Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Early detection of myocardial dysfunction and heart failure

Abstract

The impact of cardiac dysfunction and heart failure is continuing to escalate in the developed world. Treatment of this heterogeneous condition has focused on the symptomatic stage, often after irreversible remodeling and functional impairment have occurred. Early identification of cardiac dysfunction would allow implementation of early intervention strategies to delay the progression or to prevent the onset of heart failure altogether. Although screening methods for asymptomatic cardiac dysfunction have yet to be optimized, a staged approach for patients with predisposing risk factors using serological biomarkers followed by noninvasive imaging techniques may be useful. Existing biomarkers for cardiac dysfunction include B-type natriuretic peptide, troponins, and C-reactive protein. Novel markers such as protein ST2, galectin-3, and various prohormones are emerging and may provide prognostic information that is incremental to conventional clinical evaluation. Monitoring myocardial mechanics and molecular processes through three-dimensional speckle tracking and hybrid imaging modalities, such as PET–CT, may provide insight into disease manifestation before overt structural and physiological abnormalities.

Key Points

  • The increase in the prevalence of heart failure and its late symptomatic presentation require novel approaches to assist in the early detection of myocardial dysfunction

  • Novel serological biomarkers are emerging as independent predictors of adverse outcomes and contribute incremental prognostic information to traditional risk factors and B-type natriuretic peptide levels in heart failure

  • Imaging tools that assess myocardial mechanics and molecular processes provide improved sensitivity and specificity for disease identification and progression

  • A tandem approach using multiple representative biomarkers with molecular or multimodal imaging tools may provide additional risk stratification and evaluation of disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BNP in the clinical setting.
Figure 2: Biomarker discovery.
Figure 3: Multimarker strategy to improve diagnostic performance as illustrated by receiver operating characteristic curves.
Figure 4: Three-dimensional echocardiography Doppler speckle tracking demonstrating cardiac dysfunction secondary to myocardial infarction.
Figure 5: Use of PET and CT multimodal hybrid imaging to detect cardiac dysfunction.

Similar content being viewed by others

References

  1. Jong, P., Vowinckel, E., Liu, P. P., Gong, Y. & Tu, J. V. Prognosis and determinants of survival in patients newly hospitalized for heart failure: a population-based study. Arch. Intern. Med. 162, 1689–1694 (2002).

    Article  PubMed  Google Scholar 

  2. Lloyd-Jones, D. et al. Heart disease and stroke statistics--2010 update. A report from the American Heart Association. Circulation 121, e1–e170 (2010).

    Article  Google Scholar 

  3. Heo, S., Doering, L. V., Widener, J. & Moser, D. K. Predictors and effect of physical symptom status on health-related quality of life in patients with heart failure. Am. J. Crit. Care 17, 124–132 (2008).

    Article  PubMed  Google Scholar 

  4. Mudd, J. O. & Kass, D. A. Tackling heart failure in the twenty-first century. Nature 451, 919–928 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Heymans, S. et al. Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 11, 119–129 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goodlin, S. J. Palliative care in congestive heart failure. J. Am. Coll. Cardiol. 54, 386–396 (2009).

    Article  PubMed  Google Scholar 

  7. Bhatia, R. S. et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N. Engl. J. Med. 355, 260–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Tsang, T. S. et al. Prediction of risk for first age-related cardiovascular events in an elderly population: the incremental value of echocardiography. J. Am. Coll. Cardiol. 42, 1199–1205 (2003).

    Article  PubMed  Google Scholar 

  9. Redfield, M. M. et al. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 289, 194–202 (2003).

    Article  PubMed  Google Scholar 

  10. Lee, D. S. et al. Antecedent blood pressure, body mass index, and the risk of incident heart failure later in life. Hypertension 50, 869–876 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Turnbull, F. et al. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively designed overviews of randomized trials. Lancet 362, 1527–1535 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Yusuf, S. et al. Effect of enalapril on myocardial infarction and unstable angina in patients with low ejection fractions. Lancet 340, 1173–1178 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. The SOLVD Investigators. N. Engl. J. Med. 327, 685–691 (1992).

  14. Jong, P., Yusuf, S., Rousseau, M. F., Ahn, S. A. & Bangdiwala, S. I. Effect of enalapril on 12-year survival and life expectancy in patients with left ventricular systolic dysfunction: a follow-up study. Lancet 361, 1843–1848 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. McDonagh, T. A. et al. Symptomatic and asymptomatic left ventricular dysfunction in an urban population. Lancet 350, 829–833 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Davies, M. K. et al. Prevalence of left ventricular systolic dysfunction and heart failure in the Echocardiographic Heart of England Screening Study: a population based study. Lancet 358, 439–444 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Martin, B. J. & Anderson, T. Risk prediction in cardiovascular disease: the prognostic significance of endothelial dysfunction. Can. J. Cardiol. 25 (Suppl. A), 15A–20A (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kubo, S. H., Rector, T. S., Bank, A. J., Williams, R. E. & Heifetz, S. M. Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation 84, 1589–1596 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Katz, S. D. et al. Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation 111, 310–314 (2005).

    Article  PubMed  Google Scholar 

  20. Morrow, D. A. & de Lemos, J. A. Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation 115, 949–952 (2007).

    Article  PubMed  Google Scholar 

  21. Davis, M. et al. Plasma brain natriuretic peptide in assessment of acute dyspnoea. Lancet 343, 440–444 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Maisel, A. et al. State of the art: using natriuretic peptide levels in clinical practice. Eur. J. Heart Fail. 10, 824–839 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Hunt, S. A. et al. 2009 Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the International Society for Heart and Lung Transplantation. J. Am. Coll. Cardiol. 53, e1–e90 (2009).

    Article  PubMed  Google Scholar 

  24. Dickstein, K. et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur. J. Heart Fail. 10, 933–989 (2008).

    Article  PubMed  Google Scholar 

  25. Maisel, A. S. et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N. Engl. J. Med. 347, 161–167 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Mueller, C. et al. Use of B-type natriuretic peptide in the evaluation and management of acute dyspnea. N. Engl. J. Med. 350, 647–654 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. McCullough, P. A. et al. B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: analysis from Breathing Not Properly (BNP) Multinational Study. Circulation 106, 416–422 (2002).

    Article  PubMed  Google Scholar 

  28. Brenden, C. K. et al. Gray zone BNP levels in heart failure patients in the emergency department: results from the Rapid Emergency Department Heart Failure Outpatient Trial (REDHOT) multicenter study. Am. Heart J. 151, 1006–1011 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. de Lemos, J. A., McGuire, D. K. & Drazner, M. H. B-type natriuretic peptide in cardiovascular disease. Lancet 362, 316–322 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Vasan, R. S. et al. Plasma natriuretic peptides for community screening for left ventricular hypertrophy and systolic dysfunction: the Framingham heart study. JAMA 288, 1252–1259 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Goetze, J. P. et al. Plasma pro-B-type natriuretic peptide in the general population: screening for left ventricular hypertrophy and systolic dysfunction. Eur. Heart J. 24, 3004–3010 (2006).

    Article  CAS  Google Scholar 

  32. Horwich, T. B., Hamilton, M. A. & Fonarow, G. C. B-type natriuretic peptide levels in obese patients with advanced heart failure. J. Am. Coll. Cardiol. 47, 85–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Latini, R. et al. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation 116, 1242–1249 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Tsutamoto, T. et al. Prognostic role of highly sensitive cardiac troponin I in patients with systolic heart failure. Am. Heart J. 159, 63–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Omland, T. et al. A sensitive cardiac troponin T assay in stable coronary artery disease. N. Engl. J. Med. 361, 2538–2547 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morrow, D. A. & Antman, E. M. Evaluation of high-sensitivity assays for cardiac troponin. Clin. Chem. 55, 5–8 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Pepys, M. B. & Hirschfield, G. M. C-reactive protein: a critical update. J. Clin. Invest. 111, 1805–1812 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Verma, S., Szmitko, P. E. & Ridker, P. M. C-reactive protein comes of age. Nat. Clin. Pract. Cardiovasc. Med. 2, 29–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Ridker, P. M. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 103, 1813–1818 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Gottdiener, J. S. et al. Predictors of congestive heart failure in the elderly: the Cardiovascular Health Study. J. Am. Coll. Cardiol. 35, 1628–1637 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Vasan, R. S. et al. Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study. Circulation 107, 1486–1491 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Cesari, M. et al. Inflammatory markers and onset of cardiovascular events: results from the Health ABC study. Circulation 108, 2317–2322 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Kardys, I. et al. C-reactive protein and risk of heart failure. The Rotterdam Study. Am. Heart J. 152, 514–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Mueller, C., Laule-Kilian, K., Christ, A., Brunner-La Rocca, H. P. & Perruchoud, A. P. Inflammation and long-term mortality in acute congestive heart failure. Am. Heart J. 151, 845–850 (2006).

    Article  PubMed  Google Scholar 

  45. Anand, I. S. et al. C-reactive protein in heart failure: prognostic value and the effect of valsartan. Circulation 112, 1428–1434 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. McMurray, J. J. et al. Effects of statin therapy according to plasma high-sensitivity C-reactive protein concentration in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA): a retrospective analysis. Circulation 120, 2188–2196 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Kalra, P. R., Anker, S. D. & Coats, A. J. Water and sodium regulation in chronic heart failure: the role of natriuretic peptides and vasopressin. Cardiovasc. Res. 51, 495–509 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Khan, S. Q. et al. C-terminal provasopressin (copeptin) as a novel and prognostic marker in acute myocardial infarction: Leicester Acute Myocardial Infarction Peptide (LAMP) study. Circulation 115, 2103–2110 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Voors, A. A. et al. C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: results from the OPTIMAAL study. Eur. Heart J. 30, 1187–1194 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Stoiser, B. et al. Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure. Eur. J. Clin. Invest. 36, 771–778 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Neuhold, S. et al. Comparison of copeptin, B-type natriuretic peptide, and amino-terminal pro-B-type natriuretic peptide in patients with chronic heart failure: prediction of death at different stages of the disease. J. Am. Coll. Cardiol. 52, 266–272 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Clerico, A., Del Ry, S. & Giannessi, D. Measurement of cardiac natriuretic hormones (atrial natriuretic peptide, brain natriuretic peptide, and related peptides) in clinical practice: the need for a new generation of immunoassay methods. Clin. Chem. 46, 1529–1534 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Gegenhuber, A. et al. Midregional pro-A-type natriuretic peptide measurements for diagnosis of acute destabilized heart failure in short-of-breath patients: comparison with B-type natriuretic peptide (BNP) and amino-terminal proBNP. Clin. Chem. 52, 827–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. von Haehling, S. et al. Comparison of midregional pro-atrial natriuretic peptide with N.-terminal pro-B-type natriuretic peptide in predicting survival in patients with chronic heart failure. J. Am. Coll. Cardiol. 50, 1973–1980 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Moertl, D. et al. Comparison of midregional pro-atrial and B-type natriuretic peptides in chronic heart failure: influencing factors, detection of left ventricular systolic dysfunction, and prediction of death. J. Am. Coll. Cardiol. 53, 1783–1790 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Potocki, M. et al. Comparison of midregional pro-atrial natriuretic peptide with N-terminal pro-B-type natriuretic peptide in the diagnosis of heart failure. J. Intern. Med. 267, 119–129 (2009).

    Article  PubMed  CAS  Google Scholar 

  57. Kitamura, K. et al. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem. Biophys. Res. Commun. 192, 553–560 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Nishikimi, T. et al. Increased plasma levels of adrenomedullin in patients with heart failure. J. Am. Coll. Cardiol. 26, 1424–1431 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Khan, S. Q. et al. Prognostic value of midregional pro-adrenomedullin in patients with acute myocardial infarction: the LAMP (Leicester Acute Myocardial Infarction Peptide) study. J. Am. Coll. Cardiol. 49, 1525–1532 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Adlbrecht, C. et al. Prognostic value of plasma midregional pro-adrenomedullin and C-terminal-pro-endothelin-1 in chronic heart failure outpatients. Eur. J. Heart Fail. 11, 361–366 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Liew, F. Y., Pitman, N. I. & McInnes, I. B. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat. Rev. Immunol. 10, 103–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Brunner, M. et al. Increased levels of soluble ST2 protein and IgG1 production in patients with sepsis and trauma. Intensive Care Med. 30, 1468–1473 (2004).

    Article  PubMed  Google Scholar 

  63. Oshikawa, K. et al. Elevated soluble ST2 protein levels in sera of patients with asthma with an acute exacerbation. Am. J. Respir. Crit. Care Med. 164, 277–281 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Weinberg, E. O. et al. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation 107, 721–726 (2003).

    Article  PubMed  Google Scholar 

  65. Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Sanada, S. et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest. 117, 1538–1549 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shimpo, M. et al. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation 109, 2186–2190 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Januzzi, J. L. Jr et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J. Am. Coll. Cardiol. 50, 607–613 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Sabatine, M. S. et al. Complementary roles for biomarkers of biomechanical strain ST2 and N-terminal prohormone B-type natriuretic peptide in patients with ST-elevation myocardial infarction. Circulation 117, 1936–1944 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rehman, S. U., Mueller, T. & Januzzi, J. L. Jr Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J. Am. Coll. Cardiol. 52, 1458–1465 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Pascual-Figal, D. A. et al. Soluble ST2 for predicting sudden cardiac death in patients with chronic heart failure and left ventricular systolic dysfunction. J. Am. Coll. Cardiol. 54, 2174–2179 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Liu, F. T. & Rabinovich, G. A. Galectins as modulators of tumour progression. Nat. Rev. Cancer 5, 29–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Sharma, U. C. et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 110, 3121–3128 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. de Boer, R. A., Voors, A. A., Muntendam, P., van Gilst, W. H. & van Veldhuisen, D. J. Galectin-3: a novel mediator of heart failure development and progression. Eur. J. Heart Fail. 11, 811–817 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. van Kimmenade, R. R. et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J. Am. Coll. Cardiol. 48, 1217–1224 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Hsiao, E. C. et al. Characterization of growth-differentiation factor 15, a transforming growth factor beta superfamily member induced following liver injury. Mol. Cell Biol. 20, 3742–3751 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu, J. et al. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ. Res. 98, 342–350 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Kempf, T. et al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ. Res. 98, 351–360 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Kempf, T. et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J. Am. Coll. Cardiol. 50, 1054–1060 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Foley, P. W. et al. Growth differentiation factor-15 predicts mortality and morbidity after cardiac resynchronization therapy. Eur. Heart J. 30, 2749–2757 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Khan, S. Q. et al. Growth differentiation factor-15 as a prognostic marker in patients with acute myocardial infarction. Eur. Heart J. 30, 1057–1065 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Hershberger, R. E., Cowan, J., Morales, A. & Siegfried, J. D. Progress with genetic cardiomyopathies: screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ. Heart Fail. 2, 253–261 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Donahue, M. P., Marchuk, D. A. & Rockman, H. A. Redefining heart failure: the utility of genomics. J. Am. Coll. Cardiol. 48, 1289–1298 (2006).

    Article  PubMed  Google Scholar 

  84. Vasan, R. S. et al. Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. JAMA 302, 168–178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, T. J. et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N. Engl. J. Med. 355, 2631–2639 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Zethelius, B. et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N. Engl. J. Med. 358, 2107–2116 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Cooper, L. T. et al. The role of endomyocardial biopsy in the management of cardiovascular disease: A scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. J. Am. Coll. Cardiol. 50, 1914–1931 (2007).

    Article  PubMed  Google Scholar 

  88. van Heerebeek, L. et al. Diastolic stiffness of the failing diabetic heart importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 117, 43–51 (2008).

    Article  PubMed  Google Scholar 

  89. Yu, C. M., Sanderson, J. E., Marwick, T. H. & Oh, J. K. Tissue Doppler imaging a new prognosticator for cardiovascular diseases. J. Am. Coll. Cardiol. 49, 1903–1914 (2007).

    Article  PubMed  Google Scholar 

  90. Edvardsen, T., Gerber, B. L., Garot, J., Bluemke, D. A., Lima, J. A. & Smiseth, O. A. Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation 106, 50–56 (2002).

    Article  PubMed  Google Scholar 

  91. Leitman, M. et al. Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J. Am. Soc. Echocardiogr. 17, 1021–1029 (2004).

    Article  PubMed  Google Scholar 

  92. Ingul, C. B. et al. Automated analysis of strain rate and strain: feasibility and clinical implications. J. Am. Soc. Echocardiogr. 18, 411–418 (2005).

    Article  PubMed  Google Scholar 

  93. Serri, K. et al. Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 47, 1175–1181 (2006).

    Article  PubMed  Google Scholar 

  94. Saito, K. et al. Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in normal adults: comparison of three-dimensional and two-dimensional approaches. J. Am. Soc. Echocardiogr. 22, 1025–1030 (2009).

    Article  PubMed  Google Scholar 

  95. Dobrucki, L. W. & Sinusas, A. J. PET and SPECT in cardiovascular molecular imaging. Nat. Rev. Cardiol. 7, 38–47 (2009).

    Article  PubMed  Google Scholar 

  96. Taegtmeyer, H. & Dilsizian, V. Imaging myocardial metabolism and ischemic memory. Nat. Clin. Pract. Cardiovasc. Med. 5 (Suppl. 2), S42–S48 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Lu, E. et al. Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation 108, 97–103 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Meoli, D. F. et al. Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J. Clin. Invest. 113, 1684–1691 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Link, J. M. & Caldwell, J. H. Diagnostic and prognostic imaging of the cardiac sympathetic nervous system. Nat. Clin. Pract. Cardiovasc. Med. 5 (Suppl. 2), S79–S86 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Su, H. et al. Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation 112, 3157–3167 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter P. Liu.

Ethics declarations

Competing interests

P. P. Liu declares that he has received grant/research support from Roche Diagnostics GmbH. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Couto, G., Ouzounian, M. & Liu, P. Early detection of myocardial dysfunction and heart failure. Nat Rev Cardiol 7, 334–344 (2010). https://doi.org/10.1038/nrcardio.2010.51

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.51

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing