Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of vascular damage in obstructive sleep apnea

Abstract

Obstructive sleep apnea (OSA) is characterized by repetitive apnea–hypopnea cycles during sleep, which are associated with oxygen desaturation and sleep disruption. Up to 30% of the adult population in Western countries are thought to be affected by asymptomatic OSA and approximately 2–4% by symptomatic OSA (also known as obstructive sleep apnea syndrome, or OSAS). Controlled trials have demonstrated that OSAS causes hypertension and prospective epidemiological studies have indicated that OSAS might be an independent risk factor for stroke and myocardial ischemia. Three biological mechanisms are thought to underpin the association of OSA with endothelial dysfunction and arterial disease: intermittent hypoxia leading to increased oxidative stress, systemic inflammation, and sympathetic activity; intrathoracic pressure changes leading to excessive mechanical stress on the heart and large artery walls; and arousal-induced reflex sympathetic activation with resultant repetitive blood-pressure rises. More clinical interventional trials are needed to determine the magnitude of the effect OSA has on cardiovascular damage and to enable a comparison with conventional vascular risk factors.

Key Points

  • The main acute physiological consequences of obstructive sleep apnea (OSA) are intermittent hypoxia, intrathoracic pressure changes, and arousals

  • All three acute physiological consequences of OSA trigger consecutive mechanisms that might result in endothelial dysfunction and arterial disease

  • Continuous positive airway pressure treatment is the standard therapy for patients with symptomatic OSA and has been associated with improvements in vascular abnormalities

  • Alternative treatments are needed for nonsleepy patients with OSA, who are less likely to agree to continuous positive airway pressure treatment; these therapies should target the known mechanisms of vascular damage

  • OSA is independently associated with arterial hypertension

  • Whether OSA is also independently associated with cardiovascular events is currently under investigation in large, multicenter, international interventional trials

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of vascular damage in obstructive sleep apnea.
Figure 2: Sources of intermittent-hypoxia-induced vascular damage in obstructive sleep apnea.

Similar content being viewed by others

References

  1. Stradling, J. R. & Crosby, J. H. Predictors and prevalence of obstructive sleep apnoea and snoring in 1001 middle aged men. Thorax 46, 85–90 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Young, T., Evans, L., Finn, L. & Palta, M. Estimation of the clinicallcy diagnosed proportion of sleep apnea syndrome in middle-aged men and women. Sleep 20, 705–706 (1997).

    CAS  PubMed  Google Scholar 

  3. Jenkinson, C., Davies, R. J., Mullins, R. & Stradling, J. R. Comparison of therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised prospective parallel trial. Lancet 353, 2100–2105 (1999).

    CAS  PubMed  Google Scholar 

  4. Haentjens, P. et al. The impact of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome: evidence from a meta-analysis of placebo-controlled randomized trials. Arch. Intern. Med. 167, 757–764 (2007).

    PubMed  Google Scholar 

  5. Marin, J. M., Carrizo, S. J., Vicente, E. & Agusti, A. G. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365, 1046–1053 (2005).

    PubMed  Google Scholar 

  6. Monahan, K. et al. Triggering of nocturnal arrhythmias by sleep-disordered breathing events. J. Am. Coll. Cardiol. 54, 1797–1804 (2009).

    PubMed  PubMed Central  Google Scholar 

  7. Redline, S. et al. Obstructive sleep apnea-hypopnea and incident stroke. Am. J. Respir. Crit. Care Med. 182, 269–277 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. Gottlieb, D. J. et al. Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure. Circulation 122, 352–360 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. Punjabi, N. M. et al. Sleep-disordered breathing and mortality: a prospective cohort study. PLOS Med. 6, e1000132 (2009).

    PubMed  PubMed Central  Google Scholar 

  10. Narkiewicz, K. et al. Nocturnal continuous positive airway pressure decreases daytime sympathetic traffic in obstructive sleep apnea. Circulation 100, 2332–2335 (1999).

    CAS  PubMed  Google Scholar 

  11. Kohler, M. et al. CPAP and measures of cardiovascular risk in males with OSAS. Eur. Respir. J. 32, 1488–1496 (2008).

    CAS  PubMed  Google Scholar 

  12. Foster, G. E. et al. Cardiovascular and cerebrovascular responses to acute hypoxia following exposure to intermittent hypoxia in healthy humans. J. Physiol. 587, 5303–5304 (2009).

    Google Scholar 

  13. Peters, J., Kindred, M. K. & Robotham, J. L. Transient analysis of cardiopulmonary interactions: II: systolic events. J. Appl. Physiol. 64, 1518–1526 (1988).

    CAS  PubMed  Google Scholar 

  14. Levy, P., Bonsignore, M. R. & Eckel, J. Sleep, sleep-disordered breathing and metabolic consequences. Eur. Respir. J. 34, 243–260 (2009).

    CAS  PubMed  Google Scholar 

  15. Von Kanel, R. & Dimsdale, J. E. Hemostatic alterations in patients with obstructive sleep apnea and the implications for cardiovascular disease. Chest 124, 1956–1967 (2003).

    PubMed  Google Scholar 

  16. Lavie, L. & Lavie, P. Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link. Eur. Respir. J. 33, 1467–1484 (2009).

    CAS  PubMed  Google Scholar 

  17. Garvey, J. F., Taylor, C. T. & McNicholas, W. T. Cardiovascular disease in obstructive sleep apnoea syndrome: the role of intermittent hypoxia and inflammation. Eur. Respir. J. 33, 1195–1205 (2009).

    CAS  PubMed  Google Scholar 

  18. Kanagy, N. L., Walker, B. R. & Nelin, L. D. Role of endothelin in intermittent hypoxia-induced hypertension. Hypertension 37, 511–515 (2001).

    CAS  PubMed  Google Scholar 

  19. Lesske, J., Fletcher, E. C., Bao, G. & Unger, T. Hypertension caused by chronic intermittent hypoxia - influence of chemoreceptors and sympathetic nervous system. J. Hypertens. 15, 1593–1603 (1997).

    CAS  PubMed  Google Scholar 

  20. Peng, Y., Yuan, G., Overholt, J. L., Kumar, G. K. & Prabhakar, N. R. Systemic and cellular responses to intermittent hypoxia: evidence for oxidative stress and mitochondrial dysfunction. Adv. Exp. Med. Biol. 536, 559–564 (2003).

    PubMed  Google Scholar 

  21. Xu, W. et al. Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience 126, 313–323 (2004).

    CAS  PubMed  Google Scholar 

  22. Zhan, G. et al. NADPH oxidase mediates hypersomnolence and brain oxidative injury in a murine model of sleep apnea. Am. J. Respir. Crit. Care Med. 172, 921–929 (2005).

    PubMed  PubMed Central  Google Scholar 

  23. Li, J., Savransky, V., Nanayakkara, A., Smith, P. L., O'Donnell, C. P. & Polotsky, V. Y. Hyperlipidemia and lipid peroxidation are dependent on the severity of chronic intermittent hypoxia. J. Appl. Physiol. 102, 557–563 (2007).

    CAS  PubMed  Google Scholar 

  24. Pialoux, V. et al. Effects of exposure to intermittent hypoxia on oxidative stress and acute hypoxic ventilatory response in humans. Am. J. Respir. Crit. Care Med. 180, 1002–1009 (2009).

    CAS  PubMed  Google Scholar 

  25. Dyugovskaya, L., Lavie, P. & Lavie, L. Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am. J. Respir. Crit. Care Med. 165, 934–939 (2002).

    PubMed  Google Scholar 

  26. Schulz, R. et al. Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 162, 566–570 (2000).

    CAS  PubMed  Google Scholar 

  27. Jelic, S. et al. Inflammation, oxidative stress, and repair capacity of the vascular endothelium in obstructive sleep apnea. Circulation 117, 2270–2278 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Barcelo, A., Miralles, C., Barbe, F., Vila, M., Pons, S. & Agusti, A. G. Abnormal lipid peroxidation in patients with sleep apnoea. Eur. Respir. J. 16, 644–647 (2000).

    CAS  PubMed  Google Scholar 

  29. Lavie, L., Vishnevsky, A. & Lavie, P. Evidence for lipid peroxidation in obstructive sleep apnea. Sleep 27, 123–128 (2004).

    PubMed  Google Scholar 

  30. Wali, S. O. et al. Susceptibility of LDL to oxidative stress in obstructive sleep apnea. Sleep 21, 290–296 (1998).

    CAS  PubMed  Google Scholar 

  31. Svatikova, A. et al. Oxidative stress in obstructive sleep apnoea. Eur. Heart J. 26, 2435–2439 (2005).

    CAS  PubMed  Google Scholar 

  32. Alonso-Fernandez, A. et al. Effects of CPAP on oxidative stress and nitrate efficiency in sleep apnoea: a randomised trial. Thorax 64, 581–586 (2009).

    CAS  PubMed  Google Scholar 

  33. El Solh, A. A., Saliba, R., Bosinski, T., Grant, B. J., Berbary, E. & Miller, N. Allopurinol improves endothelial function in sleep apnoea: a randomised controlled study. Eur. Respir. J. 27, 997–1002 (2006).

    CAS  PubMed  Google Scholar 

  34. Ryan, S., Taylor, C. T. & McNicholas, W. T. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112, 2660–2667 (2005).

    CAS  PubMed  Google Scholar 

  35. Greenberg, H., Ye, X., Wilson, D., Htoo, A. K., Hendersen, T. & Liu, S. F. Chronic intermittent hypoxia activates nuclear factor-kappaB in cardiovascular tissues in vivo. Biochem. Biophys. Res. Commun. 343, 591–596 (2006).

    CAS  PubMed  Google Scholar 

  36. Ryan, S., Taylor, C. T. & McNicholas, W. T. Predictors of elevated nuclear factor-kappaB-dependent genes in obstructive sleep apnea syndrome. Am. J. Respir. Crit. Care Med. 174, 824–830 (2006).

    CAS  PubMed  Google Scholar 

  37. Minoguchi, K. et al. Elevated production of tumor necrosis factor-{alpha} by monocytes in patients with obstrcutive sleep apnea syndrome. Chest 126, 1473–1479 (2004).

    CAS  PubMed  Google Scholar 

  38. Yokoe, T. et al. Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 107, 1129–1134 (2003).

    CAS  PubMed  Google Scholar 

  39. Minoguchi, K. et al. Increased carotid intima-media thickness and serum inflammatory markers in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 172, 625–630 (2005).

    PubMed  Google Scholar 

  40. Shamsuzzaman, A. S. et al. Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation 105, 2462–2464 (2002).

    CAS  PubMed  Google Scholar 

  41. Can, M. et al. Serum cardiovascular risk factors in obstructive sleep apnea. Chest 129, 233–237 (2006).

    CAS  PubMed  Google Scholar 

  42. Phillips, C. L. et al. The effect of short-term withdrawal from continuous positive airway pressure therapy on sympathetic activity and markers of vascular inflammation in subjects with obstructive sleep apnoea. J. Sleep Res. 16, 217–225 (2007).

    PubMed  Google Scholar 

  43. Taheri, S. Austin, D., Lin, L., Nieto, F. J., Young, T. & Mignot, E. Correlates of serum C-reactive protein (CRP) - no association with sleep duration or sleep disordered breathing. Sleep 30, 991–996 (2007).

    PubMed  PubMed Central  Google Scholar 

  44. Barcelo, A. et al. Effects of obesity on C-reactive protein level and metabolic disturbances in male patients with obstructive sleep apnea. Am. J. Med. 117, 118–121 (2004).

    CAS  PubMed  Google Scholar 

  45. Kohler, M. et al. Effects of continuous positive airway pressure on systemic inflammation in patients with moderate to severe obstructive sleep apnoea: a randomised controlled trial. Thorax 64, 67–73 (2009).

    CAS  PubMed  Google Scholar 

  46. West, S. D., Nicoll, D. J., Wallace, T. M., Matthews, D. R. & Stradling, J. R. The effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax 62, 969–974 (2007).

    PubMed  PubMed Central  Google Scholar 

  47. Drager, L. F., Bortolotto, L. A., Figueiredo, A. C., Krieger, E. M. & Lorenzi-Filho, G. Effects of continuous positive airway pressure on early signs of atherosclerosis in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 176, 706–712 (2007).

    CAS  PubMed  Google Scholar 

  48. Marasciulo, F. L., Montagnani, M. & Potenza, M. A. Endothelin-1: the yin and yang on vascular function. Curr. Med. Chem. 13, 1655–1665 (2006).

    CAS  PubMed  Google Scholar 

  49. Allahdadi, K. J., Walker, B. R. & Kanagy, N. L. Augmented endothelin vasoconstriction in intermittent hypoxia-induced hypertension. Hypertension 45, 705–709 (2005).

    CAS  PubMed  Google Scholar 

  50. Phillips, B. G., Narkiewicz, K., Pesek, C. A., Haynes, W. G., Dyken, M. E. & Somers, V. K. Effects of obstructive sleep apnea on endothelin-1 and blood pressure. J. Hypertens. 17, 61–66 (1999).

    CAS  PubMed  Google Scholar 

  51. Gjorup, P. H., Sadauskiene, L., Wessels, J., Nyvad, O., Strunge, B. & Pedersen, E. B. Abnormally increased endothelin-1 in plasma during the night in obstructive sleep apnea: relation to blood pressure and severity of disease. Am. J. Hypertens. 20, 44–52 (2007).

    CAS  PubMed  Google Scholar 

  52. Grimpen, F., Kanne, P., Schulz, E., Hagenah, G., Hasenfuss, G. & Andreas, S. Endothelin-1 plasma levels are not elevated in patients with obstructive sleep apnoea. Eur. Respir. J. 15, 320–325 (2000).

    CAS  PubMed  Google Scholar 

  53. Jordan, W. et al. Obstructive sleep apnea: plasma endothelin-1 precursor but not endothelin-1 levels are elevated and decline with nasal continuous positive airway pressure. Peptides 26, 1654–1660 (2005).

    CAS  PubMed  Google Scholar 

  54. Fletcher, E. C., Bao, G. & Li, R. Renin activity and blood pressure in response to chronic episodic hypoxia. Hypertension 34, 309–314 (1999).

    CAS  PubMed  Google Scholar 

  55. Fletcher, E. C, Orolinova, N. & Bader, M. Blood pressure response to chronic episodic hypoxia: the renin-angiotensin system. J. Appl. Physiol. 92, 627–633 (2002).

    CAS  PubMed  Google Scholar 

  56. Kraiczi, H., Hedner, J., Peker, Y. & Carlson, J. Increased vasoconstrictor sensitivity in obstructive sleep apnea. J. Appl. Physiol. 89, 493–498 (2000).

    CAS  PubMed  Google Scholar 

  57. Moller, D. S., Lind, P., Strunge, B. & Pedersen, E. B. Abnormal vasoactive hormones and 24-hour blood pressure in obstructive sleep apnea. Am. J. Hypertens. 16, 274–280 (2003).

    CAS  PubMed  Google Scholar 

  58. Svatikova, A. et al. Obstructive sleep apnea and aldosterone. Sleep 32, 1589–1592 (2009).

    PubMed  PubMed Central  Google Scholar 

  59. Issa, F. G. & Sullivan, C. E. Upper airway closing pressures in snorers. J. Appl. Physiol. 57, 528–535 (1984).

    CAS  PubMed  Google Scholar 

  60. Ali, N. J., Davies, R. J. O., Fleetham, J. A. & Stradling, J. R. The acute effects of continuous positive airway pressure and oxygen administration on blood pressure during obstructive sleep apnea. Chest 101, 1526–1532 (1992).

    CAS  PubMed  Google Scholar 

  61. Peters, J., Kindred, M. K. & Robotham, J. L. Transient analysis of cardiopulmonary interactions: I: diastolic events. J. Appl. Physiol. 64, 1506–1517 (1988).

    CAS  PubMed  Google Scholar 

  62. Magder, S. A., Lichtenstein, S. & Adelman, A. G. Effects of negative pleural pressure on left ventricular hemodynamics. Am. J. Cardiol. 52, 588–593 (1983).

    CAS  PubMed  Google Scholar 

  63. Kohler, M. et al. The prevalence of obstructive sleep apnoea and its association with aortic dilatation in Marfan's syndrome. Thorax 64, 162–166 (2009).

    CAS  PubMed  Google Scholar 

  64. Sampol, G. et al. Obstructive sleep apnea and thoracic aorta dissection. Am. J. Respir. Crit. Care Med. 168, 1528–1531 (2003).

    PubMed  Google Scholar 

  65. Serizawa, N. et al. Obstructive sleep apnea is associated with greater thoracic aortic size. J. Am. Coll. Cardiol. 52, 885–886 (2008).

    PubMed  Google Scholar 

  66. Somers, V. K., Mark, A. L., Zavala, D. C. & Abboud, F. M. Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans. J. Appl. Physiol. 67, 2101–2106 (1989).

    CAS  PubMed  Google Scholar 

  67. Rothwell, P. M. Limitations of the usual blood-pressure hypothesis and importance of variability, instability, and episodic hypertension. Lancet 375, 938–948 (2010).

    PubMed  Google Scholar 

  68. Rothwell, P. M. et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet 375, 895–905 (2010).

    PubMed  Google Scholar 

  69. Bonsignore, M. R. et al. Continuous positive airway pressure treatment improves baroreflex control of heart rate during sleep in severe obstructive sleep apnea syndrome. Am. J. Respir. Crit. Care Med. 166, 279–286 (2002).

    PubMed  Google Scholar 

  70. Marrone, O., Riccobono, L., Salvaggio, A., Mirabella, A., Bonanno, A. & Bonsignore, M. R. Catecholamines and blood pressure in obstructive sleep apnea syndrome. Chest 103, 722–727 (1993).

    CAS  PubMed  Google Scholar 

  71. Dematteis, M. et al. Intermittent hypoxia induces early functional cardiovascular remodeling in mice. Am. J. Respir. Crit. Care Med. 177, 227–235 (2008).

    PubMed  Google Scholar 

  72. La Rovere, M. T., Bigger, J. T., Marcus, F. I., Mortara, A. & Schwartz, P. J. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 351, 478–484 (1998).

    CAS  PubMed  Google Scholar 

  73. Prabhakar, N. R., Kumar, G. K. & Nanduri, J. Intermittent hypoxia-mediated plasticity of acute O2 sensing requires altered red-ox regulation by HIF-1 and HIF-2. Ann. N. Y. Acad. Sci. 1177, 162–168 (2009).

    CAS  PubMed  Google Scholar 

  74. Rey, S., Del Rio, R., Alcayaga, J. & Iturriaga, R. Chronic intermittent hypoxia enhances cat chemosensory and ventilatory responses to hypoxia. J. Physiol. 560, 577–586 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Horner, R. L., Brooks, D., Kozar, L. F., Tse, S. & Phillipson, E. A. Immediate effects of arousal from sleep on cardiac autonomic outflow in the absence of breathing in dogs. J. Appl. Physiol. 79, 151–162 (1995).

    CAS  PubMed  Google Scholar 

  76. Somers, V. K., Dyken, M. E., Mark, A. L. & Abboud, F. M. Sympathetic-nerve activity during sleep in normal subjects. N. Engl. J. Med. 328, 303–307 (1993).

    CAS  PubMed  Google Scholar 

  77. Somers, V. K., Dyken, M. E. & Skinner, J. L. Autonomic and hemodynamic responses and interactions during the Mueller maneuver in humans. J. Autonom. Nerv. Sys. 44, 253–259 (1993).

    CAS  Google Scholar 

  78. Somers, V. K., Dyken, M. E., Clary, M. P. & Abboud, F. M. Sympathetic neural mechanisms in obstructive sleep apnea. J. Clin. Invest. 96, 1897–1904 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Fletcher, E. C., Miller, J., Schaaf, J. W. & Fletcher, J. G. Urinary catecholamines before and after tracheostomy in patients with obstructive sleep apnea and hypertension. Sleep 10, 35–44 (1987).

    CAS  PubMed  Google Scholar 

  80. Eisenberg, E., Zimlichman, R. & Lavie, P. Plasma norepinephrine levels in patients with sleep apnea syndrome. N. Engl. J. Med. 322, 932–933 (1990).

    CAS  PubMed  Google Scholar 

  81. Ziegler, M. G., Mills, P. J., Loredo, J. S., Ancoli-Israel, S. & Dimsdale, J. E. Effect of continuus positive airway pressure and placebo treatment on sympathetic nervous activity in patients with obstructive sleep apnea. Chest 120, 887–893 (2001).

    CAS  PubMed  Google Scholar 

  82. Mills, P. J., Kennedy, B. P., Loredo, J. S., Dimsdale, J. E. & Ziegler, M. G. Effects of nasal continuous positive airway pressure and oxygen supplementation on norepinephrine kinetics and cardiovascular responses in obstructive sleep apnea. J. Appl. Physiol. 100, 343–348 (2006).

    CAS  PubMed  Google Scholar 

  83. Norman, D. et al. Effects of continuous positive airway pressure versus supplemental oxygen on 24-hour ambulatory blood pressure. Hypertension 47, 840–845 (2006).

    CAS  PubMed  Google Scholar 

  84. Bonsignore, M. R. et al. Baroreflex control of heart rate during sleep in severe obstructive sleep apnoea: effects of acute CPAP. Eur. Respir. J. 27, 128–135 (2006).

    CAS  PubMed  Google Scholar 

  85. Noda, A. et al. Continuous positive airway pressure improves daytime baroreflex sensitivity and nitric oxide production in patients with moderate to severe obstructive sleep apnea syndrome. Hypertens. Res. 30, 669–676 (2007).

    CAS  PubMed  Google Scholar 

  86. Carlson, J., Rangemark, C. & Hedner, J. Attenuated endothelium-dependent vascular relaxation in patients with sleep apnea. J. Hypertens. 14, 577–584 (1996).

    CAS  PubMed  Google Scholar 

  87. Kato, M. et al. Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea. Circulation 102, 2607–2610 (2000).

    CAS  PubMed  Google Scholar 

  88. Ip, M. S. M. et al. Circulating nitric oxide is suppressed in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 162, 2166–2171 (2000).

    CAS  PubMed  Google Scholar 

  89. El Solh, A. A., Akinnusi, M. E., Baddoura, F. H. & Mankowski, C. R. Endothelial cell apoptosis in obstructive sleep apnea: a link to endothelial dysfunction. Am. J. Respir. Crit. Care Med. 175, 1186–1191 (2007).

    PubMed  Google Scholar 

  90. Ip, M. S. M., Tse, H. F., Lam, B., Tsang, K. W. T. & Lam, W. K. Endothelial function in obstructive sleep apnea and response to treatment. Am. J. Respir. Crit. Care Med. 169, 348–353 (2004).

    PubMed  Google Scholar 

  91. Cross, M. D. et al. Continuous positive airway pressure improves vascular function in obstructive sleep apnoea/hypopnoea syndrome: a randomised controlled trial. Thorax 63, 578–583 (2008).

    CAS  PubMed  Google Scholar 

  92. Knepler, J. L. Jr et al. Peroxynitrite causes endothelial cell monolayer barrier dysfunction. Am. J. Physiol. Cell Physiol. 281, C1064–C1075 (2001).

    CAS  PubMed  Google Scholar 

  93. Jelic, S. et al. Vascular inflammation in obesity and sleep apnea. Circulation 121, 1014–1021 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Takase, B. et al. Effect of chronic stress and sleep deprivation on both flow-mediated dilation in the brachial artery and the intracellular magnesium level in humans. Clin. Cardiol. 27, 223–227 (2004).

    PubMed  Google Scholar 

  95. Kohler, M., Craig, S., Nicoll, D., Leeson, P., Davies, R. J. O. & Stradling, J. R. Endothelial function and arterial stiffness in minimally symptomatic obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 178, 984–988 (2008).

    PubMed  Google Scholar 

  96. Pepperell, J. C. T. et al. Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised parallel trial. Lancet 359, 204–210 (2002).

    PubMed  Google Scholar 

  97. Becker, C., Jerrentrup, A., Ploch, T., Grote, L., Penzel, T. & Sullivan, C. Effect of nasal continuous positive airway pressure treatment on BP in patients with obstructive sleep apnoea. Circulation 107, 68–73 (2003).

    PubMed  Google Scholar 

  98. Peppard, P. E., Young, T., Palta, M. & Skatrud, J. Prospective study of the association between sleep-disordered breathing and hypertension. N. Engl. J. Med. 342, 1378–1384 (2000).

    CAS  PubMed  Google Scholar 

  99. Buchner, N. J., Sanner, B. M., Borgel, J. & Rump, L. C. Continuous positive airway pressure treatment of mild to moderate obstructive sleep apnea reduces cardiovascular risk. Am. J. Respir. Crit. Care Med. 176, 1274–1280 (2007).

    PubMed  Google Scholar 

  100. McArdle, N., Devereux, G., Heidarnejad, H., Engleman, H. M., Mackay, T. W. & Douglas, N. J. Long-term use of CPAP therapy for sleep apnea/hypopnea syndrome. Am. J. Respir. Crit. Care Med. 159, 1108–1114 (1999).

    CAS  PubMed  Google Scholar 

  101. Kohler, M., Smith, D., Tippett, V. & Stradling, J. R. Predictors of long-term compliance with continuous positive airway pressure. Thorax 65, 829–832 (2010).

    PubMed  Google Scholar 

  102. Bloch, K. E. et al. A randomized, controlled crossover trial of two oral appliances for sleep apnea treatment. Am. J. Respir. Crit. Care Med. 162, 246–251 (2000).

    CAS  PubMed  Google Scholar 

  103. Gotsopoulos, H., Kelly, J. J. & Cistulli, P. A. Oral appliance therapy reduces blood pressure in obstructive sleep apnea: a randomized, controlled trial. Sleep 27, 934–941 (2004).

    PubMed  Google Scholar 

  104. Itzhaki, S., Dorchin, H., Clark, G., Lavie, L., Lavie, P. & Pillar, G. The effects of 1-year treatment with a Herbst mandibular advancement splint on obstructive sleep apnea, oxidative stress, and endothelial function. Chest 131, 740–749 (2007).

    PubMed  Google Scholar 

  105. Young, T., Skatrud, J. & Peppard, P. E. Risk factors for obstructive sleep apnoea in adults. JAMA 291, 2013–2016 (2004).

    CAS  PubMed  Google Scholar 

  106. Tuomilehto, H. P. et al. Lifestyle intervention with weight reduction: first-line treatment in mild obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 179, 320–327 (2009).

    PubMed  Google Scholar 

  107. Johansson, K. et al. Effect of a very low energy diet on moderate and severe obstructive sleep apnoea in obese men: a randomised controlled trial. Br. Med. J. 339, b4609 (2009).

    Google Scholar 

  108. Kohler, M., Bloch, K. E. & Stradling, J. R. Pharmacological approaches to the treatment of obstructive sleep apnoea. Expert Opin. Investig. Drugs 18, 647–656 (2009).

    CAS  PubMed  Google Scholar 

  109. Aittokallio, J. et al. Overnight variability in transcutaneous carbon dioxide predicts vascular impairment in women. Exp. Physiol. 93, 880–891 (2008).

    CAS  PubMed  Google Scholar 

  110. Lee, S. A. et al. Heavy snoring as a cause of carotid artery atherosclerosis. Sleep 31, 1207–1213 (2008).

    PubMed  PubMed Central  Google Scholar 

  111. Young, T. et al. Predictors of sleep-disordered breathing in community-dwelling adults. Arch. Intern. Med. 162, 893–900 (2002).

    PubMed  Google Scholar 

  112. Kapur, V. K., Resnick, H. E. & Gottlieb, D. J. Sleep disordered breathing and hypertension: does self-reported sleepiness modify the association? Sleep 31, 1127–1132 (2008).

    PubMed  PubMed Central  Google Scholar 

  113. Barbe, F. et al. Treatment with continuous positive airway pressure is not effective in patients with sleep apnea but no daytime sleepiness: a randomized, controlled trial. Arch. Intern. Med. 134, 1015–1023 (2001).

    CAS  Google Scholar 

  114. Robinson, G. V., Smith, D. M., Langford, B. A., Davies, R. J. & Stradling, J. R. Continuous positive airway pressure does not reduce blood pressure in nonsleepy hypertensive OSA patients. Eur. Respir. J. 27, 1229–1235 (2006).

    CAS  PubMed  Google Scholar 

  115. Barbe, F. et al. Long-term effect of continuous positive airway pressure in hypertensive patients with sleep apnea. Am. J. Respir. Crit. Care Med. 181, 718–726 (2010).

    PubMed  Google Scholar 

  116. Protocol 06PRT/2675: Multicentre Obstructive Sleep Apnoea Interventional Cardiovascular Trial (MOSAIC) (ISRCTN34164388). TheLancet.com [online], (2010).

  117. Calvin, A. D. & Somers, V. K. Obstructive sleep apnea and risk of stroke: time for a trial. Nat. Clin. Pract. Cardiovasc. Med. 6, 90–91 (2009).

    PubMed  Google Scholar 

  118. Sleep Apnea Cardiovascular Endpoints Study (SAVE) [online], (2010).

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. Kohler and J. R. Stradling contributed to discussion of content for the article, researched data to include in the manuscript, wrote, reviewed and edited the manuscript before submission, and revised the manuscript in response to the peer-reviewers' comments.

Corresponding author

Correspondence to Malcolm Kohler.

Ethics declarations

Competing interests

J. R. Stradling was supported by an unrestricted charitable donation from ResMed UK in 2006 and 2008 for research work in the Oxford Sleep Unit. M. Kohler declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohler, M., Stradling, J. Mechanisms of vascular damage in obstructive sleep apnea. Nat Rev Cardiol 7, 677–685 (2010). https://doi.org/10.1038/nrcardio.2010.145

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing