes. Heart Rhythm 7, 1466–1471 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Morrissey, A. et al. Expression of ATP-sensitive K+ channel subunits during perinatal maturation in the mouse heart. Pediatr. Res. 58, 185–192 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Delpon, E. et al. Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circ. Arrhythm. Electrophysiol. 1, 209–218 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Giudicessi, J. R. et al. Transient outward current (Ito) gain-of-function mutations in the KCND3-encoded Kv4.3 potassium channel and Brugada syndrome. Heart Rhythm 8, 1024–1032 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Shimizu, W. et al. Body surface distribution and response to drugs of ST segment elevation in Brugada syndrome: clinical implication of 87-lead body surface potential mapping and its application to 12-lead electrocardiograms. J. Cardiovasc. Electrophysiol. 11, 396–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Sangwatanaroj, S. et al. New electrocardiographic leads and the procainamide test for the detection of the Brugada sign in sudden unexplained death syndrome survivors and their relatives. Eur. Heart J. 22, 2290–2296 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Belhassen, B., Glick, A. & Viskin, S. Excellent long-term reproducibility of the electrophysiologic efficacy of quinidine in patients with idiopathic ventricular fibrillation and Brugada syndrome. Pacing Clin. Electrophysiol. 32, 294–301 (2009).

    Article  PubMed  Google Scholar 

  137. Viskin, S. et al. Empiric quinidine therapy for asymptomatic Brugada syndrome: time for a prospective registry. Heart Rhythm 6, 401–404 (2009).

    Article  PubMed  Google Scholar 

  138. Darbar, D. et al. Familial atrial fibrillation is a genetically heterogeneous disorder. J. Am. Coll. Cardiol. 41, 2185–2192 (2003).

    Article  PubMed  Google Scholar 

  139. Xiao, J., Liang, D. & Chen, Y. H. The genetics of atrial fibrillation: from the bench to the bedside. Annu. Rev. Genomics Hum. Genet. 12, 73–96 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. First International Symposium on Long QT Syndrome. How to make the diagnosis of long QT syndrome in patients with reduced penetrance of the prolonged QT phenotype when DNA testing is not available or is negative [online], (2012).

  141. Viskin, S. The QT interval: too long, too short or just right. Heart Rhythm 6, 711–715 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M. J. Ackerman is supported by the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program and the National Institutes of Health (R01-HD42569 and P01-HL094291). J. R. Giudicessi is supported by a National Heart, Lung, and Blood Institute Kirschstein NRSA Individual Predoctoral MD/PhD Fellowship (F30-HL106993).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed substantially to researching this article, discussion of its content, and writing, reviewing, and editing the manuscript before submission.

Corresponding author

Correspondence to Michael J. Ackerman.

Ethics declarations

Competing interests

M. J. Ackerman is, or has previously been, a consultant for Biotronik, Boston Scientific, Medtronic, St. Jude Medical, and Transgenomic; additionally, he has applied for or holds a patent with Transgenomic. J. R. Guidicessi declares no competing interests.

Supplementary information

Supplementary Box 1

Detailed structure of K+ channels (DOC 132 kb)

Supplementary Table 1

Biophysical properties of SQTS-susceptibility mutations in genes encoding cardiac K+-channel α subunits (DOC 49 kb)

Supplementary Figure 1

Electrocardiographic hallmarks of K+-channel-mediated arrhythmias. (PDF 1005 kb)

Supplementary Figure 1 Legend

Electrocardiographic hallmarks of K+-channel-mediated arrhythmias. (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giudicessi, J., Ackerman, M. Potassium-channel mutations and cardiac arrhythmias—diagnosis and therapy. Nat Rev Cardiol 9, 319–332 (2012). https://doi.org/10.1038/nrcardio.2012.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing