Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell therapy for the treatment of coronary heart disease: a critical appraisal

Abstract

Randomized, controlled clinical trials have demonstrated that cell therapy can improve the recovery of cardiac function in patients after acute myocardial infarction (AMI). Trial results are inconsistent, however, and uncertainty persists regarding the mechanism of action and prospect of cell therapy for patients with heart disease. This Review examines the results from the first-generation trials and discusses procedure-related variables that could have determined treatment outcomes. Obvious issues, including optimal timing of cell transfer, dose, and delivery methods are being investigated in ongoing second-generation trials. These studies aim to refine the protocols and identify the patients who will benefit most from cell therapy. Third-generation trials will address the current limitations of cell therapy, such as cell retention and cell survival after transplantation, and impaired cell functionality in patients with advanced cardiovascular disease. The secretion of factors with paracrine effects by the transplanted cells is an increasingly recognized phenomenon. Identification of these factors, by secretome analyses and bioinformatic approaches, could advance protein-based therapies to promote healing and inhibit pathological remodeling of the heart after AMI. The identification of reliable sources of pluripotent stem cells and their differentiation into mature cardiac cell types could ultimately enable regeneration of the infarcted heart.

Key Points

  • Clinical trials show that bone marrow cell therapy improves myocardial perfusion and contractile performance in patients with acute myocardial infarction, heart failure, and chronic myocardial ischemia

  • Trial results are not uniform, however, probably owing to the current lack of standardization and optimization of cell isolation and delivery protocols

  • Ongoing clinical trials are addressing these limitations in an attempt to develop robust and reproducible cell therapy protocols that can be applied more widely and improve clinical outcome

  • Bone marrow cells are thought to have paracrine effects on neovascularization, inflammation, wound healing and possibly resident stem and progenitor cells

  • Secretome analyses could lead to the identification of paracrine factors with therapeutic potential for patients with coronary heart disease

  • Pluripotent stem cells provide an opportunity to generate patient-specific cardiac cells, but tumorgenicity and poor engraftment after transplantation currently limit their use for regenerative cell therapy and tissue engineering

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secretome analyses to identify new cardioactive paracrine factors.
Figure 2: Sources of cardiac progenitor cells.

Similar content being viewed by others

References

  1. Velagaleti, R. S. et al. Long-term trends in the incidence of heart failure after myocardial infarction. Circulation 118, 2057–2062 (2008).

    PubMed  PubMed Central  Google Scholar 

  2. McMurray, J. J. & Pfeffer, M. A. Heart failure. Lancet 365, 1877–1889 (2005).

    PubMed  Google Scholar 

  3. Soonpaa, M. H., Koh, G. Y., Klug, M. G. & Field, L. J. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264, 98–101 (1994).

    CAS  PubMed  Google Scholar 

  4. Taylor, D. A. et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med. 4, 929–933 (1998).

    CAS  PubMed  Google Scholar 

  5. Robey, T. E., Saiget, M. K., Reinecke, H. & Murry, C. E. Systems approaches to preventing transplanted cell death in cardiac repair. J. Mol. Cell. Cardiol. 45, 567–581 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chien, K. R., Domian, I. J. & Parker, K. K. Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science 322, 1494–1497 (2008).

    CAS  PubMed  Google Scholar 

  7. Dowell, J. D., Rubart, M., Pasumarthi, K. B., Soonpaa, M. H. & Field, L. J. Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc. Res. 58, 336–350 (2003).

    CAS  PubMed  Google Scholar 

  8. Blau, H. M., Brazelton, T. R. & Weimann, J. M. The evolving concept of a stem cell: entity or function? Cell 105, 829–841 (2001).

    CAS  PubMed  Google Scholar 

  9. Wagers, A. J. & Weissman, I. L. Plasticity of adult stem cells. Cell 116, 639–648 (2004).

    CAS  PubMed  Google Scholar 

  10. Wollert, K. C. & Drexler, H. Clinical applications of stem cells for the heart. Circ. Res. 96, 151–163 (2005).

    CAS  PubMed  Google Scholar 

  11. Wollert, K. C. et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364, 141–148 (2004).

    PubMed  Google Scholar 

  12. Meyer, G. P. et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113, 1287–1294 (2006).

    Article  PubMed  Google Scholar 

  13. Meyer, G. P. et al. Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eur. Heart J. 30, 2978–2984 (2009).

    PubMed  Google Scholar 

  14. Schaefer, A. et al. Impact of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: results from the BOOST trial. Eur. Heart J. 27, 929–935 (2006).

    PubMed  Google Scholar 

  15. Janssens, S. et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367, 113–121 (2006).

    PubMed  Google Scholar 

  16. Herbots, L. et al. Improved regional function after autologous bone marrow-derived stem cell transfer in patients with acute myocardial infarction: a randomized, double-blind strain rate imaging study. Eur. Heart J. 30, 662–670 (2009).

    PubMed  Google Scholar 

  17. Schächinger, V. et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med. 355, 1210–1221 (2006).

    PubMed  Google Scholar 

  18. Dill, T. et al. Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. Am. Heart J. 157, 541–547 (2009).

    PubMed  Google Scholar 

  19. Lunde, K. et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med. 355, 1199–1209 (2006).

    CAS  PubMed  Google Scholar 

  20. Lunde, K. et al. Anterior myocardial infarction with acute percutaneous coronary intervention and intracoronary injection of autologous mononuclear bone marrow cells: safety, clinical outcome, and serial changes in left ventricular function during 12-months' follow-up. J. Am. Coll. Cardiol. 51, 674–676 (2008).

    PubMed  Google Scholar 

  21. Seeger, F. H., Tonn, T., Krzossok, N., Zeiher, A. M. & Dimmeler, S. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur. Heart J. 28, 766–772 (2007).

    PubMed  Google Scholar 

  22. Huikuri, H. V. et al. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur. Heart J. 29, 2723–2732 (2008).

    PubMed  Google Scholar 

  23. Tendera, M. et al. Intracoronary infusion of bone marrow-derived selected CD34+ CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur. Heart J. 30, 1313–1321 (2009).

    PubMed  Google Scholar 

  24. van der Laan, A. et al. Bone marrow cell therapy after acute myocardial infarction: the HEBE trial in perspective, first results. Neth. Heart J. 16, 436–439 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Piek, J. J. Intracoronary infusion of mononuclear cells after primary percutaneous coronary intervention: The HEBE trial. Presented at the AHA 2008 Scientific Sessions.

  26. Mansour, S. et al. Intracoronary delivery of hematopoietic bone marrow stem cells and luminal loss of the infarct-related artery in patients with recent myocardial infarction. J. Am. Coll. Cardiol. 47, 1727–1730 (2006).

    PubMed  Google Scholar 

  27. Lipinski, M. J. et al. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J. Am. Coll. Cardiol. 50, 1761–1767 (2007).

    PubMed  Google Scholar 

  28. Martin-Rendon, E. et al. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur. Heart J. 29, 1807–1818 (2008).

    CAS  PubMed  Google Scholar 

  29. Menasché, P. et al. Myoblast transplantation for heart failure. Lancet 357, 279–280 (2001).

    PubMed  Google Scholar 

  30. Menasché, P. Skeletal myoblasts as a therapeutic agent. Prog. Cardiovasc. Dis. 50, 7–17 (2007).

    PubMed  Google Scholar 

  31. Menasché, P. et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117, 1189–1200 (2008).

    PubMed  Google Scholar 

  32. Menasché, P. Stem cell therapy for heart failure: are arrhythmias a real safety concern? Circulation 119, 2735–2740 (2009).

    PubMed  Google Scholar 

  33. Assmus, B. et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med. 355, 1222–1232 (2006).

    CAS  PubMed  Google Scholar 

  34. Losordo, D. W. et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 115, 3165–3172 (2007).

    PubMed  Google Scholar 

  35. Tse, H. F. et al. Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for treatment of severe coronary artery diseases (PROTECT-CAD trial). Eur. Heart J. 28, 2998–3005 (2007).

    PubMed  Google Scholar 

  36. van Ramshorst, J. et al. Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. JAMA 301, 1997–2004 (2009).

    CAS  PubMed  Google Scholar 

  37. Arora, R. R. et al. The multicenter study of enhanced external counterpulsation (MUST-EECP): effect of EECP on exercise-induced myocardial ischemia and anginal episodes. J. Am. Coll. Cardiol. 33, 1833–1840 (1999).

    CAS  PubMed  Google Scholar 

  38. Leon, M. B. et al. A blinded, randomized, placebo-controlled trial of percutaneous laser myocardial revascularization to improve angina symptoms in patients with severe coronary disease. J. Am. Coll. Cardiol. 46, 1812–1819 (2005).

    PubMed  Google Scholar 

  39. Reffelmann, T., Könemann, S. & Kloner, R. A. Promise of blood- and bone marrow-derived stem cell transplantation for functional cardiac repair: putting it in perspective with existing therapy. J. Am. Coll. Cardiol. 53, 305–308 (2009).

    PubMed  Google Scholar 

  40. Møller, J. E. et al. Wall motion score index and ejection fraction for risk stratification after acute myocardial infarction. Am. Heart J. 151, 419–425 (2006).

    PubMed  Google Scholar 

  41. Yokoyama, S. et al. A strategy of retrograde injection of bone marrow mononuclear cells into the myocardium for the treatment of ischemic heart disease. J. Mol. Cell. Cardiol. 40, 24–34 (2006).

    CAS  PubMed  Google Scholar 

  42. Silva, S. A. et al. Autologous bone-marrow mononuclear cell transplantation after acute myocardial infarction: comparison of two delivery techniques. Cell Transplant. 18, 343–352 (2009).

    PubMed  Google Scholar 

  43. Perin, E. C. & López, J. Methods of stem cell delivery in cardiac diseases. Nat. Clin. Pract. Cardiovasc. Med. 3 (Suppl. 1), 110–113 (2006).

    Google Scholar 

  44. Bartunek, J. et al. Delivery of biologics in cardiovascular regenerative medicine. Clin. Pharmacol. Ther. 85, 548–552 (2009).

    CAS  PubMed  Google Scholar 

  45. de Silva, R. et al. X-ray fused with magnetic resonance imaging (XFM) to target endomyocardial injections: validation in a swine model of myocardial infarction. Circulation 114, 2342–2350 (2006).

    PubMed  PubMed Central  Google Scholar 

  46. Schächinger, V. et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur. Heart J. 27, 2775–2783 (2006).

    PubMed  Google Scholar 

  47. Yousef, M. et al. The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 53, 2262–2269 (2009).

    PubMed  Google Scholar 

  48. Hofmann, M. et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111, 2198–2202 (2005).

    PubMed  Google Scholar 

  49. Schächinger, V. et al. Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation 118, 1425–1432 (2008).

    PubMed  Google Scholar 

  50. Haider, H. K. & Ashraf, M. Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J. Mol. Cell. Cardiol. 45, 554–566 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Menasché, P. Skeletal myoblasts and cardiac repair. J. Mol. Cell. Cardiol. 45, 545–553 (2008).

    PubMed  Google Scholar 

  52. Kissel, C. K. et al. Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. J. Am. Coll. Cardiol. 49, 2341–2349 (2007).

    PubMed  Google Scholar 

  53. Spyridopoulos, I. et al. Telomere gap between granulocytes and lymphocytes is a determinant for hematopoetic progenitor cell impairment in patients with previous myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 28, 968–974 (2008).

    CAS  PubMed  Google Scholar 

  54. Werner, N. et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N. Engl. J. Med. 353, 999–1007 (2005).

    CAS  PubMed  Google Scholar 

  55. Dimmeler, S. & Leri, A. Aging and disease as modifiers of efficacy of cell therapy. Circ. Res. 102, 1319–1330 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Aicher, A. et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat. Med. 9, 1370–1376 (2003).

    CAS  PubMed  Google Scholar 

  57. Landmesser, U. et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 110, 1933–1939 (2004).

    CAS  PubMed  Google Scholar 

  58. Sasaki, K. et al. Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc. Natl Acad. Sci. USA 103, 14537–14541 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sorrentino, S. A. et al. Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation 116, 163–173 (2007).

    CAS  PubMed  Google Scholar 

  60. Britten, M. B. et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 108, 2212–2218 (2003).

    CAS  PubMed  Google Scholar 

  61. Assmus, B. et al. Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD Registry. Circ. Res. 100, 1234–1241 (2007).

    CAS  PubMed  Google Scholar 

  62. Aicher, A. et al. Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia. Circulation 114, 2823–2830 (2006).

    PubMed  Google Scholar 

  63. Zen, K. et al. Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response. J. Mol. Cell. Cardiol. 40, 799–809 (2006).

    CAS  PubMed  Google Scholar 

  64. Ghanem, A. et al. Focused ultrasound-induced stimulation of microbubbles augments site-targeted engraftment of mesenchymal stem cells after acute myocardial infarction. J. Mol. Cell. Cardiol. 47, 411–418 (2009).

    CAS  PubMed  Google Scholar 

  65. Chavakis, E., Urbich, C. & Dimmeler, S. Homing and engraftment of progenitor cells: a prerequisite for cell therapy. J. Mol. Cell. Cardiol. 45, 514–522 (2008).

    CAS  PubMed  Google Scholar 

  66. Kohno, T. et al. Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovasc. Res. 81, 565–573 (2009).

    CAS  PubMed  Google Scholar 

  67. Askari, A. T. et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362, 697–703 (2003).

    CAS  PubMed  Google Scholar 

  68. Yamaguchi, J. et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107, 1322–1328 (2003).

    CAS  PubMed  Google Scholar 

  69. Penn, M. S. Importance of the SDF-1:CXCR4 axis in myocardial repair. Circ. Res. 104, 1133–1135 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tang, Y. L. et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ. Res. 104, 1209–1216 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Chavakis, E. et al. Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J. Exp. Med. 201, 63–72 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu, Y. et al. Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circ. Res. 99, 315–322 (2006).

    CAS  PubMed  Google Scholar 

  73. Chavakis, E. et al. High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ. Res. 100, 204–212 (2007).

    CAS  PubMed  Google Scholar 

  74. Carmona, G., Chavakis, E., Koehl, U., Zeiher, A. M. & Dimmeler, S. Activation of Epac stimulates integrin-dependent homing of progenitor cells. Blood 111, 2640–2646 (2008).

    CAS  PubMed  Google Scholar 

  75. Spyridopoulos, I. et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation 110, 3136–3142 (2004).

    CAS  PubMed  Google Scholar 

  76. Li, X. et al. AMP-activated protein kinase promotes the differentiation of endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 28, 1789–1795 (2008).

    PubMed  PubMed Central  Google Scholar 

  77. Shao, H. et al. Statin and stromal cell-derived factor-1 additively promote angiogenesis by enhancement of progenitor cells incorporation into new vessels. Stem Cells 26, 1376–1384 (2008).

    CAS  PubMed  Google Scholar 

  78. Niagara, M. I., Haider, H. K., Jiang, S. & Ashraf, M. Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ. Res. 100, 545–555 (2007).

    CAS  PubMed  Google Scholar 

  79. Pasha, Z. et al. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc. Res. 77, 134–142 (2008).

    CAS  PubMed  Google Scholar 

  80. Bartunek, J. et al. Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. Am. J. Physiol. Heart Circ. Physiol. 292, H1095–1104 (2007).

    CAS  PubMed  Google Scholar 

  81. Hahn, J. Y. et al. Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J. Am. Coll. Cardiol. 51, 933–943 (2008).

    CAS  PubMed  Google Scholar 

  82. Nadeau, S. I. & Landry, J. Mechanisms of activation and regulation of the heat shock-sensitive signaling pathways. Adv. Exp. Med. Biol. 594, 100–113 (2007).

    PubMed  Google Scholar 

  83. Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015–1024 (2007).

    CAS  PubMed  Google Scholar 

  84. Maurel, A. et al. Can cold or heat shock improve skeletal myoblast engraftment in infarcted myocardium? Transplantation 80, 660–665 (2005).

    PubMed  Google Scholar 

  85. Suzuki, K. et al. Heat shock treatment enhances graft cell survival in skeletal myoblast transplantation to the heart. Circulation 102 (Suppl. 3), 216–221 (2000).

    Google Scholar 

  86. Penn, M. S. & Mangi, A. A. Genetic enhancement of stem cell engraftment, survival, and efficacy. Circ. Res. 102, 1471–1482 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tang, Y. L. et al. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J. Am. Coll. Cardiol. 46, 1339–1350 (2005).

    CAS  PubMed  Google Scholar 

  88. Li, W. et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25, 2118–2127 (2007).

    CAS  PubMed  Google Scholar 

  89. Shujia, J., Haider, H. K., Idris, N. M., Lu, G. & Ashraf, M. Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovasc. Res. 77, 525–533 (2008).

    CAS  PubMed  Google Scholar 

  90. Gnecchi, M. et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med. 11, 367–368 (2005).

    CAS  PubMed  Google Scholar 

  91. Roell, W. et al. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature 450, 819–824 (2007).

    CAS  PubMed  Google Scholar 

  92. Bu, L. et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460, 113–117 (2009).

    CAS  PubMed  Google Scholar 

  93. Webber, M. J. et al. Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater. 6, 3–11 (2010).

    CAS  PubMed  Google Scholar 

  94. Davis, M. E., Hsieh, P. C., Grodzinsky, A. J. & Lee, R. T. Custom design of the cardiac microenvironment with biomaterials. Circ. Res. 97, 8–15 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Davis, M. E. et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl Acad. Sci. USA 103, 8155–8160 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Yoon, Y. S. et al. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J. Clin. Invest. 115, 326–338 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Aranguren, X. L. et al. Multipotent adult progenitor cells sustain function of ischemic limbs in mice. J. Clin. Invest. 118, 505–514 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Nygren, J. M. et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10, 494–501 (2004).

    CAS  PubMed  Google Scholar 

  99. Dai, W. et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 112, 214–223 (2005).

    PubMed  Google Scholar 

  100. Wollert, K. C. & Drexler, H. Mesenchymal stem cells for myocardial infarction: promises and pitfalls. Circulation 112, 151–153 (2005).

    PubMed  Google Scholar 

  101. Noiseux, N. et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol. Ther. 14, 840–850 (2006).

    CAS  PubMed  Google Scholar 

  102. Field, L. J. Unraveling the mechanistic basis of mesenchymal stem cell activity in the heart. Mol. Ther. 14, 755–756 (2006).

    CAS  PubMed  Google Scholar 

  103. Prater, D. N., Case, J., Ingram, D. A. & Yoder, M. C. Working hypothesis to redefine endothelial progenitor cells. Leukemia 21, 1141–1149 (2007).

    CAS  PubMed  Google Scholar 

  104. Gnecchi, M., Zhang, Z., Ni, A. & Dzau, V. J. Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res. 103, 1204–1219 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Urbich, C. et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell. Cardiol. 39, 733–742 (2005).

    CAS  PubMed  Google Scholar 

  106. Korf-Klingebiel, M. et al. Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur. Heart J. 29, 2851–2858 (2008).

    PubMed  Google Scholar 

  107. Perez-Ilzarbe, M. et al. Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. Eur. J. Heart Fail. 10, 1065–1072 (2008).

    CAS  PubMed  Google Scholar 

  108. Uemura, R., Xu, M., Ahmad, N. & Ashraf, M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ. Res. 98, 1414–1421 (2006).

    CAS  PubMed  Google Scholar 

  109. Cho, H. J. et al. Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J. Exp. Med. 204, 3257–3269 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kamihata, H. et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104, 1046–1052 (2001).

    CAS  PubMed  Google Scholar 

  111. Kawamoto, A. et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107, 461–468 (2003).

    PubMed  Google Scholar 

  112. Zeng, L. et al. Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation 115, 1866–1875 (2007).

    PubMed  Google Scholar 

  113. Erbs, S. et al. Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial. Circulation 116, 366–374 (2007).

    PubMed  Google Scholar 

  114. Mirotsou, M. et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc. Natl Acad. Sci. USA 104, 1643–1648 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Burchfield, J. S. et al. Interleukin-10 from transplanted bone marrow mononuclear cells contributes to cardiac protection after myocardial infarction. Circ. Res. 103, 203–211 (2008).

    CAS  PubMed  Google Scholar 

  116. Gilchrist, A. et al. Quantitative proteomics analysis of the secretory pathway. Cell 127, 1265–1281 (2006).

    CAS  PubMed  Google Scholar 

  117. Bersell, K., Arab, S., Haring, B. & Kühn, B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138, 257–270 (2009).

    CAS  PubMed  Google Scholar 

  118. Smart, N. et al. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445, 177–182 (2007).

    CAS  PubMed  Google Scholar 

  119. Malik, D. K., Baboota, S., Ahuja, A., Hasan, S. & Ali, J. Recent advances in protein and peptide drug delivery systems. Curr. Drug Deliv. 4, 141–151 (2007).

    CAS  PubMed  Google Scholar 

  120. Zhang, G. et al. Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit+ cell homing to the infarcted heart. Tissue Eng. 13, 2063–2071 (2007).

    CAS  PubMed  Google Scholar 

  121. Segers, V. F. et al. Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation 116, 1683–1692 (2007).

    CAS  PubMed  Google Scholar 

  122. Kehat, I. et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 22, 1282–1289 (2004).

    CAS  PubMed  Google Scholar 

  123. Ménard, C. et al. Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet 366, 1005–1012 (2005).

    PubMed  Google Scholar 

  124. Guan, K. et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440, 1199–1203 (2006).

    CAS  PubMed  Google Scholar 

  125. Conrad, S. et al. Generation of pluripotent stem cells from adult human testis. Nature 456, 344–349 (2008).

    CAS  PubMed  Google Scholar 

  126. Brevini, T. A. & Gandolfi, F. Parthenotes as a source of embryonic stem cells. Cell Prolif. 41 (Suppl. 1), 20–30 (2008).

    PubMed  Google Scholar 

  127. Smith, R. R. et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115, 896–908 (2007).

    PubMed  Google Scholar 

  128. Andersen, D. C., Andersen, P., Schneider, M., Jensen, H. B. & Sheikh, S. P. Murine “cardiospheres” are not a source of stem cells with cardiomyogenic potential. Stem Cells 27, 1571–1581 (2009).

    PubMed  Google Scholar 

  129. Wu, S. M., Chien, K. R. & Mummery, C. Origins and fates of cardiovascular progenitor cells. Cell 132, 537–543 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  PubMed  Google Scholar 

  131. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    CAS  PubMed  Google Scholar 

  132. Mauritz, C. et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118, 507–517 (2008).

    PubMed  Google Scholar 

  133. Nelson, T. J. et al. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120, 408–416 (2009).

    PubMed  PubMed Central  Google Scholar 

  134. Carey, B. W. et al. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc. Natl Acad. Sci. USA 106, 157–162 (2009).

    CAS  PubMed  Google Scholar 

  135. Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771–775 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Huangfu, D. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26, 795–797 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lyssiotis, C. A. et al. Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc. Natl Acad. Sci. USA 106, 8912–8917 (2009).

    PubMed  PubMed Central  Google Scholar 

  138. Kolossov, E. et al. Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. J. Exp. Med. 203, 2315–2327 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Kiuru, M., Boyer, J. L., O'Connor, T. P. & Crystal, R. G. Genetic control of wayward pluripotent stem cells and their progeny after transplantation. Cell Stem Cell 4, 289–300 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Taylor, C. J. et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366, 2019–2025 (2005).

    PubMed  Google Scholar 

  141. Nakajima, F., Tokunaga, K. & Nakatsuji, N. Human leukocyte antigen matching estimations in a hypothetical bank of human embryonic stem cell lines in the Japanese population for use in cell transplantation therapy. Stem Cells 25, 983–985 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kerstin Bethmann for assistance with the tables and figures. This work was supported by the Deutsche Forschungsgemeinschaft (KFO 136). Professor Helmut Drexler died during the writing of this article. His premature death is a tragic loss to all those who knew him and to the field of Cardiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai C. Wollert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wollert, K., Drexler, H. Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat Rev Cardiol 7, 204–215 (2010). https://doi.org/10.1038/nrcardio.2010.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing