Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Childhood obesity and cardiovascular disease: links and prevention strategies

Abstract

The prevalence and severity of pediatric obesity have dramatically increased since the late 1980s, raising concerns about a subsequent increase in cardiovascular outcomes. Strong evidence, particularly from autopsy studies, supports the concept that precursors of adult cardiovascular disease (CVD) begin in childhood, and that pediatric obesity has an important influence on overall CVD risk. Lifestyle patterns also begin early and impact CVD risk. In addition, obesity and other CVD risk factors tend to persist over time. However, whether childhood obesity causes adult CVD directly, or does so by persisting as adult obesity, or both, is less clear. Regardless, sufficient data exist to warrant early implementation of both obesity prevention and treatment in youth and adults. In this Review, we examine the evidence supporting the impact of childhood obesity on adult obesity, surrogate markers of CVD, components of the metabolic syndrome, and the development of CVD. We also evaluate how obesity treatment strategies can improve risk factors and, ultimately, adverse clinical outcomes.

Key Points

  • The prevalence and severity of pediatric obesity have dramatically increased since the late 1980s

  • Precursors of adult cardiovascular disease begin in childhood, with obesity as an important correlate of overall cardiovascular risk

  • Lifestyle patterns begin early in childhood and influence cardiovascular risk

  • Obesity and other cardiovascular risk factors persist over time

  • Obesity prevention and reduction should begin early in childhood to prevent adult cardiovascular disease

  • The pervasive nature of adult cardiovascular disease translates to an urgent need for new population-based obesity-prevention strategies

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Temporal association between cardiovascular disease and childhood and adulthood obesity, and potential mechanisms that increase cardiovascular risk in adults.
Figure 2: Insulin resistance in adolescents with obesity and T2D.
Figure 3: Relationship between childhood and adulthood cardiovascular risk factors and adult carotid IMT.
Figure 4: Relationship between childhood and adulthood cardiovascular risk factors and adult pulse wave velocity.

References

  1. 1

    Centers for Disease Control and Prevention. Growth charts [online], http://www.cdc.gov/growthcharts, (2010).

  2. 2

    Ogden, C. L. et al. Prevalence of overweight and obesity in the United States, 1999–2004 JAMA 295, 1549–1555 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Pinhas-Hamiel, O. & Zeitler, P. The global spread of type 2 diabetes mellitus in children and adolescents. J. Pediatr. 146, 693–700 (2005).

    PubMed  Google Scholar 

  4. 4

    Berenson, G. S. et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N. Engl. J. Med. 338, 1650–1656 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    McGill, H. C. Jr et al. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation 105, 2712–2718 (2002).

    PubMed  Google Scholar 

  6. 6

    McGill, H. C. Jr et al. Association of coronary heart disease risk factors with microscopic qualities of coronary atherosclerosis in youth. Circulation 102, 374–379 (2000).

    PubMed  Google Scholar 

  7. 7

    Flint, A. J. et al. Excess weight and the risk of incident coronary heart disease among men and women. Obesity (Silver Spring) 18, 377–383 (2010).

    Google Scholar 

  8. 8

    Juonala, M. et al. Life-time risk factors and progression of carotid atherosclerosis in young adults: the Cardiovascular Risk in Young Finns study. Eur. Heart J. 31, 1745–1751 (2010).

    CAS  PubMed  Google Scholar 

  9. 9

    Aatola, H. et al. Lifetime risk factors and arterial pulse wave velocity in adulthood: the cardiovascular risk in young Finns study. Hypertension 55, 806–811 (2010).

    CAS  PubMed  Google Scholar 

  10. 10

    Gunnell, D. J., Frankel, S. J., Nanchahal, K., Peters, T. J. & Davey Smith, G. Childhood obesity and adult cardiovascular mortality: a 57-y follow-up study based on the Boyd Orr cohort. Am. J. Clin. Nutr. 67, 1111–1118 (1998).

    CAS  PubMed  Google Scholar 

  11. 11

    Baker, J. L., Olsen, L. W. & Sørensen, T. I. Childhood body-mass index and the risk of coronary heart disease in adulthood. N. Engl. J. Med. 357, 2329–2337 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Must, A., Jacques, P. F., Dallal, G. E., Bajema, C. J. & Dietz, W. H. Long-term morbidity and mortality of overweight adolescents. A follow-up of the Harvard Growth Study of 1922 to 1935. N. Engl. J. Med. 327, 1350–1355 (1992).

    CAS  PubMed  Google Scholar 

  13. 13

    Whitlock, E. P., O'Connor, E. A., Williams, S. B., Beil, T. L. & Lutz, K. W. Effectiveness of weight management interventions in children: a targeted systematic review for the USPSTF. Pediatrics 125, e396–e418 (2010).

    PubMed  Google Scholar 

  14. 14

    Freedman, D. S., Khan, L. K., Dietz, W. H., Srinivasan, S. R. & Berenson, G. S. Relationship of childhood obesity to coronary heart disease risk factors in adulthood: the Bogalusa Heart Study. Pediatrics 108, 712–718 (2001).

    CAS  PubMed  Google Scholar 

  15. 15

    Rugholm, S. et al. Stability of the association between birth weight and childhood overweight during the development of the obesity epidemic. Obes. Res. 13, 2187–2194 (2005).

    PubMed  Google Scholar 

  16. 16

    Bao, W., Srinivasan, S. R., Wattigney, W. A. & Berenson, G. S. The relation of parental cardiovascular disease to risk factors in children and young adults. The Bogalusa Heart Study. Circulation 91, 365–371 (1995).

    CAS  PubMed  Google Scholar 

  17. 17

    Fall, C. H. et al. Size at birth, maternal weight, and type 2 diabetes in South India. Diabet. Med. 15, 220–227 (1998).

    CAS  PubMed  Google Scholar 

  18. 18

    Barker, D. J. Outcome of low birthweight. Horm. Res. 42, 223–230 (1994).

    CAS  PubMed  Google Scholar 

  19. 19

    Mzayek, F. et al. The association of birth weight with developmental trends in blood pressure from childhood through mid-adulthood: the Bogalusa Heart study. Am. J. Epidemiol. 166, 413–420 (2007).

    CAS  PubMed  Google Scholar 

  20. 20

    Prokopec, M. & Bellisle, F. Adiposity in Czech children followed from 1 month of age to adulthood: analysis of individual BMI patterns. Ann. Hum. Biol. 20, 517–525 (1993).

    CAS  PubMed  Google Scholar 

  21. 21

    Williams, S. M. & Goulding, A. Patterns of growth associated with the timing of adiposity rebound. Obesity (Silver Spring) 17, 335–341 (2009).

    Google Scholar 

  22. 22

    Eriksson, J. G., Forsen, T., Tuomilehto, J., Osmond, C. & Barker, D. J. Early adiposity rebound in childhood and risk of type 2 diabetes in adult life. Diabetologia 46, 190–194 (2003).

    CAS  PubMed  Google Scholar 

  23. 23

    Freedman, D. S., Kettel Khan, L., Serdula, M. K., Srinivasan, S. R. & Berenson, G. S. BMI rebound, childhood height and obesity among adults: the Bogalusa Heart Study. Int. J. Obes. Relat. Metab. Disord. 25, 543–549 (2001).

    CAS  Google Scholar 

  24. 24

    Yang, X., Telama, R., Viikari, J., Raitakari, O. T. Risk of obesity in relation to physical activity tracking from youth to adulthood. Med. Sci. Sports Exerc. 38, 919–925 (2006).

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Raitakari, O. T. et al. Effects of persistent physical activity and inactivity on coronary risk factors in children and young adults. The Cardiovascular Risk in Young Finns Study. Am. J. Epidemiol. 140, 195–205 (1994).

    CAS  Google Scholar 

  26. 26

    Nadeau, K. J. et al. Insulin resistance in adolescents with type 2 diabetes is associated with impaired exercise capacity. J. Clin. Endocrinol. Metab. 94, 3687–3695 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Vasan, R. S. Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation 113, 2335–2362 (2006).

    PubMed  Google Scholar 

  28. 28

    Tardif, J. C., Heinonen, T., Orloff, D. & Libby, P. Vascular biomarkers and surrogates in cardiovascular disease. Circulation 113, 2936–2942 (2006).

    PubMed  PubMed Central  Google Scholar 

  29. 29

    Urbina, E. M. et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association. Hypertension 54, 919–950 (2009).

    CAS  PubMed  Google Scholar 

  30. 30

    Greenland, P. et al. Prevention Conference V: beyond secondary prevention: identifying the high-risk patient for primary prevention: noninvasive tests of atherosclerotic burden: Writing Group III. Circulation 101, E16–E22 (2000).

    CAS  PubMed  Google Scholar 

  31. 31

    Li, S. et al. Race (black-white) and gender divergences in the relationship of childhood cardiovascular risk factors to carotid artery intima–media thickness in adulthood: the Bogalusa Heart Study. Atherosclerosis 194, 421–425 (2007).

    CAS  PubMed  Google Scholar 

  32. 32

    Li, S. et al. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: the Bogalusa Heart Study. JAMA 290, 2271–2276 (2003).

    CAS  PubMed  Google Scholar 

  33. 33

    Freedman, D. S. et al. The contribution of childhood obesity to adult carotid intima–media thickness: the Bogalusa Heart Study. Int. J. Obes. (Lond.) 32, 749–756 (2008).

    CAS  Google Scholar 

  34. 34

    Raitakari, O. T. et al. Cardiovascular risk factors in childhood and carotid artery intima–media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. JAMA 290, 2277–2283 (2003).

    CAS  PubMed  Google Scholar 

  35. 35

    Davis, P. H., Dawson, J. D., Riley, W. A. & Lauer, R. M. Carotid intimal–medial thickness is related to cardiovascular risk factors measured from childhood through middle age: the Muscatine Study. Circulation 104, 2815–2819 (2001).

    CAS  PubMed  Google Scholar 

  36. 36

    Dawson, J. D., Sonka, M., Blecha, M. B., Lin, W. & Davis, P. H. Risk factors associated with aortic and carotid intima–media thickness in adolescents and young adults: the Muscatine Offspring Study. J. Am. Coll. Cardiol. 53, 2273–2279 (2009).

    PubMed  PubMed Central  Google Scholar 

  37. 37

    Wang, L. et al. for the MESA Study Investigators. Coronary artery calcification and myocardial perfusion in asymptomatic adults: the MESA (Multi-Ethnic Study of Atherosclerosis). J. Am. Coll. Cardiol. 48, 1018–1026 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Mahoney, L. T. et al. Coronary risk factors measured in childhood and young adult life are associated with coronary artery calcification in young adults: the Muscatine Study. J. Am. Coll. Cardiol. 27, 277–284 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Gidding, S. S., Bookstein, L. C. & Chomka, E. V. Usefulness of electron beam tomography in adolescents and young adults with heterozygous familial hypercholesterolemia. Circulation 98, 2580–2583 (1998).

    CAS  PubMed  Google Scholar 

  40. 40

    Chan, S. Y. et al. The prognostic importance of endothelial dysfunction and carotid atheroma burden in patients with coronary artery disease. J. Am. Coll. Cardiol. 42, 1037–1043 (2003).

    CAS  PubMed  Google Scholar 

  41. 41

    Aggoun, Y. et al. Arterial mechanical changes in children with familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 20, 2070–2075 (2000).

    CAS  PubMed  Google Scholar 

  42. 42

    Woo, K. S. et al. Overweight in children is associated with arterial endothelial dysfunction and intima–media thickening. Int. J. Obes. Relat. Metab. Disord. 28, 852–857 (2004).

    CAS  PubMed  Google Scholar 

  43. 43

    Urbina, E. M., Kieltkya, L., Tsai, J., Srinivasan, S. R. & Berenson, G. S. Impact of multiple cardiovascular risk factors on brachial artery distensibility in young adults: the Bogalusa Heart Study. Am. J. Hypertens. 18, 767–771 (2005).

    PubMed  Google Scholar 

  44. 44

    Budoff, M. J. et al. Measures of brachial artery distensibility in relation to coronary calcification. Am. J. Hypertens. 16, 350–355 (2003).

    PubMed  Google Scholar 

  45. 45

    Leeson, C. P. et al. Cholesterol and arterial distensibility in the first decade of life: a population-based study. Circulation 101, 1533–1538 (2000).

    CAS  PubMed  Google Scholar 

  46. 46

    Whincup, P. H. et al. Arterial distensibility in adolescents: the influence of adiposity, the metabolic syndrome, and classic risk factors. Circulation 112, 1789–1797 (2005).

    CAS  PubMed  Google Scholar 

  47. 47

    Eckel, R. H., Grundy, S. M. & Zimmet, P. Z. The metabolic syndrome. Lancet 365, 1415–1428 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Steinberger, J. et al. Progress and challenges in metabolic syndrome in children and adolescents: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; and Council on Nutrition, Physical Activity, and Metabolism. Circulation 119, 628–647 (2009).

    PubMed  Google Scholar 

  49. 49

    Weiss, R. et al. Obesity and the metabolic syndrome in children and adolescents. N. Engl. J. Med. 350, 2362–2374 (2004).

    CAS  PubMed  Google Scholar 

  50. 50

    Thompson, D. R. et al. Childhood overweight and cardiovascular disease risk factors: the National Heart, Lung, and Blood Institute Growth and Health Study. J. Pediatr. 150, 18–25 (2007).

    PubMed  PubMed Central  Google Scholar 

  51. 51

    Morrison, J. A., Friedman, L. A. & Gray-McGuire, C. Metabolic syndrome in childhood predicts adult cardiovascular disease 25 years later: the Princeton Lipid Research Clinics Follow-up Study. Pediatrics 120, 340–345 (2007).

    PubMed  Google Scholar 

  52. 52

    Burns, T. L., Letuchy, E. M., Paulos, R. & Witt, J. Childhood predictors of the metabolic syndrome in middle-aged adults: the Muscatine Study. J. Pediatr. 155, S5.e17–S5.e26 (2009).

    Google Scholar 

  53. 53

    Sun, S. S. et al. Childhood obesity predicts adult metabolic syndrome: the Fels Longitudinal Study. J. Pediatr. 152, 191–200 (2008).

    CAS  PubMed  Google Scholar 

  54. 54

    Bao, W., Srinivasan, S. R., Wattigney, W. A. & Berenson, G. S. Persistence of multiple cardiovascular risk clustering related to syndrome X from childhood to young adulthood. The Bogalusa Heart Study. Arch. Intern. Med. 154, 1842–1847 (1994).

    CAS  PubMed  Google Scholar 

  55. 55

    Srinivasan, S. R., Bao, W., Wattigney, W. A. & Berenson, G. S. Adolescent overweight is associated with adult overweight and related multiple cardiovascular risk factors: the Bogalusa Heart Study. Metabolism 45, 235–240 (1996).

    CAS  PubMed  Google Scholar 

  56. 56

    Chen, W., Srinivasan, S. R., Li, S., Xu, J. & Berenson, G. S. Clustering of long-term trends in metabolic syndrome variables from childhood to adulthood in Blacks and Whites: the Bogalusa Heart Study. Am. J. Epidemiol. 166, 527–533 (2007).

    PubMed  Google Scholar 

  57. 57

    Schubert, C. M., Sun, S. S., Burns, T. L., Morrison, J. A. & Huang, T. T. Predictive ability of childhood metabolic components for adult metabolic syndrome and type 2 diabetes. J. Pediatr. 155, S6.e1–S6.e7 (2009).

    Google Scholar 

  58. 58

    Schubert, C. M., Cook, S., Sun, S. S. & Huang, T. T. Additive utility of family history and waist circumference to body mass index in childhood for predicting metabolic syndrome in adulthood. J. Pediatr. 155, S6.e9–S6.e13 (2009).

    Google Scholar 

  59. 59

    Gidding, S. S. et al. Prediction of coronary artery calcium in young adults using the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) risk score: the CARDIA study. Arch. Intern. Med. 166, 2341–2347 (2006).

    CAS  PubMed  Google Scholar 

  60. 60

    Goran, M. I., Bergman, R. N., Cruz, M. L. & Watanabe, R. Insulin resistance and associated compensatory responses in African-American and Hispanic children. Diabetes Care 25, 2184–2190 (2002).

    CAS  PubMed  Google Scholar 

  61. 61

    Despres, J. P. et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N. Engl. J. Med. 334, 952–957 (1996).

    CAS  PubMed  Google Scholar 

  62. 62

    Goalstone, M. L. et al. Insulin potentiates platelet-derived growth factor action in vascular smooth muscle cells. Endocrinology 139, 4067–4072 (1998).

    CAS  PubMed  Google Scholar 

  63. 63

    Aljada, A., Ghanim, H., Mohanty, P., Kapur, N. & Dandona, P. Insulin inhibits the pro-inflammatory transcription factor early growth response gene-1 (Egr)-1 expression in mononuclear cells (MNC) and reduces plasma tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) concentrations. J. Clin. Endocrinol. Metab. 87, 1419–1422 (2002).

    CAS  PubMed  Google Scholar 

  64. 64

    Travers, S. H., Jeffers, B. W., Bloch, C. A., Hill, J. O. & Eckel, R. H. Gender and Tanner stage differences in body composition and insulin sensitivity in early pubertal children. J. Clin. Endocrinol. Metab. 80, 172–178 (1995).

    CAS  PubMed  Google Scholar 

  65. 65

    Reinehr, T., de Sousa, G., Toschke, A. M. & Andler, W. Long-term follow-up of cardiovascular disease risk factors in children after an obesity intervention. Am. J. Clin. Nutr. 84, 490–496 (2006).

    CAS  PubMed  Google Scholar 

  66. 66

    Nadeau, K. J. et al. Insulin resistance in adolescents with type 2 diabetes is associated with impaired exercise capacity. J. Clin. Endocrinol. Metab. 94, 3687–3695 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Bacha, F., Saad, R., Gungor, N., Janosky, J. & Arslanian, S. A. Obesity, regional fat distribution, and syndrome X in obese black versus white adolescents: race differential in diabetogenic and atherogenic risk factors. J. Clin. Endocrinol. Metab. 88, 2534–2540 (2003).

    CAS  PubMed  Google Scholar 

  68. 68

    Bao, W., Srinivasan, S. R. & Berenson, G. S. Persistent elevation of plasma insulin levels is associated with increased cardiovascular risk in children and young adults. The Bogalusa Heart Study. Circulation 93, 54–59 (1996).

    CAS  PubMed  Google Scholar 

  69. 69

    Taittonen, L. et al. Insulin and blood pressure among healthy children. Cardiovascular risk in young Finns. Am. J. Hypertens. 9, 194–199 (1996).

    CAS  PubMed  Google Scholar 

  70. 70

    Sinaiko, A. R. et al. Relation of body mass index and insulin resistance to cardiovascular risk factors, inflammatory factors, and oxidative stress during adolescence. Circulation 111, 1985–1991 (2005).

    CAS  PubMed  Google Scholar 

  71. 71

    Raitakari, O. T. et al. The role of insulin in clustering of serum lipids and blood pressure in children and adolescents. The Cardiovascular Risk in Young Finns Study. Diabetologia 38, 1042–1050 (1995).

    CAS  PubMed  Google Scholar 

  72. 72

    McLaughlin, T., Abbasi, F., Lamendola, C. & Reaven, G. Heterogeneity in the prevalence of risk factors for cardiovascular disease and type 2 diabetes mellitus in obese individuals: effect of differences in insulin sensitivity. Arch. Intern. Med. 167, 642–648 (2007).

    CAS  PubMed  Google Scholar 

  73. 73

    Burke, G. L. et al. Fasting plasma glucose and insulin levels and their relationship to cardiovascular risk factors in children: Bogalusa Heart Study. Metabolism 35, 441–446 (1986).

    CAS  PubMed  Google Scholar 

  74. 74

    Kikuchi, D. A. et al. Relation of serum lipoprotein lipids and apolipoproteins to obesity in children: the Bogalusa Heart Study. Prev. Med. 21, 177–190 (1992).

    CAS  PubMed  Google Scholar 

  75. 75

    Jiang, X., Srinivasan, S. R. & Berenson, G. S. Relation of obesity to insulin secretion and clearance in adolescents: the Bogalusa Heart Study. Int. J. Obes. Relat. Metab. Disord. 20, 951–956 (1996).

    CAS  PubMed  Google Scholar 

  76. 76

    Freedman, D. S., Dietz, W. H., Srinivasan, S. R. & Berenson, G. S. The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa Heart Study. Pediatrics 103, 1175–1182 (1999).

    CAS  PubMed  Google Scholar 

  77. 77

    Steinberger, J., Moran, A., Hong, C. P., Jacobs, D. R. Jr. & Sinaiko, A. R. Adiposity in childhood predicts obesity and insulin resistance in young adulthood. J. Pediatr. 138, 469–473 (2001).

    CAS  PubMed  Google Scholar 

  78. 78

    Sinaiko, A. R., Donahue, R. P., Jacobs, D. R. Jr. & Prineas, R. J. Relation of weight and rate of increase in weight during childhood and adolescence to body size, blood pressure, fasting insulin, and lipids in young adults. The Minneapolis Children's Blood Pressure Study. Circulation 99, 1471–1476 (1999).

    CAS  PubMed  Google Scholar 

  79. 79

    Srinivasan, S. R., Myers, L. & Berenson, G. S. Temporal association between obesity and hyperinsulinemia in children, adolescents, and young adults: the Bogalusa Heart Study. Metabolism 48, 928–934 (1999).

    CAS  PubMed  Google Scholar 

  80. 80

    Travers, S. H., Jeffers, B. W. & Eckel, R. H. Insulin resistance during puberty and future fat accumulation. J. Clin. Endocrinol. Metab. 87, 3814–3818 (2000).

    Google Scholar 

  81. 81

    Pinhas-Hamiel, O & Zeitler, P. Acute and chronic complications of type 2 diabetes mellitus in children and adolescents. Lancet 369, 1823–1831 (2007).

    PubMed  Google Scholar 

  82. 82

    Fagot-Campagna, A. et al. Type 2 diabetes among North American children and adolescents: an epidemiologic review and a public health perspective. J. Pediatr. 136, 664–672 (2000).

    CAS  PubMed  Google Scholar 

  83. 83

    Choha, A. C. et al. Secular trends in blood pressure during early-to-middle adulthood: the Fels Longitudinal Study. J. Hypertens. 29, 838–845 (2011).

    Google Scholar 

  84. 84

    Tirosh, A. et al. Progression of normotensive adolescents to hypertensive adults: a study of 26,980 teenagers. Hypertension 56, 203–209 (2010).

    CAS  PubMed  Google Scholar 

  85. 85

    Magnussen, C. G. et al. The association of pediatric low- and high-density lipoprotein cholesterol dyslipidemia classifications and change in dyslipidemia status with carotid intima–media thickness in adulthood evidence from the cardiovascular risk in Young Finns study, the Bogalusa Heart study, and the CDAH (Childhood Determinants of Adult Health) study. J. Am. Coll. Cardiol. 53, 860–869 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Juonala, M. et al. Associations of dyslipidemias from childhood to adulthood with carotid intima–media thickness, elasticity, and brachial flow-mediated dilatation in adulthood: the Cardiovascular Risk in Young Finns Study. Arterioscler. Thromb. Vasc. Biol. 28, 1012–1017 (2008).

    CAS  PubMed  Google Scholar 

  87. 87

    Freedman, D. S., Dietz, W. H., Srinivasan, S. R. & Berenson, G. S. Risk factors and adult body mass index among overweight children: the Bogalusa Heart Study. Pediatrics 123, 750–757 (2009).

    PubMed  Google Scholar 

  88. 88

    Magnussen, C. G. et al. Utility of currently recommended pediatric dyslipidemia classifications in predicting dyslipidemia in adulthood: evidence from the Childhood Determinants of Adult Health (CDAH) study, Cardiovascular Risk in Young Finns Study, and Bogalusa Heart Study. Circulation 117, 32–42 (2008).

    PubMed  Google Scholar 

  89. 89

    Schwimmer, J. B. Prevalence of fatty liver in children and adolescents. Pediatrics 118, 1388–1393 (2006).

    PubMed  Google Scholar 

  90. 90

    Nadeau, K. J., Klingensmith, G. & Zeitler, P. Type 2 diabetes in children is frequently associated with elevated alanine aminotransferase. J. Pediatr. Gastroenterol. Nutr. 41, 94–98 (2005).

    CAS  PubMed  Google Scholar 

  91. 91

    Schwimmer, J. B. et al. Histopathology of pediatric nonalcoholic fatty liver disease. Hepatology 42, 641–649 (2005).

    PubMed  Google Scholar 

  92. 92

    Sattar, N. et al. Elevated alanine aminotransferase predicts new-onset type 2 diabetes independently of classical risk factors, metabolic syndrome, and C-reactive protein in the west of Scotland coronary prevention study. Diabetes 53, 2855–2860 (2004).

    CAS  PubMed  Google Scholar 

  93. 93

    Bugianesi, E., Moscatiello, S., Ciaravella, M. F. & Marchesini, G. Insulin resistance in nonalcoholic fatty liver disease. Curr. Pharm. Des. 16, 1941–1951.

  94. 94

    Targher, G. et al. Nonalcoholic fatty liver disease and risk of future cardiovascular events among type 2 diabetic patients. Diabetes 54, 3541–3546 (2005).

    CAS  PubMed  Google Scholar 

  95. 95

    Patel, D. A., Srinivasan, S. R., Xu, J. H., Chen, W. & Berenson, G. S. Persistent elevation of liver function enzymes within the reference range is associated with increased cardiovascular risk in young adults: the Bogalusa Heart Study. Metabolism 56, 792–798 (2007).

    CAS  PubMed  Google Scholar 

  96. 96

    Pearson, T. A. et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107, 499–511 (2003).

    PubMed  Google Scholar 

  97. 97

    Maahs, D. M. et al. Low plasma adiponectin levels predict progression of coronary artery calcification. Circulation 111, 747–753 (2005).

    CAS  PubMed  Google Scholar 

  98. 98

    Ridker, P. M., Wilson, P. W. & Grundy, S. M. Should C-reactive protein be added to metabolic syndrome and to assessment of global cardiovascular risk? Circulation 109, 2818–2825 (2004).

    CAS  PubMed  Google Scholar 

  99. 99

    Patel, D. A. et al. Distribution and metabolic syndrome correlates of plasma C-reactive protein in biracial (black-white) younger adults: the Bogalusa Heart Study. Metabolism 55, 699–705 (2006).

    CAS  PubMed  Google Scholar 

  100. 100

    Moran, A. et al. Relation of C-reactive protein to insulin resistance and cardiovascular risk factors in youth. Diabetes Care 28, 1763–1768 (2005).

    CAS  PubMed  Google Scholar 

  101. 101

    Cook, D. G. et al. C-reactive protein concentration in children: relationship to adiposity and other cardiovascular risk factors. Atherosclerosis 149, 139–150 (2000).

    CAS  PubMed  Google Scholar 

  102. 102

    Bibbins-Domingo, K., Coxson, P., Pletcher, M. J., Lightwood, J. & Goldman, L. Adolescent overweight and future adult coronary heart disease. N. Engl. J. Med. 357, 2371–2379 (2007).

    CAS  PubMed  Google Scholar 

  103. 103

    Ludwig, D. S. Childhood obesity—the shape of things to come. N. Engl. J. Med. 357, 2325–2327 (2007).

    CAS  PubMed  Google Scholar 

  104. 104

    Olshansky, S. J. et al. A potential decline in life expectancy in the United States in the 21st century. N. Engl. J. Med. 352, 1138–1145 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Franks, P. W. Childhood obesity, other cardiovascular risk factors, and premature death. N. Engl. J. Med. 362, 485–493 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Haji, S. A. et al. Predictors of left ventricular dilatation in young adults (from the Bogalusa Heart Study). Am. J. Cardiol. 98, 1234–1237 (2006).

    PubMed  PubMed Central  Google Scholar 

  107. 107

    Tirosh, A. et al. Adolescent BMI trajectory and risk of diabetes versus coronary disease. N. Engl. J. Med. 364, 1315–1325 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Lawlor, D. A. & Leon, D. A. Association of body mass index and obesity measured in early childhood with risk of coronary heart disease and stroke in middle age: findings from the aberdeen children of the 1950s prospective cohort study. Circulation 111, 1891–1896 (2005).

    PubMed  Google Scholar 

  109. 109

    Lawlor, D. A. et al. Association of body mass index measured in childhood, adolescence, and young adulthood with risk of ischemic heart disease and stroke: findings from 3 historical cohort studies. Am. J. Clin. Nutr. 83, 767–773 (2006).

    CAS  PubMed  Google Scholar 

  110. 110

    Abraham, S., Collins, G. & Nordsieck, M. Relationship of childhood weight status to morbidity in adults. HSMHA Health Rep. 86, 273–284 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    DiPietro, L., Mossberg, H. O. & Stunkard, A. J. A 40-year history of overweight children in Stockholm: life-time overweight, morbidity, and mortality. Int. J. Obes. Relat. Metab. Disord. 18, 585–590 (1994).

    CAS  PubMed  Google Scholar 

  112. 112

    McGill, H. C. et al. Effects of nonlipid risk factors on atherosclerosis in youth with a favorable lipoprotein profile. Circulation 103, 1546–1550 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Atlantis, E., Barnes, E. H. & Singh, M. A. Efficacy of exercise for treating overweight in children and adolescents: a systematic review. Int. J. Obes. (Lond.) 30, 1027–1040 (2006).

    CAS  Google Scholar 

  114. 114

    Oude Luttikhuis, H. et al. Interventions for treating obesity in children. Cochrane Database of Systematic Reviews Issue 1. Art. No.: CD001872. doi: 10.1002/14651858.CD001872.pub2 (2009).

  115. 115

    US FDA. News release. Abbott Laboratories agrees to withdraw its obesity drug Meridia [online], http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm228812.htm, (2010).

  116. 116

    Brown, T. & Summerbell, C. Systematic review of school-based interventions that focus on changing dietary intake and physical activity levels to prevent childhood obesity: an update to the obesity guidance produced by the National Institute for Health and Clinical Excellence. Obes. Rev. 10, 110–141 (2009).

    CAS  PubMed  Google Scholar 

  117. 117

    Goodpaster, B. H. et al. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: a randomized trial. JAMA 304, 1795–1802 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Stewart, K. J. Exercise training and the cardiovascular consequences of type 2 diabetes and hypertension: plausible mechanisms for improving cardiovascular health. JAMA 288, 1622–1631 (2002).

    PubMed  Google Scholar 

  119. 119

    Reinehr, T., de Sousa, G. & Wabitsch, M. Changes of cardiovascular risk factors in obese children effects of inpatient and outpatient interventions. J. Pediatr. Gastroenterol. Nutr. 43, 506–511 (2006).

    PubMed  Google Scholar 

  120. 120

    Reinehr, T., Kiess, W., Kapellen, T. & Andler, W. Insulin sensitivity among obese children and adolescents, according to degree of weight loss. Pediatrics 114, 1569–1573 (2004).

    PubMed  Google Scholar 

  121. 121

    Savoye, M. et al. Effects of a weight management program on body composition and metabolic parameters in overweight children: a randomized controlled trial. JAMA 297, 2697–2704 (2007).

    CAS  PubMed  Google Scholar 

  122. 122

    Reinehr, T., Schmidt, C., Toschke, A. M. & Andler, W. Lifestyle intervention in obese children with non-alcoholic fatty liver disease: 2-year follow-up study. Arch. Dis. Child 94, 437–442 (2009).

    CAS  PubMed  Google Scholar 

  123. 123

    Nobili, V. et al. NAFLD in children: a prospective clinical-pathological study and effect of lifestyle advice. Hepatology 44, 458–465 (2006).

    PubMed  Google Scholar 

  124. 124

    Jones, K. L., Arslanian, S., Peterokova, V. A., Park, J. S. & Tomlinson, M. J. Effect of metformin in pediatric patients with type 2 diabetes: a randomized controlled trial. Diabetes Care 25, 89–94 (2002).

    CAS  PubMed  Google Scholar 

  125. 125

    Nadeau, K. J., Ehlers, L. B., Zeitler, P. S. & Love-Osborne, K. Treatment of non-alcoholic fatty liver disease with metformin versus lifestyle intervention in insulin-resistant adolescents. Pediatr. Diabetes 10, 5–13 (2008).

    PubMed  Google Scholar 

  126. 126

    Tam, C. S., Clement, K., Baur, L. A. & Tordjman, J. Obesity and low-grade inflammation: a paediatric perspective. Obes. Rev. 11, 118–126 (2010).

    CAS  PubMed  Google Scholar 

  127. 127

    Herrera, B. M. & Lindgren, C. M. The genetics of obesity. Curr. Diab. Rep. 10, 498–505 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Yang, X. et al. Testing a model of physical activity and obesity tracking from youth to adulthood: the cardiovascular risk in young Finns study. Int. J. Obes. (Lond.) 31, 521–527 (2007).

    CAS  Google Scholar 

  129. 129

    McMahan, C. A. et al. Association of Pathobiologic Determinants of Atherosclerosis in Youth risk score and 15-year change in risk score with carotid artery intima–media thickness in young adults (from the Cardiovascular Risk in Young Finns Study). Am. J. Cardiol. 100, 1124–1129 (2007).

    PubMed  PubMed Central  Google Scholar 

  130. 130

    Clarke, W. R., Schrott, H. G., Leaverton, P. E., Connor, W. E. & Lauer, R. M. Tracking of blood lipids and blood pressures in school age children: the Muscatine study. Circulation 58, 626–634 (1978).

    CAS  PubMed  Google Scholar 

  131. 131

    Clarke, W. R. & Lauer, R. M. Does childhood obesity track into adulthood? Crit. Rev. Food Sci. Nutr. 33, 423–430 (1993).

    CAS  PubMed  Google Scholar 

  132. 132

    Sørensen, T. I. & Sonne-Holm, S. Risk in childhood of development of severe adult obesity: retrospective, population-based case-cohort study. Am. J. Epidemiol. 127, 104–113 (1988).

    PubMed  Google Scholar 

  133. 133

    Venn, A. J. et al. Overweight and obesity from childhood to adulthood: a follow-up of participants in the 1985 Australian Schools Health and Fitness Survey. Med. J. Aust. 186, 458–460 (2007).

    PubMed  Google Scholar 

  134. 134

    Power, C., Lake, J. K. & Cole, T. J. Body mass index and height from childhood to adulthood in the 1958 British born cohort. Am. J. Clin. Nutr. 66, 1094–1101 (1997).

    CAS  PubMed  Google Scholar 

  135. 135

    Sachdev, H. P. et al. Predicting adult metabolic syndrome from childhood body mass index: follow-up of the New Delhi birth cohort. Arch. Dis. Child. 94, 768–774 (2009).

    CAS  PubMed  Google Scholar 

  136. 136

    Must, A. Childhood overweight and maturational timing in the development of adult overweight and fatness: the Newton Girls Study and its follow-up. Pediatrics 116, 620–627 (2005).

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All authors contributed equally to discussion of content, writing, and reviewing/editing the manuscript before submission and after peer-review. K. J. Nadeau and D. M. Maahs also researched data for the article.

Corresponding author

Correspondence to Kristen J. Nadeau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nadeau, K., Maahs, D., Daniels, S. et al. Childhood obesity and cardiovascular disease: links and prevention strategies. Nat Rev Cardiol 8, 513–525 (2011). https://doi.org/10.1038/nrcardio.2011.86

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing