Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CMR for characterization of the myocardium in acute coronary syndromes

Abstract

The utility of cardiac magnetic resonance imaging (CMR) as a diagnostic technique is well established. CMR enables tissue characterization, distinction between myocardial scar tissue and viable tissue, and evaluation of myocardial perfusion and contractile function. To date, CMR has been mostly applied in the assessment of stable disease; however, a role for CMR in the acute setting is also emerging. An accurate appraisal of the myocardium with CMR in the first hours after the onset of chest pain could provide supporting information to standard diagnostic tools, such as electrocardiography and measurement of blood biomarkers, which could help guide the selection of appropriate treatment. The aims of this integrated approach include positive identification of an ischemic syndrome, estimation of downstream areas at risk of damage, evaluation of epicardial artery patency and small vessel integrity, quantification of infarct size, and determination of myocardial function. This Review critically evaluates both established and emerging CMR techniques, and relates the imaging findings to the underlying pathophysiological processes in acute coronary syndromes. A more thorough understanding of CMR techniques will clarify their potential clinical applications and limitations, and assess the practicality of CMR in the setting of acute coronary syndromes, where early intervention is crucial to save myocardium at risk of irreversible injury.

Key Points

  • Cardiac magnetic resonance imaging (CMR) is widely used for diagnosis of coronary artery disease and to assess myocardial viability and function

  • Efficient treatment needs to be in place early for patients with acute coronary syndromes (ACS) to improve long-term prognosis

  • Currently available diagnostic tools in the emergency department are often not sufficient to inform appropriate treatment in the setting of ACS

  • New CMR techniques are emerging that provide useful information to further characterize the myocardium and provide a more thorough understanding of pathophysiological processes

  • Further investigations are needed to prove that CMR assessment of the myocardium in ACS may be useful to manage or change treatment and, more importantly, improve prognosis

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline (0–96 h) of the ischemic cascade and appropriate CMR techniques.
Figure 2: Normal CMR findings in the absence of a flow-limiting coronary stenosis.
Figure 3: CMR findings in the presence of a flow-limiting coronary stenosis.
Figure 4: Myocardial inflammatory processes following coronary occlusion.
Figure 5: Complicated reperfused myocardial infarction.

Similar content being viewed by others

References

  1. Anderson, J. L. et al. ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non-ST-Elevation Myocardial Infarction) developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. J. Am. Coll. Cardiol. 50, e1–e157 (2007).

    Article  PubMed  Google Scholar 

  2. McCord, J. et al. Ninety-minute exclusion of acute myocardial infarction by use of quantitative point-of-care testing of myoglobin and troponin I. Circulation 104, 1483–1488 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Sabia, P. et al. Importance of two-dimensional echocardiographic assessment of left ventricular systolic function in patients presenting to the emergency room with cardiac-related symptoms. Circulation 84, 1615–1624 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Kellman, P., Aletras, A. H., Mancini, C., McVeigh, E. R. & Arai, A. E. T2-prepared SSFP improves diagnostic confidence in edema imaging in acute myocardial infarction compared to turbo spin echo. Magn. Reson. Med. 57, 891–897 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aletras, A. H., Kellman, P., Derbyshire, J. A. & Arai, A. E. ACUT2E TSE-SSFP: a hybrid method for T2-weighted imaging of edema in the heart. Magn. Reson. Med. 59, 229–235 (2008).

    Article  PubMed  Google Scholar 

  6. Nahrendorf, M. et al. Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 117, 1153–1160 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sosnovik, D. E. et al. Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation 115, 1384–1391 (2007).

    Article  PubMed  Google Scholar 

  8. Reimer, K. A., Lowe, J. E., Rasmussen, M. M. & Jennings, R. B. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56, 786–794 (1977).

    Article  CAS  PubMed  Google Scholar 

  9. Buja, L. M. Myocardial ischemia and reperfusion injury. Cardiovasc. Pathol. 14, 170–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Uren, N. G. et al. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N. Engl. J. Med. 331, 222–227 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Kloner, R. A. et al. Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Circulation 62, 945–952 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Jennings, R. B., Murry, C. E., Steenbergen, C. Jr & Reimer, K. A. Development of cell injury in sustained acute ischemia. Circulation 82, II2–II12 (1990).

    CAS  PubMed  Google Scholar 

  13. Wellnhofer, E. et al. Magnetic resonance low-dose dobutamine test is superior to scar quantification for the prediction of functional recovery. Circulation 109, 2172–2174 (2004).

    Article  PubMed  Google Scholar 

  14. Lund, G. K. et al. Acute myocardial infarction: evaluation with first-pass enhancement and delayed enhancement MR imaging compared with 201Tl SPECT imaging. Radiology 232, 49–57 (2004).

    Article  PubMed  Google Scholar 

  15. Yan, A. T. et al. Characterization of microvascular dysfunction after acute myocardial infarction by cardiovascular magnetic resonance first-pass perfusion and late gadolinium enhancement imaging. J. Cardiovasc. Magn. Reson. 8, 831–837 (2006).

    Article  PubMed  Google Scholar 

  16. Mather, A. N. et al. Appearance of microvascular obstruction on high resolution first-pass perfusion, early and late gadolinium enhancement CMR in patients with acute myocardial infarction. J. Cardiovasc. Magn. Reson. 11, 33 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Plein, S. et al. Cardiovascular magnetic resonance of scar and ischemia burden early after acute ST elevation and non-ST elevation myocardial infarction. J. Cardiovasc. Magn. Reson. 10, 47 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ingkanisorn, W. P. et al. Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J. Am. Coll. Cardiol. 47, 1427–1432 (2006).

    Article  PubMed  Google Scholar 

  19. Wilke, N. et al. Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn. Reson. Med. 29, 485–497 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Reimer, K. A., Jennings, R. B. & Tatum, A. H. Pathobiology of acute myocardial ischemia: metabolic, functional and ultrastructural studies. Am. J. Cardiol. 52, 72A–81A (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Friedrich, M. G. Myocardial edema—a new clinical entity? Nat. Rev. Cardiol. 7, 292–296 (2010).

    Article  PubMed  Google Scholar 

  22. Steenbergen, C., Hill, M. L. & Jennings, R. B. Volume regulation and plasma membrane injury in aerobic, anaerobic, and ischemic myocardium in vitro. Effects of osmotic cell swelling on plasma membrane integrity. Circ. Res. 57, 864–875 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Willerson, J. T. et al. Abnormal myocardial fluid retention as an early manifestation of ischemic injury. Am. J. Pathol. 87, 159–188 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Canby, R. C., Reeves, R. C., Evanochko, W. T., Elgavish, G. A. & Pohost, G. M. Proton nuclear magnetic resonance relaxation times in severe myocardial ischemia. J. Am. Coll. Cardiol. 10, 412–420 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Higgins, C. B. et al. Nuclear magnetic resonance imaging of acute myocardial infarction in dogs: alterations in magnetic relaxation times. Am. J. Cardiol. 52, 184–188 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. Knight, R. A. et al. Temporal evolution of ischemic damage in rat brain measured by proton nuclear magnetic resonance imaging. Stroke 22, 802–808 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Hazlewood, C. F., Chang, D. C., Nichols, B. L. & Woessner, D. E. Nuclear magnetic resonance transverse relaxation times of water protons in skeletal muscle. Biophys. J. 14, 583–606 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aletras, A. H. et al. Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation 113, 1865–1870 (2006).

    Article  PubMed  Google Scholar 

  29. Abdel-Aty, H., Cocker, M., Meek, C., Tyberg, J. V. & Friedrich, M. G. Edema as a very early marker for acute myocardial ischemia: a cardiovascular magnetic resonance study. J. Am. Coll. Cardiol. 53, 1194–1201 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Abdel-Aty, H. et al. Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation 109, 2411–2416 (2004).

    Article  PubMed  Google Scholar 

  31. Wisenberg, G., Prato, F. S., Carroll, S. E., Turner, K. L. & Marshall, T. Serial nuclear magnetic resonance imaging of acute myocardial infarction with and without reperfusion. Am. Heart J. 115, 510–518 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Miller, S. et al. Subacute myocardial infarction: assessment by STIR T2-weighted MR imaging in comparison to regional function. MAGMA 13, 8–14 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Keegan, J., Gatehouse, P. D., Prasad, S. K. & Firmin, D. N. Improved turbo spin-echo imaging of the heart with motion-tracking. J. Magn. Reson. Imaging 24, 563–570 (2006).

    Article  PubMed  Google Scholar 

  34. Kellman, P. et al. Motion-corrected free-breathing delayed enhancement imaging of myocardial infarction. Magn. Reson. Med. 53, 194–200 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Giri, S. et al. T2 quantification for improved detection of myocardial edema. J. Cardiovasc. Magn. Reson. 11, 56 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim, R. J. et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100, 1992–2002 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Pennell, D. J. et al. Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Eur. Heart J. 25, 1940–1965 (2004).

    Article  PubMed  Google Scholar 

  38. Cury, R. C. et al. Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation 118, 837–844 (2008).

    Article  PubMed  Google Scholar 

  39. Baer, F. M. et al. Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J. Am. Coll. Cardiol. 31, 1040–1048 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Bove, C. M., DiMaria, J. M., Voros, S., Conaway, M. R. & Kramer, C. M. Dobutamine response and myocardial infarct transmurality: functional improvement after coronary artery bypass grafting—initial experience. Radiology 240, 835–841 (2006).

    Article  PubMed  Google Scholar 

  41. Kim, R. J. & Manning, W. J. Viability assessment by delayed enhancement cardiovascular magnetic resonance: will low-dose dobutamine dull the shine? Circulation 109, 2476–2479 (2004).

    Article  PubMed  Google Scholar 

  42. Jung, B., Markl, M., Föll, D. & Hennig, J. Investigating myocardial motion by MRI using tissue phase mapping. Eur. J. Cardiothorac. Surg. 29 (Suppl. 1), S150–S157 (2006).

    Article  PubMed  Google Scholar 

  43. Rosen, B. D. et al. Lower myocardial perfusion reserve is associated with decreased regional left ventricular function in asymptomatic participants of the multi-ethnic study of atherosclerosis. Circulation 114, 289–297 (2006).

    Article  PubMed  Google Scholar 

  44. Korosoglou, G. et al. Strain-encoded CMR for the detection of inducible ischemia during intermediate stress. JACC Cardiovasc. Imaging 3, 361–371 (2010).

    Article  PubMed  Google Scholar 

  45. Neizel, M. et al. Strain-encoded (SENC) magnetic resonance imaging to evaluate regional heterogeneity of myocardial strain in healthy volunteers: comparison with conventional tagging. J. Magn. Reson. Imaging 29, 99–105 (2009).

    Article  PubMed  Google Scholar 

  46. Hedström, E. et al. Infarct evolution in man studied in patients with first-time coronary occlusion in comparison to different species—implications for assessment of myocardial salvage. J. Cardiovasc. Magn. Reson. 11, 38 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Go, L. O. et al. Myocardial neutrophil accumulation during reperfusion after reversible or irreversible ischemic injury. Am. J. Physiol. 255, H1188–H1198 (1988).

    CAS  PubMed  Google Scholar 

  48. Weinmann, H. J., Laniado, M. & Mützel, W. Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol. Chem. Phys. Med. NMR 16, 167–172 (1984).

    CAS  PubMed  Google Scholar 

  49. Lima, J. A. et al. Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms. Circulation 92, 1117–1125 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. de Roos, A. et al. Reperfused and nonreperfused myocardial infarction: diagnostic potential of Gd-DTPA—enhanced MR imaging. Radiology 172, 717–720 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. Ricciardi, M. J. et al. Visualization of discrete microinfarction after percutaneous coronary intervention associated with mild creatine kinase-MB elevation. Circulation 103, 2780–2783 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Nassenstein, K. et al. How much myocardial damage is necessary to enable detection of focal late gadolinium enhancement at cardiac MR imaging? Radiology 249, 829–835 (2008).

    Article  PubMed  Google Scholar 

  53. Wagner, A. et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361, 374–379 (2003).

    Article  PubMed  Google Scholar 

  54. Kim, R. J. et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 343, 1445–1453 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Wu, K. C. et al. Quantification and time course of microvascular obstruction by contrast-enhanced echocardiography and magnetic resonance imaging following acute myocardial infarction and reperfusion. J. Am. Coll. Cardiol. 32, 1756–1764 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Wu, K. C. et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97, 765–772 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Kloner, R. A., Ganote, C. E. & Jennings, R. B. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J. Clin. Invest. 54, 1496–1508 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. van Gaal, W. J. & Banning, A. P. Percutaneous coronary intervention and the no-reflow phenomenon. Expert Rev. Cardiovasc. Ther. 5, 715–731 (2007).

    Article  PubMed  Google Scholar 

  59. Niccoli, G., Burzotta, F., Galiuto, L. & Crea, F. Myocardial no-reflow in humans. J. Am. Coll. Cardiol. 54, 281–292 (2009).

    Article  PubMed  Google Scholar 

  60. Hombach, V. et al. Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur. Heart J. 26, 549–557 (2005).

    Article  PubMed  Google Scholar 

  61. Sardella, G. et al. Thrombus aspiration during primary percutaneous coronary intervention improves myocardial reperfusion and reduces infarct size: the EXPIRA (thrombectomy with export catheter in infarct-related artery during primary percutaneous coronary intervention) prospective, randomized trial. J. Am. Coll. Cardiol. 53, 309–315 (2009).

    Article  PubMed  Google Scholar 

  62. Atar, D. et al. Effect of intravenous FX06 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction results of the F.I.R.E. (Efficacy of FX06 in the Prevention of Myocardial Reperfusion Injury) trial. J. Am. Coll. Cardiol. 53, 720–729 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Ochiai, K. et al. Hemorrhagic myocardial infarction after coronary reperfusion detected in vivo by magnetic resonance imaging in humans: prevalence and clinical implications. J. Cardiovasc. Magn. Reson. 1, 247–256 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Basso, C. et al. Morphologic validation of reperfused hemorrhagic myocardial infarction by cardiovascular magnetic resonance. Am. J. Cardiol. 100, 1322–1327 (2007).

    Article  PubMed  Google Scholar 

  65. O'Regan, D. P. et al. Reperfusion hemorrhage following acute myocardial infarction: assessment with T2* mapping and effect on measuring the area at risk. Radiology 250, 916–922 (2009).

    Article  PubMed  Google Scholar 

  66. Ganame, J. et al. Impact of myocardial haemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction. Eur. Heart J. 30, 1440–1449 (2009).

    Article  PubMed  Google Scholar 

  67. Kwong, R. Y. et al. Detecting acute coronary syndrome in the emergency department with cardiac magnetic resonance imaging. Circulation 107, 531–537 (2003).

    Article  PubMed  Google Scholar 

  68. Greenwood, J. P. et al. Safety and diagnostic accuracy of stress cardiac magnetic resonance imaging vs exercise tolerance testing early after acute ST elevation myocardial infarction. Heart 93, 1363–1368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Friedrich, M. G. et al. The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 51, 1581–1587 (2008).

    Article  PubMed  Google Scholar 

  70. García-Dorado, D. et al. Analysis of myocardial oedema by magnetic resonance imaging early after coronary artery occlusion with or without reperfusion. Cardiovasc. Res. 27, 1462–1469 (1993).

    Article  PubMed  Google Scholar 

  71. Tarantini, G. et al. Duration of ischemia is a major determinant of transmurality and severe microvascular obstruction after primary angioplasty: a study performed with contrast-enhanced magnetic resonance. J. Am. Coll. Cardiol. 46, 1229–1235 (2005).

    Article  PubMed  Google Scholar 

  72. Francone, M. et al. Impact of primary coronary angioplasty delay on myocardial salvage, infarct size, and microvascular damage in patients with ST-segment elevation myocardial infarction: insight from cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 54, 2145–2153 (2009).

    Article  PubMed  Google Scholar 

  73. Eitel, I. et al. Prognostic significance and magnetic resonance imaging findings in aborted myocardial infarction after primary angioplasty. Am. Heart J. 158, 806–813 (2009).

    Article  PubMed  Google Scholar 

  74. Phrommintikul, A., Abdel-Aty, H., Schulz-Menger, J., Friedrich, M. G. & Taylor, A. J. Acute oedema in the evaluation of microvascular reperfusion and myocardial salvage in reperfused myocardial infarction with cardiac magnetic resonance imaging. Eur. J. Radiol. 74, e12–e17 (2010).

    Article  PubMed  Google Scholar 

  75. Hasche, E. T., Fernandes, C., Freedman, S. B. & Jeremy, R. W. Relation between ischemia time, infarct size, and left ventricular function in humans. Circulation 92, 710–719 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Piper, H. M., García-Dorado, D. & Ovize, M. A fresh look at reperfusion injury. Cardiovasc. Res. 38, 291–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Piot, C. et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N. Engl. J. Med. 359, 473–481 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Sato, T., Saito, T., Saegusa, N. & Nakaya, H. Mitochondrial Ca2+-activated K+ channels in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by protein kinase A. Circulation 111, 198–203 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Testa, L. et al. Pexelizumab in ischemic heart disease: a systematic review and meta-analysis on 15,196 patients. J. Thorac. Cardiovasc. Surg. 136, 884–893 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Bates, E. et al. Intracoronary KAI-9803 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction. Circulation 117, 886–896 (2008).

    Article  PubMed  Google Scholar 

  81. Kharbanda, R. K. et al. Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia-reperfusion in humans in vivo. Circulation 103, 1624–1630 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Khan, S. et al. Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes. J. Mol. Cell. Cardiol. 41, 256–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Mahaffey, K. W. et al. Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the Acute Myocardial Infarction Study of Adenosine (AMISTAD) trial. J. Am. Coll. Cardiol. 34, 1711–1720 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Vöhringer, M. et al. Oxygenation-sensitive CMR for assessing vasodilator-induced changes of myocardial oxygenation. J. Cardiovasc. Magn. Reson. 12, 20 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  85. McCommis, K. S. et al. Myocardial blood volume is associated with myocardial oxygen consumption: an experimental study with cardiac magnetic resonance in a canine model. JACC Cardiovasc. Imaging 2, 1313–1320 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zheng, J., Wang, J., Rowold, F. E., Gropler, R. J. & Woodard, P. K. Relationship of apparent myocardial T2 and oxygenation: towards quantification of myocardial oxygen extraction fraction. J. Magn. Reson. Imaging 20, 233–241 (2004).

    Article  PubMed  Google Scholar 

  87. McCommis, K. S. et al. Quantification of regional myocardial oxygenation by magnetic resonance imaging: validation with positron emission tomography. Circ. Cardiovasc. Imaging 3, 41–46 (2010).

    Article  PubMed  Google Scholar 

  88. Wright, K. B. et al. Assessment of regional differences in myocardial blood flow using T2-weighted 3D BOLD imaging. Magn. Reson. Med. 46, 573–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Karamitsos, T. D. et al. Relationship between regional myocardial oxygenation and perfusion in patients with coronary artery disease: insights from cardiovascular magnetic resonance and positron emission tomography. Circ. Cardiovasc. Imaging 3, 32–40 (2010).

    Article  PubMed  Google Scholar 

  90. Jahnke, C. et al. Navigator-gated 3D blood oxygen level-dependent CMR at 3.0-T for detection of stress-induced myocardial ischemic reactions. JACC Cardiovasc. Imaging 3, 375–384 (2010).

    Article  PubMed  Google Scholar 

  91. Egred, M. et al. Detection of scarred and viable myocardium using a new magnetic resonance imaging technique: blood oxygen level dependent (BOLD) MRI. Heart 89, 738–744 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zun, Z., Wong, E. C. & Nayak, K. S. Assessment of myocardial blood flow (MBF) in humans using arterial spin labeling (ASL): feasibility and noise analysis. Magn. Reson. Med. 62, 975–983 (2009).

    Article  PubMed  Google Scholar 

  93. Yabe, T., Mitsunami, K., Inubushi, T. & Kinoshita, M. Quantitative measurements of cardiac phosphorus metabolites in coronary artery disease by 31P magnetic resonance spectroscopy. Circulation 92, 15–23 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Barba, I., Jaimez-Auguets, E., Rodriguez-Sinovas, A. & Garcia-Dorado, D. 1H NMR-based metabolomic identification of at-risk areas after myocardial infarction in swine. MAGMA 20, 265–271 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Weiss, R. G., Bottomley, P. A., Hardy, C. J. & Gerstenblith, G. Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N. Engl. J. Med. 323, 1593–1600 (1990).

    Article  CAS  PubMed  Google Scholar 

  96. Bottomley, P. A. et al. Reduced myocardial creatine kinase flux in human myocardial infarction: an in vivo phosphorus magnetic resonance spectroscopy study. Circulation 119, 1918–1924 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Horn, M. et al. Detection of myocardial viability based on measurement of sodium content: a 23Na-NMR study. Magn. Reson. Med. 45, 756–764 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Sandstede, J. J. et al. Assessment of myocardial infarction in humans with 23Na MR imaging: comparison with cine MR imaging and delayed contrast enhancement. Radiology 221, 222–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Sosnovik, D. E. et al. Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn. Reson. Med. 54, 718–724 (2005).

    Article  PubMed  Google Scholar 

  100. Hiller, K. H., Waller, C., Nahrendorf, M., Bauer, W. R. & Jakob, P. M. Assessment of cardiovascular apoptosis in the isolated rat heart by magnetic resonance molecular imaging. Mol. Imaging 5, 115–121 (2006).

    Article  PubMed  Google Scholar 

  101. Kanno, S. et al. Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation 104, 934–938 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. von zur Muhlen, C. et al. Magnetic resonance imaging contrast agent targeted toward activated platelets allows in vivo detection of thrombosis and monitoring of thrombolysis. Circulation 118, 258–267 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. McAteer, M. A. et al. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler. Thromb. Vasc. Biol. 28, 77–83 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Hoyte, L. C. et al. Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia. J. Cereb. Blood Flow Metab. 30, 1178–1187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sosnovik, D. E., Nahrendorf, M. & Weissleder, R. Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res. Cardiol. 103, 122–130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nahrendorf, M., Sosnovik, D. E. & Weissleder, R. MR-optical imaging of cardiovascular molecular targets. Basic Res. Cardiol. 103, 87–94 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kraitchman, D. L. & Bulte, J. W. In vivo imaging of stem cells and beta cells using direct cell labeling and reporter gene methods. Arterioscler. Thromb. Vasc. Biol. 29, 1025–1030 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hill, J. M. et al. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108, 1009–1014 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ladd, M. E. et al. Active MR visualization of a vascular guidewire in vivo. J. Magn. Reson. Imaging 8, 220–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Schalla, S. et al. Magnetic resonance-guided cardiac catheterization in a swine model of atrial septal defect. Circulation 108, 1865–1870 (2003).

    Article  PubMed  Google Scholar 

  111. Manke, C. et al. MR imaging-guided stent placement in iliac arterial stenoses: a feasibility study. Radiology 219, 527–534 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Paetzel, C. et al. Magnetic resonance-guided percutaneous angioplasty of femoral and popliteal artery stenoses using real-time imaging and intra-arterial contrast-enhanced magnetic resonance angiography. Invest. Radiol. 40, 257–262 (2005).

    Article  PubMed  Google Scholar 

  113. Dick, A. J. et al. Invasive human magnetic resonance imaging: feasibility during revascularization in a combined XMR suite. Catheter. Cardiovasc. Interv. 64, 265–274 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R. P. Choudhury receives funding from the Wellcome Trust and The British Heart Foundation. E. Dall'Armellina is supported by the NIHR Oxford Comprehensive Biomedical Research Centre funding scheme.

Author information

Authors and Affiliations

Authors

Contributions

E. Dall'Armellina and R. P. Choudhury contributed to discussion of content for the article, researched data to include in the manuscript, wrote the manuscript, reviewed and edited the manuscript before submission, and revised the manuscript in response to the peer-reviewers' comments. T. D. Karamitsos and S. Neubauer contributed to discussion of content for the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Robin P. Choudhury.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dall'Armellina, E., Karamitsos, T., Neubauer, S. et al. CMR for characterization of the myocardium in acute coronary syndromes. Nat Rev Cardiol 7, 624–636 (2010). https://doi.org/10.1038/nrcardio.2010.140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing