Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diagnostic and prognostic value of 3D NOGA mapping in ischemic heart disease

Abstract

The three-dimensional NOGA® (Biologics Delivery Systems, a Johnson & Johnson company, Irwindale, CA, USA) electromechanical mapping system simultaneously registers the electrical and mechanical activities of the left ventricle, enabling online assessment of myocardial viability. The system distinguishes between viable, nonviable, stunned, and hibernating myocardium and can assess wall motion. The evaluation of the electrophysiological state of the tissue by NOGA® mapping has been validated by comparing the electroanatomical voltage and local linear shortening maps obtained with this technique with several noninvasive diagnostic tests. Bipolar signal analysis and determination of the existence and degree of transmural infarctions are also possible with NOGA®. Immediately after percutaneous coronary intervention, an increased electromechanical discordance between voltage and local linear shortening maps indicates procedure-induced stunning that is caused by repetitive ischemia or microvascular compromise. Catheter-based direct intramyocardial injection of cells or gene constructs by NOGA® reduces the likelihood of systemic toxicity of the injected substance, resulting in minimal washout, limited exposure of nontarget organs, and precise localization to ischemic and peri-ischemic myocardial regions in patients with chronic myocardial ischemia. In addition, direct intramyocardial injection enables the treatment of chronic myocardial infarction by provoking a chemotactic signal at the injection–injury site that contributes to cell engraftment. By measuring the electrical activation pattern in delayed-motion areas, NOGA® might also be useful to predict response to cardiac resynchronization therapy.

Key Points

  • The main diagnostic value of NOGA® images lies in their ability to provide online assessment of myocardial viability in the catheterization laboratory

  • NOGA® can also be used to generate local linear shortening (LLS) maps, which reflect regional wall motion

  • NOGA® endocardial mapping can distinguish viable, nonviable, stunned, and hibernating myocardium, the latter by revealing mismatch between electrical and mechanical activity

  • The validation of myocardial viability assessment by NOGA® is based on good concordance with standardized noninvasive imaging tests; this technique is less concordant with other imaging approaches for wall-motion assessment

  • Delineation of the infarcted area by NOGA® enables targeted delivery of cells or gene constructs in areas with myocardial unipolar voltage ≥9 mV, bipolar amplitude >1.9 mV, and LLS >6%

  • Endocardial mapping by NOGA® enables a noncoronary segmental quantitative analysis of extent and severity of confluent ischemia in patients with ischemic cardiomyopathy

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The components of the NOGA® system.
Figure 2: Unipolar voltage and LLS maps with the corresponding 2D quantitative polar maps.
Figure 3: NOGA® MyoStar® intramyocardial injection catheter system (Biosense Webster, a Johnson & Johnson company, Diamond Bar, CA, USA).

References

  1. Ben-Haim, S. A. et al. Nonfluoroscopic, in vivo navigation and mapping technology. Nat. Med. 2, 1393–1395 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Gepstein, L., Hayam, G., Shpun, S. & Ben-Haim, S. A. Hemodynamic evaluation of the heart with a nonfluoroscopic electromechanical mapping technique. Circulation 96, 3672–3680 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Gepstein, L. et al. Electromechanical characterization of chronic myocardial infarction in the canine coronary occlusion model. Circulation 98, 2055–2064 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Gepstein, L., Hayam, G. & Ben-Haim, S. A. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation 95, 1611–1622 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Kornowski, R., Hong, M. K. & Leon, M. B. Comparison between left ventricular electromechanical mapping and radionuclide perfusion imaging for detection of myocardial viability. Circulation 98, 1837–1841 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Smeets, J. L., Ben-Haim, S. A., Rodriguez, L. M., Timmermans, C. & Wellens, H. J. New method for nonfluoroscopic endocardial mapping in humans: accuracy assessment and first clinical results. Circulation 97, 2426–2432 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Vale, P. R. et al. Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 102, 965–974 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Fernandes, M. R. et al. Validation of QwikStar Catheter for left ventricular electromechanical mapping with NOGA XP system. Tex. Heart Inst. J. 35, 240–244 (2008).

    PubMed  PubMed Central  Google Scholar 

  9. Chazaud, B. et al. Endoventricular porcine autologous myoblast transplantation can be successfully achieved with minor mechanical cell damage. Cardiovasc. Res. 58, 444–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Garot, J. et al. Magnetic resonance imaging of targeted catheter-based implantation of myogenic precursor cells into infarcted left ventricular myocardium. J. Am. Coll. Cardiol. 41, 1841–1846 (2003).

    Article  PubMed  Google Scholar 

  11. Kornowski, R. et al. Evaluation of the acute and chronic safety of the biosense injection catheter system in porcine hearts. Catheter Cardiovasc. Interv. 48, 447–453 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Kornowski, R., Fuchs, S., Leon, M. B. & Epstein, S. E. Delivery strategies to achieve therapeutic myocardial angiogenesis. Circulation 101, 454–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Kornowski, R. et al. Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J. Am. Coll. Cardiol. 35, 1031–1039 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Fuchs, S. et al. A randomized, double-blind, placebo-controlled, multicenter, pilot study of the safety and feasibility of catheter-based intramyocardial injection of AdVEGF121 in patients with refractory advanced coronary artery disease. Catheter Cardiovasc. Interv. 68, 372–378 (2006).

    Article  PubMed  Google Scholar 

  15. Nyolczas, N. et al. Design and rationale for the Myocardial Stem Cell Administration after Acute Myocardial Infarction (MYSTAR) Study: a multicenter, prospective, randomized, single-blind trial comparing early and late intracoronary or combined (percutaneous intramyocardial and intracoronary) administration of nonselected autologous bone marrow cells to patients after acute myocardial infarction. Am. Heart J. 153, 212.e1–212.e7 (2007).

    Article  Google Scholar 

  16. Silva, G. V. et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111, 150–156 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Kastrup, J. et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris. A randomized double-blind placebo-controlled study: the Euroinject One trial. J. Am. Coll. Cardiol. 45, 982–988 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Kastrup, J. et al. Intramyocardial injection of genes with a novel percutaneous technique. Initial safety data of the Euroinject One Study. Heart Drug 1, 299–304 (2001.

    Article  CAS  Google Scholar 

  19. Baldazzi, F., Jørgensen, E., Ripa, R. S. & Kastrup, J. Release of biomarkers of myocardial damage after direct intramyocardial injection of genes and stem cells via the percutaneous transluminal route. Eur. Heart J. 29, 1819–1826 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Van Langenhove, G. et al. Evaluation of left ventricular volumes and ejection fraction with a nonfluoroscopic endoventricular three-dimensional mapping technique. Am. Heart J. 140, 596–602 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Gyöngyösi, M. et al. Combined delivery approach of bone marrow mononuclear stem cells early and late after myocardial infarction: the MYSTAR prospective, randomized study. Nat. Clin. Pract. Cardiovasc. Med. 6, 70–81 (2009).

    Article  PubMed  Google Scholar 

  22. Dib, N. et al. One-year follow-up of feasibility and safety of the first US, randomized, controlled study using 3-dimensional guided catheter-based delivery of autologous skeletal myoblasts for ischemic cardiomyopathy (CAuSMIC study). JACC Cardiovasc. Interv. 2, 9–16 (2009).

    Article  PubMed  Google Scholar 

  23. Jørgensen, E., Madsen, T. & Kastrup, J. Comparison of the left ventricular electromechanical map before percutaneous coronary stent revascularization and at one-month follow-up in patients with a recent ST elevation infarction. Catheter Cardiovasc. Interv. 64, 153–159 (2005).

    Article  PubMed  Google Scholar 

  24. Beeres, S. L. et al. Electrophysiological and arrhythmogenic effects of intramyocardial bone marrow cell injection in patients with chronic ischemic heart disease. Heart Rhythm 4, 257–265 (2007).

    Article  PubMed  Google Scholar 

  25. Chen, S. et al. Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin. Med. J. (Engl.) 117, 1443–1448 (2004).

    Google Scholar 

  26. Chen, S. et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol. 94, 92–95 (2004).

    Article  PubMed  Google Scholar 

  27. Ramcharitar, S., Patterson, M. S., van Geuns R. J., van Meighem, C. & Serruys, P. W. Technology Insight: magnetic navigation in coronary interventions. Nat. Clin. Pract. Cardiovasc. Med. 5, 148–156 (2008).

    Article  PubMed  Google Scholar 

  28. Perin, E. C. et al. First experience with remote left ventricular mapping and transendocardial cell injection with a novel integrated magnetic navigation-guided electromechanical mapping system. EuroIntervention 3, 142–148 (2007).

    PubMed  Google Scholar 

  29. Kornowski, R. et al. Electromechanical characterization of acute experimental myocardial infarction. J. Invasive Cardiol. 11, 329–336 (1999).

    CAS  PubMed  Google Scholar 

  30. Tuzun, E. et al. Correlation of ischemic area and coronary flow with ameroid size in a porcine model. J. Surg. Res. 1, 38–42 (2010).

    Article  Google Scholar 

  31. Bhargava, B. & Kornowski, R. Biosense left ventricular electromechanical mapping. Asian Cardiovasc. Thorac. Ann. 7, 345–348 (1999).

    Article  Google Scholar 

  32. Gyöngyösi, M. et al. Characterization of hibernating myocardium with NOGA electroanatomic endocardial mapping. Am. J. Cardiol. 95, 722–728 (2005).

    Article  PubMed  Google Scholar 

  33. Gyöngyösi, M., Sochor, H., Khorsand, A. A., Gepstein, L. & Glogar, D. Online myocardial viability assessment in the catheterization laboratory via NOGA electroanatomic mapping: quantitative comparison with thallium-201 uptake. Circulation 104, 1005–1011 (2001).

    Article  PubMed  Google Scholar 

  34. Beeres, S. L. et al. Intramyocardial injection of autologous bone marrow mononuclear cells in patients with chronic myocardial infarction and severe left ventricular dysfunction. Am. J. Cardiol. 100, 1094–1098 (2007).

    Article  PubMed  Google Scholar 

  35. Leon, M. B. et al. A blinded, randomized, placebo-controlled trial of percutaneous laser myocardial revascularization to improve angina symptoms in patients with severe coronary disease. J. Am. Coll. Cardiol. 46, 1812–1819 (2005).

    Article  PubMed  Google Scholar 

  36. Strehblow, C. et al. Evaluation of myocardial perfusion and left ventricular function six months after percutaneous transmyocardial laser revascularization: comparison of two Ho-YAG laser systems with the same wavelength, but different energy delivery and navigation systems. Lasers Surg. Med. 33, 273–281 (2003).

    Article  PubMed  Google Scholar 

  37. Psaltis, P. J. & Worthley, S. G. Endoventricular electromechanical mapping—the diagnostic and therapeutic utility of the NOGA XP Cardiac Navigation System. J. Cardiovasc. Transl. Res. 2, 48–62 (2009).

    Article  PubMed  Google Scholar 

  38. Dib, N., Khawaja, H., Varner, S., McCarthy, M. & Campbell, A. Cell therapy for cardiovascular disease: a comparison of methods of delivery. J. Cardiovasc. Transl. Res. 4, 177–181 (2011).

    Article  PubMed  Google Scholar 

  39. Perin, E. C. et al. Left ventricular electromechanical mapping: preliminary evidence of electromechanical changes after successful coronary intervention. Am. Heart J. 144, 693–701 (2002).

    Article  PubMed  Google Scholar 

  40. Keck, A. et al. Electromechanical mapping for determination of myocardial contractility and viability A comparison with echocardiography, myocardial single-photon emission computed tomography, and positron emission tomography. J. Am. Coll. Cardiol. 40, 1067–1074 (2002).

    Article  PubMed  Google Scholar 

  41. Bax, J. J. et al. Comparison between 360° and 180° data sampling in thallium-201 rest-redistribution single-photon emission tomography to predict functional recovery after revascularization. Eur. J. Nucl. Med. 24, 516–522 (1997).

    CAS  PubMed  Google Scholar 

  42. Bax, J. J., Poldermans, D., Elhendy, A., Boersma, E. & Rahimtoola, S. H. Sensitivity, specificity, and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr. Probl. Cardiol. 26, 147–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Vanoverschelde, J. L. J. et al. Time course of functional recovery after coronary artery bypass graft surgery in patients with chronic left ventricular ischemic dysfunction. Am. J. Cardiol. 85, 1432–1439 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Gunning, M. G. et al. Simultaneous assessment of myocardial viability and function for the detection of hibernating myocardium using ECG-gated 99mTc-tetrofosmin emission tomography: a comparison with 201Tl emission tomography combined with cine magnetic resonance imaging. Nucl. Med. Commun. 20, 209–214 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Fuchs, S. et al. Electromechanical characterization of myocardial hibernation in a pig model. Coron. Artery Dis. 10, 195–198 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Kornowski, R. et al. Preliminary animal and clinical experiences using an electromechanical endocardial mapping procedure to distinguish infarcted from healthy myocardium. Circulation 98, 1116–1124 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Callans, D. J., Ren, J. F., Michele, J., Marchlinski, F. E. & Dillon, S. M. Electroanatomic left ventricular mapping in the porcine model of healed anterior myocardial infarction. Correlation with intracardiac echocardiography and pathological analysis. Circulation 100, 1744–1750 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Fuchs, S. et al. Comparison of endocardial electromechanical mapping with radionuclide perfusion imaging to assess myocardial viability and severity of myocardial ischemia in angina pectoris. Am. J. Cardiol. 87, 874–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Wolf, T. et al. Detailed endocardial mapping accurately predicts the transmural extent of myocardial infarction. J. Am. Coll. Cardiol. 37, 1590–1597 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Bøtker, H. E. et al. Electromechanical mapping for detection of myocardial viability in patients with ischemic cardiomyopathy. Circulation 103, 1631–1637 (2001).

    Article  PubMed  Google Scholar 

  51. Koch, K. C. et al. Myocardial viability assessment by endocardial electroanatomic mapping: comparison with metabolic imaging and functional recovery after coronary revascularization. J. Am. Coll. Cardiol. 38, 91–98 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Kornowski, R. et al. Catheter-based electromechanical mapping to assess regional myocardial function: a comparative analysis with transthoracic echocardiography. Catheter Cardiovasc. Interv. 52, 342–347 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Keck, A. et al. Electromechanical mapping for determination of myocardial contractility and viability. A comparison with echocardiography, myocardial single-photon emission computed tomography, and positron emission tomography. J. Am. Coll. Cardiol. 40, 1067–1074 (2002).

    Article  PubMed  Google Scholar 

  54. Sheehan, F. H. et al. Method for three-dimensional data registration from disparate imaging modalities in the NOGA Myocardial Viability Trial. IEEE Trans. Med. Imaging 21, 1264–1270 (2002).

    Article  PubMed  Google Scholar 

  55. Perin, E. C. et al. Assessing myocardial viability and infarct transmurality with left ventricular electromechanical mapping in patients with stable coronary artery disease: validation by delayed-enhancement magnetic resonance imaging. Circulation 106, 957–961 (2002).

    Article  PubMed  Google Scholar 

  56. Sarmento-Leite, R. et al. Comparison of left ventricular electromechanical mapping and left ventricular angiography: defining practical standards for analysis of NOGA maps. Tex. Heart Inst. J. 30, 19–26 (2003).

    PubMed  PubMed Central  Google Scholar 

  57. Wiggers, H. et al. Electromechanical mapping versus positron emission tomography and single photon emission computed tomography for the detection of myocardial viability in patients with ischemic cardiomyopathy. J. Am. Coll. Cardiol. 41, 843–848 (2003).

    Article  PubMed  Google Scholar 

  58. Graf, S. et al. Electromechanical properties of the perfusion/metabolism mismatch: comparison of nonfluoroscopic electroanatomic mapping with 18F-FDG PET imaging. J. Nucl. Med. 45, 1611–1618 (2004).

    PubMed  Google Scholar 

  59. Samady, H. et al. Electromechanical mapping identifies improvement in function and retention of contractile reserve after revascularization in ischemic cardiomyopathy. Circulation 110, 2410–2416 (2004).

    Article  PubMed  Google Scholar 

  60. Fuchs, S. & Kornowski, R. Correlation between endocardial voltage mapping and myocardial perfusion: implications for the assessment of myocardial ischemia. Coron. Artery Dis. 16, 163–167 (2005).

    Article  PubMed  Google Scholar 

  61. Johnson, L. L. et al. Radiolabeled arginine-glycine-aspartic acid peptides to image angiogenesis in swine model of hibernating myocardium. JACC Cardiovasc. Imaging 1, 500–510 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Koch, K. C. et al. Myocardial viability assessment by endocardial electroanatomic mapping: comparison with metabolic imaging and functional recovery after coronary revascularization. J. Am. Coll. Cardiol. 38, 91–98 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Thambar, S. T. et al. Validation of R wave voltage endomyocardial mapping to assess myocardial fibrosis: comparison with thallium and dobutamine echocardiography in a swine model. J. Interv. Cardiol. 16, 23–31 (2003).

    Article  PubMed  Google Scholar 

  64. Krause, K. T. et al. Percutaneous endocardial injection of erythropoietin: assessment of cardioprotection by electromechanical mapping. Eur. J. Heart Fail. 8, 443–450 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Van Langenhove, G. et al. Comparison of mechanical properties of the left ventricle in patients with severe coronary artery disease by nonfluoroscopic mapping versus two-dimensional echocardiograms. Am. J. Cardiol. 86, 1047–1050 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Tan, E. S. et al. Evaluation of global left ventricular function assessment of non-fluorescent electromechanical endocardial mapping compared with biplane left ventricular contrast angiography. Neth. Heart J. 18, 72–77 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lessick, J. et al. Evaluation of inotropic changes in ventricular function by NOGA mapping: comparison with echocardiography. J. Appl. Physiol. 93, 418–426 (2002).

    Article  PubMed  Google Scholar 

  68. Odenstedt, J., Månsson, C., Jansson, S. O. & Grip, L. Endocardial electromechanical mapping in a porcine acute infarct and reperfusion model evaluating the extent of myocardial ischemia. J. Invasive Cardiol. 15, 497–501 (2003).

    PubMed  Google Scholar 

  69. Koch, K. C., Wenderdel, M., Stellbrink, C., Hanrath, P. & vom Dahl, J. Electromechanical assessment of left ventricular function following successful percutaneous coronary revascularization. Catheter Cardiovasc. Interv. 54, 466–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Koch, K. C. et al. Prognostic value of endocardial electromechanical mapping in patients with left ventricular dysfunction undergoing percutaneous coronary intervention. Am. J. Cardiol. 94, 1129–1133 (2004).

    Article  PubMed  Google Scholar 

  71. Gyöngyösi, M. et al. Hypoxia-inducible factor 1-alpha release after intracoronary versus intramyocardial stem cell therapy in myocardial infarction. J. Cardiovasc. Transl. Res. 3, 114–121 (2010).

    Article  PubMed  Google Scholar 

  72. Gyöngyösi, M. et al. Imaging the migration of therapeutically delivered cardiac stem cells. JACC Cardiovasc. Imaging 3, 772–775 (2010).

    Article  PubMed  Google Scholar 

  73. Hou, D. et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112 (Suppl. 1), I150–I156 (2005).

    PubMed  Google Scholar 

  74. Sun, Z. et al. Human angiogenic cell precursors restore function in the infarcted rat heart: a comparison of cell delivery routes. Eur. J. Heart Fail. 10, 525–533 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Freyman, T. et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur. Heart J. 27, 1114–1122 (2006).

    Article  PubMed  Google Scholar 

  76. van der Spoel, T. I. et al. Non-surgical stem cell delivery strategies and in vivo cell tracking to injured myocardium. Int. J. Cardiovasc. Imaging doi:10.1007/s10554-010-9658–4.

  77. Gyöngyösi, M. et al. Delayed recovery of myocardial blood flow after intracoronary stem cell administration. Stem Cell Rev. doi: 10.1007/s12015-010-9213–7.

  78. Vale, P. R. et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 103, 2138–2143 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Losordo, D. W. et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 105, 2012–2018 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Smits, P. C. et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J. Am. Coll. Cardiol. 42, 2063–2069 (2003).

    Article  PubMed  Google Scholar 

  81. Perin, E. C. et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107, 2294–2302 (2003).

    Article  PubMed  Google Scholar 

  82. Perin, E. C. et al. Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 110 (Suppl. 1), II213–II218 (2004).

    PubMed  Google Scholar 

  83. Briguori, C. et al. Direct intramyocardial percutaneous delivery of autologous bone marrow in patients with refractory myocardial angina. Am. Heart J. 151, 674–680 (2006).

    Article  PubMed  Google Scholar 

  84. Fuchs, S. et al. Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease. Am. J. Cardiol. 97, 823–829 (2006).

    Article  PubMed  Google Scholar 

  85. Beeres, S. L. et al. Intramyocardial injection of autologous bone marrow mononuclear cells in patients with chronic myocardial infarction and severe left ventricular dysfunction. Am. J. Cardiol. 100, 1094–1098 (2007).

    Article  PubMed  Google Scholar 

  86. Losordo, D. W. et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 115, 3165–3172 (2007).

    Article  PubMed  Google Scholar 

  87. Beeres, S. L. et al. Intramyocardial bone marrow cell transplantation and the progression of coronary atherosclerosis in patients with chronic myocardial ischemia. Acute Card. Care 9, 243–251 (2007).

    Article  PubMed  Google Scholar 

  88. Tse, H. F. et al. Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for treatment of severe coronary artery diseases (PROTECT-CAD trial). Eur. Heart J. 28, 2998–3005 (2007).

    Article  PubMed  Google Scholar 

  89. van Ramshorst, J. et al. Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. JAMA 301, 1997–2004 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Stewart, D. J. et al. for the NORTHERN Trial Investigators. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol. Ther. 17, 1109–1115 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Krause, K. et al. Percutaneous intramyocardial stem cell injection in patients with acute myocardial infarction: first-in-man study. Heart 95, 1145–1152 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Jiménez-Quevedo, P. et al. Diabetic and nondiabetic patients respond differently to transendocardial injection of bone marrow mononuclear cells: findings from prospective clinical trials in “no-option” patients [Spanish]. Rev. Esp. Cardiol. 61, 635–639 (2008).

    Article  PubMed  Google Scholar 

  93. Chan, C. W., Kwong, Y. L., Kwong, R. Y., Lau, C. P. & Tse, H. F. Improvement of myocardial perfusion reserve detected by cardiovascular magnetic resonance after direct endomyocardial implantation of autologous bone marrow cells in patients with severe coronary artery disease. J. Cardiovasc. Magn. Reson. 12, 6 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pokuschalov, E. et al. Efficiency of intramyocardial injections of autologous bone marrow mononuclear cells in patients with ischemic heart failure: a randomized study. J. Cardiovasc. Transl. Res. 3, 160–168 (2010).

    Article  Google Scholar 

  95. Krause, K. et al. Endocardial electrogram analysis after intramyocardial injection of mesenchymal stem cells in the chronic ischemic myocardium. Pacing Clin Electrophysiol. 32, 1319–1328 (2009).

    Article  PubMed  Google Scholar 

  96. Gyöngyösi, M. et al. NOGA-guided analysis of regional myocardial perfusion abnormalities treated with intramyocardial injections of plasmid encoding vascular endothelial growth factor A-165 in patients with chronic myocardial ischemia: subanalysis of the EUROINJECT-ONE multicenter double-blind randomized study. Circulation 112 (Suppl. 1), I157–I165 (2005).

    PubMed  Google Scholar 

  97. Charwat, S. et al. Effect of intramyocardial delivery of autologous bone marrow mononuclear stem cells on the regional myocardial perfusion. NOGA-guided subanalysis of the MYSTAR prospective randomised study. Thromb. Hemost. 103, 564–567 (2010).

    Article  CAS  Google Scholar 

  98. Klemm, H. U. et al. Slow wall motion rather than electrical conduction delay underlies mechanical dyssynchrony in postinfarction patients with narrow QRS complex. J. Cardiovasc. Electrophysiol. 21, 70–77 (2010).

    Article  PubMed  Google Scholar 

  99. Kimber, S. et al. A comparison of unipolar and bipolar electrodes during cardiac mapping studies. Pacing Clin. Electrophysiol. 19, 1196–1204 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Ota, T., Gilbert, T. W., Badylak, S. F., Schwartzman, D. & Zenati, M. A. Electromechanical characterization of a tissue-engineered myocardial patch derived from extracellular matrix. J. Thorac. Cardiovasc. Surg. 133, 979–985 (2007).

    Article  PubMed  Google Scholar 

  101. Meta-analysis of Cardiac Stem Cell Studies (MESS). NCT01098591. ClinicalTrials.gov [online]. (2011).

  102. Bone Marrow Derived Mononuclear Cells for Ischemic Cardiomyopathy (ALSTER-STAR). NCT01144221. ClinicalTrials.gov [online]. (2011).

Download references

Acknowledgements

The authors thank Martin W. Bergmann for providing Figure 2.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to discussion of content for the article, researching data to include in the manuscript, reviewing and editing the manuscript before submission, and revising the manuscript after peer-review.

Corresponding author

Correspondence to Mariann Gyöngyösi.

Ethics declarations

Competing interests

N. Dib is a consultant and in the speaker's bureau of Biologics Delivery Systems, a Johnson & Johnson company. M. Gyöngyösi declares no competing interests.

Supplementary information

Supplementary Table 1

Human NOGA®-guided intramyocardial injection studies (DOC 101 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gyöngyösi, M., Dib, N. Diagnostic and prognostic value of 3D NOGA mapping in ischemic heart disease. Nat Rev Cardiol 8, 393–404 (2011). https://doi.org/10.1038/nrcardio.2011.64

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.64

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing