Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Developmental origins of hypertrophic cardiomyopathy phenotypes: a unifying hypothesis

Abstract

The majority of genetic mutations associated with hypertrophic cardiomyopathy (HCM) occur in genes encoding sarcomeric proteins, which are expressed only in cardiomyocytes. However, some manifestations of the HCM phenotype, such as myocardial disarray, interstitial fibrosis, mitral valve abnormalities, and microvascular remodeling, indicate the involvement of other cell lineages. The link between sarcomeric gene defects and these 'extended' HCM phenotypes remains elusive. Based on novel insights provided by cardiac developmental biology, we propose that a common lineage ancestry of the diverse HCM phenotypes not involving the cardiomyocyte can be traced to the pluripotent epicardium-derived cells (EPDCs). During cardiac colonization, EPDCs differentiate into interstitial fibroblasts, coronary smooth-muscle cells, and atrioventricular endocardial cushions as mesenchymal cells. We propose that the cross-talk between healthy EPDCs and abnormally contracting cardiomyocytes might account for the diverse manifestations of HCM, by a putative mechanism of mechanotransduction leading to abnormal gene expression and differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The HCM phenotypes.
Figure 2: Continuum of the primary (brown and blue) and secondary (yellow) heart-forming fields.
Figure 3: Hypertrophic cardiomyopathy as a cell-lineage disease.
Figure 4: Localization of epicardial progenitor-derived myocytes to the ventricular septum.

Similar content being viewed by others

References

  1. Maron, B. J. Hypertrophic cardiomyopathy: a systematic review. JAMA 287, 1308–1320 (2002).

    PubMed  Google Scholar 

  2. Yacoub, M. H., Olivotto, I. & Cecchi, F. 'End-stage' hypertrophic cardiomyopathy: from mystery to model. Nat. Clin. Pract. Cardiovasc. Med. 4, 232–233 (2007).

    Article  PubMed  Google Scholar 

  3. Ashrafian, H. & Watkins, H. Reviews of translational medicine and genomics in cardiovascular disease: new disease taxonomy and therapeutic implications cardiomyopathies: therapeutics based on molecular phenotype. J. Am. Coll. Cardiol. 49, 1251–1264 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Ho, C. Y. & Seidman, C. E. A contemporary approach to hypertrophic cardiomyopathy. Circulation 113, e858–e862 (2006).

    PubMed  Google Scholar 

  5. Olivotto, I. et al. Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin. Proc. 83, 630–638 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Richard, P. et al. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107, 2227–2232 (2003).

    Article  PubMed  Google Scholar 

  7. Basso, C. et al. Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum. Pathol. 31, 988–998 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Harrigan, C. J. et al. Significance of papillary muscle abnormalities identified by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Am. J. Cardiol. 101, 668–673 (2008).

    Article  PubMed  Google Scholar 

  9. Klues, H. G., Maron, B. J., Dollar, A. L. & Roberts, W. C. Diversity of structural mitral valve alterations in hypertrophic cardiomyopathy. Circulation 85, 1651–1660 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Markwald, R. R. & Butcher, J. T. The next frontier in cardiovascular developmental biology—an integrated approach to adult disease? Nat. Clin. Pract. Cardiovasc. Med. 4, 60–61 (2007).

    Article  PubMed  Google Scholar 

  11. Olivotto, I. et al. Assessment and significance of left ventricular mass by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 52, 559–566 (2008).

    Article  PubMed  Google Scholar 

  12. Phadke, R. S., Vaideeswar, P., Mittal, B. & Deshpande, J. Hypertrophic cardiomyopathy: an autopsy analysis of 14 cases. J. Postgrad. Med. 47, 165–170 (2001).

    CAS  PubMed  Google Scholar 

  13. Adabag, A. S. et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 51, 1369–1374 (2008).

    Article  PubMed  Google Scholar 

  14. Cecchi, F. et al. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N. Engl. J. Med. 349, 1027–1035 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Yacoub, M., Onuzo, O., Riedel, B. & Radley-Smith, R. Mobilization of the left and right fibrous trigones for relief of severe left ventricular outflow obstruction. J. Thorac. Cardiovasc. Surg. 117, 126–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Monserrat, L. et al. Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects. Eur. Heart J. 28, 1953–1961 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Olivotto, I. et al. Impact of atrial fibrillation on the clinical course of hypertrophic cardiomyopathy. Circulation 104, 2517–2524 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. chäfers, M. et al. Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ. Res. 82, 57–62 (1998).

    Article  Google Scholar 

  19. Lie-Venema, H. et al. Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. ScientificWorldJournal 7, 1777–1798 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eisenberg, L. M. & Markwald, R. R. Cellular recruitment and the development of the myocardium. Dev. Biol. 274, 225–232 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Cai, C. L. et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell. 5, 877–889 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Franco, D. et al. Left and right ventricular contributions to the formation of the interventricular septum in the mouse heart. Dev. Biol. 294, 366–375 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Lie-Venema, H. et al. Periostin expression by epicardium-derived cells is involved in the development of the atrioventricular valves and fibrous heart skeleton. Differentiation 76, 809–819 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Perez-Pomares, J. M. et al. Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev. Biol. 247, 307–326 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Dosdall, D. J. et al. Chemical ablation of the Purkinje system causes early termination and activation rate slowing of long-duration ventricular fibrillation in dogs. Am. J. Physiol. Heart Circ. Physiol. 295, H883–H889 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Dahl, K. N., Ribeiro, A. J. & Lammerding, J. Nuclear shape, mechanics and mechanotransduction. Circ. Res. 102, 1307–1318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Belus, A. et al. The familial hypertrophic cardiomyopathy-associated myosin mutation R403Q accelerates tension generation and relaxation of human cardiac myofibrils. J. Physiol. 586, 3639–3644 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Douglas, Y. L. et al. Pulmonary vein, dorsal atrial wall and atrial septum abnormalities in podoplanin knockout mice with disturbed posterior heart field contribution. Pediatr. Res. (in press).

  30. Mahtab, E. A. et al. Cardiac malformations and myocardial abnormalities in podoplanin knockout mouse embryos: Correlation with abnormal epicardial development. Dev. Dyn. 237, 847–857 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Cai, C. L. et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 454, 104–108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou, B. et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454, 109–113 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Klaassen, S. et al. Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 117, 2893–2901 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Peng, X. et al. Cardiac developmental defects and eccentric right ventricular hypertrophy in cardiomyocyte focal adhesion kinase (FAK) conditional knockout mice. Proc. Natl Acad. Sci. USA 105, 6638–6643 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support from Telethon-Italy (GGP07133) and MiUr (PRIN2006) are gratefully acknowledged. We are indebted to Dr Francesca Garbini for providing the histological images shown in Figure 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdi H. Yacoub.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivotto, I., Cecchi, F., Poggesi, C. et al. Developmental origins of hypertrophic cardiomyopathy phenotypes: a unifying hypothesis. Nat Rev Cardiol 6, 317–321 (2009). https://doi.org/10.1038/nrcardio.2009.9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing