Obesity, inflammation, and atherosclerosis

Abstract

Understanding of the pathophysiology of atherogenesis has evolved substantially during the last few decades. Atherosclerosis was once identified as a lipid-storage disease, but is now recognized as a subacute inflammatory condition of the vessel wall, characterized by infiltration of macrophages and T cells, which interact with one another and with cells of the arterial wall. The pathological mechanisms of obesity recapitulate many features of the inflammatory processes at work in atherosclerosis. Our current appreciation of the similarities between obesity and atherosclerosis has already fostered innovations for the diagnosis, prognosis, and prevention of these two conditions.

Key Points

  • Although they are distinct conditions, atherosclerotic disease and obesity share common pathophysiological features

  • Lipids contribute critically to atherosclerosis and obesity; oxidized LDL and free fatty acids can trigger inflammation and initiate disease

  • Inflammation mediates all stages of atherogenesis—from early lesion development to atheroma complication—and is associated with obesity, insulin resistance, and type 2 diabetes

  • Inflammation constitutes a mechanistic link between obesity and atherosclerosis: adipokines released by adipose tissue induce insulin resistance, endothelial dysfunction, hypercoagulability, and systemic inflammation, all of which can promote atherosclerosis

  • The accumulation of heterogeneous macrophage populations, T-cell activation, cell death, and the effects of numerous cytokines and chemokines characterize both atherosclerosis and obesity

  • Inflammatory biomarkers, such as high-sensitivity C-reactive protein, can predict cardiovascular events, guide therapy, and reflect the pathophysiological links between obesity and its associated metabolic disorders

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Effects of LDL particles on the vessel wall.
Figure 2: Effects of free fatty acids on various organs.
Figure 3: Monocyte subsets in atherosclerosis.
Figure 4: Monocyte subsets in adipose tissue inflammation.
Figure 5: T cells in atherosclerosis.
Figure 6: T cells in the inflammatory network of obesity.

References

  1. 1

    Rosamond, W. et al. Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117, e25–e146 (2008).

    PubMed  Google Scholar 

  2. 2

    Olshansky, S. J. et al. A potential decline in life expectancy in the United States in the 21st century. N. Engl. J. Med. 352, 1138–1145 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  Google Scholar 

  5. 5

    Ross, R. & Harker, L. Hyperlipidemia and atherosclerosis. Science 193, 1094–1100 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Steinberg, D. Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy, part V: the discovery of the statins and the end of the controversy. J. Lipid Res. 47, 1339–1351 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Steinberg, D. The pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy, part IV: the 1984 coronary primary prevention trial ends it—almost. J. Lipid Res. 47, 1–14 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Li, H., Cybulsky, M. I., Gimbrone, M. A. Jr & Libby, P. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler. Thromb. 13, 197–204 (1993).

    Article  PubMed  Google Scholar 

  9. 9

    Witztum, J. L. & Steinberg, D. Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Invest. 88, 1785–1792 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Turinsky, J., O'Sullivan, D. M. & Bayly, B. P. 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. J. Biol. Chem. 265, 16880–16885 (1990).

    CAS  PubMed  Google Scholar 

  12. 12

    Schenk S., Saberi, M. & Olefsky, J. M. Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Invest. 118, 2992–3002 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Janeway, C. A., Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  Google Scholar 

  15. 15

    Kawakami, A. et al. Toll-like receptor 2 mediates apolipoprotein CIII-induced monocyte activation. Circ. Res. 103, 1402–1409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Steinberg, D. Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part I. J. Lipid Res. 45, 1583–1593 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Steinberg, D. Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part II: the early evidence linking hypercholesterolemia to coronary disease in humans. J. Lipid Res. 46, 179–190 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Steinberg, D. Thematic review series: the pathogenesis of atherosclerosis: an interpretive history of the cholesterol controversy, part III: mechanistically defining the role of hyperlipidemia. J. Lipid Res. 46, 2037–2051 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Gu, L. et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell 2, 275–281 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Boring, L., Gosling, J., Cleary, M. & Charo, I. F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Veillard, N. R. et al. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ. Res. 94, 253–261 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Braunersreuther, V. et al. Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler. Thromb. Vasc Biol. 27, 373–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Lesnik P, Haskell, C. A. & Charo, I. F. Decreased atherosclerosis in CX3CR1−/− mice reveals a role for fractalkine in atherogenesis. J. Clin. Invest. 111, 333–340 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Hotamisligil, G. S., Murray, D. L., Choy, L. N. & Spiegelman, B. M. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc. Natl Acad. Sci. USA 91, 4854–4858 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Rocha, V. Z. & Libby, P. The multiple facets of the fat tissue. Thyroid 18, 175–183 (2008).

    Article  PubMed  Google Scholar 

  29. 29

    Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Gordon, S. Macrophage heterogeneity and tissue lipids. J. Clin. Invest. 117, 89–93 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Weisberg, S. P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Inouye, K. E. et al. Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes 56, 2242–2250 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Kirk, E. A., Sagawa, Z. K., McDonald, T. O., O'Brien, K. D. & Heinecke, J. W. Macrophage chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue [corrected]. Diabetes 57, 1254–1261 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Odegaard, J. I. et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007) (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Kang, K. et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell. Metab. 7, 485–495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Hansson, G. K. & Libby, P. The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol. 6, 508–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Mach, F. et al. Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J. Clin. Invest. 104, 1041–1050 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Heller, E. A. et al. Chemokine CXCL10 promotes atherogenesis by modulating the local balance of effector and regulatory T cells. Circulation 113, 2301–2312 (2006).

    Article  CAS  Google Scholar 

  42. 42

    van Wanrooij, E. J. et al. CXCR3 antagonist NBI-74330 attenuates atherosclerotic plaque formation in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 28, 251–257 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Frostegard, J. et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 145, 33–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Friesel, R., Komoriya, A. & Maciag, T. Inhibition of endothelial cell proliferation by gamma-interferon. J. Cell Biol. 104, 689–696 (1987).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Hansson, G. K., Hellstrand, M., Rymo, L., Rubbia, L. & Gabbiani, G. Interferon gamma inhibits both proliferation and expression of differentiation-specific alpha-smooth muscle actin in arterial smooth muscle cells. J. Exp. Med. 170, 1595–1608 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Amento, E. P., Ehsani, N., Palmer, H. & Libby, P. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler. Thromb. 11, 1223–1230 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Buono, C. et al. Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 23, 454–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Gupta, S. et al. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J. Clin. Invest. 99, 2752–2761 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Davenport, P. & Tipping, P. G. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am. J. Pathol. 163, 1117–1125 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    King, V. L., Szilvassy, S. J. & Daugherty, A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler. Thromb. Vasc. Biol. 22, 456–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl Acad. Sci. USA 92, 3893–3897 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Kol, A., Sukhova, G. K., Lichtman, A. H. & Libby, P. Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-alpha and matrix metalloproteinase expression. Circulation 98, 300–307 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    O'Connor, C. M. et al. Azithromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial. JAMA 290, 1459–1466 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Grayston, J. T. et al. Azithromycin for the secondary prevention of coronary events. N. Engl. J. Med. 352, 1637–1645 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. 57

    Caligiuri, G. et al. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol. Med. 9, 10–17 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Mallat, Z. et al. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ. Res. 89, 930–934 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12, 178–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Wu, H. et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 115, 1029–1038 (2007).

    Article  CAS  Google Scholar 

  61. 61

    Rocha, V. Z. et al. Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ. Res. 103, 467–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Kintscher, U. et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler. Thromb. Vasc. Biol. 28, 1304–1310 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Clarke, M. C. et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat. Med. 12, 1075–1080 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Geng, Y. J. & Libby, P. Progression of atheroma: a struggle between death and procreation. Arterioscler. Thromb. Vasc. Biol. 22, 1370–1380 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Clarke, M. C. & Bennett, M. R. Cause or consequence: what does macrophage apoptosis do in atherosclerosis? Arterioscler. Thromb. Vasc. Biol. (2008).

  66. 66

    Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Mach, F., Schönbeck, U., Bonnefoy, J. Y., Pober, J. S. & Libby, P. Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: induction of collagenase, stromelysin, and tissue factor. Circulation 96, 396–399 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Arkan, M. C. et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat. Med. 11, 191–198 (2005).

    Article  CAS  Google Scholar 

  70. 70

    Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293, 1673–1677 (2001).

    Article  CAS  Google Scholar 

  71. 71

    Van Gaal, L. F., Mertens, I. L. & De Block, C. E. Mechanisms linking obesity with cardiovascular disease. Nature 444, 875–880 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Ridker, P. M. C-reactive protein and the prediction of cardiovascular events among those at intermediate risk: moving an inflammatory hypothesis toward consensus. J. Am. Coll. Cardiol. 49, 2129–2138 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. 73

    Everett, B. M., Kurth, T., Buring, J. E. & Ridker, P. M. The relative strength of C-reactive protein and lipid levels as determinants of ischemic stroke compared with coronary heart disease in women. J. Am. Coll. Cardiol. 48, 2235–2242 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Ridker, P. M., Stampfer, M. J. & Rifai, N. Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 285, 2481–2485 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P. & Hennekens, C. H. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 336, 973–979 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Ridker, P. M., Rifai, N., Rose, L., Buring, J. E. & Cook, N. R. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N. Engl. J. Med. 347, 1557–1565 (2002).

    Article  CAS  Google Scholar 

  77. 77

    Koenig, W., Löwel, H., Baumert, J. & Meisinger, C. C-reactive protein modulates risk prediction based on the Framingham Score: implications for future risk assessment: results from a large cohort study in southern Germany. Circulation 109, 1349–1353 (2004).

    Article  PubMed  Google Scholar 

  78. 78

    Pai, J. K. et al. Inflammatory markers and the risk of coronary heart disease in men and women. N. Engl. J. Med. 351, 2599–2610 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. 79

    Ballantyne, C. M. et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation 109, 837–842 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Danesh, J. et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 350, 1387–1397 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Cushman, M. et al. C-reactive protein and the 10-year incidence of coronary heart disease in older men and women: the cardiovascular health study. Circulation 112, 25–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. 82

    Laaksonen, D. E. et al. C-reactive protein in the prediction of cardiovascular and overall mortality in middle-aged men: a population-based cohort study. Eur. Heart J. 26, 1783–1789 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. 83

    Pearson, T. A. et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107, 499–511 (2003).

    Article  PubMed  Google Scholar 

  84. 84

    Ridker, P. M. et al. C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men. Circulation 118, 2243–2251 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Ridker, P. M., Buring, J. E., Rifai, N. & Cook, N. R. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA 297, 611–619 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Visser, M., Bouter, L. M., McQuillan, G. M., Wener, M. H. & Harris, T. B. Elevated C-reactive protein levels in overweight and obese adults. JAMA 282, 2131–2135 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Pradhan, A. D., Manson, J. E., Rifai, N., Buring, J. E. & Ridker, P. M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286, 327–334 (2001).

    Article  CAS  Google Scholar 

  88. 88

    Yudkin, J. S., Stehouwer, C. D., Emeis, J. J. & Coppack, S. W. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler. Thromb. Vasc. Biol. 19, 972–978 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Katagiri, H., Yamada, T. & Oka, Y. Adiposity and cardiovascular disorders: disturbance of the regulatory system consisting of humoral and neuronal signals. Circ. Res. 101, 27–39 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Berg, A. H. & Scherer, P. E. Adipose tissue, inflammation, and cardiovascular disease. Circ. Res. 96, 939–949 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    Lihn, A. S., Pedersen, S. B. & Richelsen, B. Adiponectin: action, regulation and association to insulin sensitivity. Obes. Rev. 6, 13–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. 92

    Pajvani, U. B. et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem. 279, 12152–12162 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Okamoto, Y., Kihara, S., Funahashi, T., Matsuzawa, Y. & Libby, P. Adiponectin: a key adipocytokine in metabolic syndrome. Clin. Sci. (Lond.) 110, 267–278 (2006).

    Article  CAS  Google Scholar 

  94. 94

    Ridker, P. M. et al. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events (CARE) Investigators. Circulation 98, 839–844 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Ridker, P. M. et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N. Engl. J. Med. 344, 1959–1965 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. 96

    Ridker, P. M. et al. C-reactive protein levels and outcomes after statin therapy. N. Engl. J. Med. 352, 20–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. 97

    Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. 98

    Brown, J. D. & Plutzky, J. Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation 115, 518–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. 99

    Ogawa, S. et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122, 707–721 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Sidhu, J. S., Cowan, D. & Kaski, J. C. The effects of rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, on markers of endothelial cell activation, C-reactive protein, and fibrinogen levels in non-diabetic coronary artery disease patients. J. Am. Coll. Cardiol. 42, 1757–1763 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    Pfutzner, A. et al. Improvement of cardiovascular risk markers by pioglitazone is independent from glycemic control: results from the pioneer study. J. Am. Coll. Cardiol. 45, 1925–1931 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. 102

    Li, A. C. et al. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J. Clin. Invest. 106, 523–531 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Li, A. C. et al. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J. Clin. Invest. 114, 1564–1576 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Dormandy, J. A. et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366, 1279–1289 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Nissen, S. E. & Wolski, K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 356, 2457–2471 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. 106

    Jandeleit-Dahm, K. A., Calkin, A., Tikellis, C. & Thomas, M. Direct antiatherosclerotic effects of PPAR agonists. Curr. Opin. Lipidol. 20, 24–29 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. 107

    Fleischman, A., Shoelson, S. E., Bernier, R. & Goldfine, A. B. Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care 31, 289–294 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. 108

    Koska, J. et al. The effect of salsalate on insulin action and glucose tolerance in obese non-diabetic patients: results of a randomised double-blind placebo-controlled study. Diabetologia 52, 385–393 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. 109

    Hansson, G. K. Atherosclerosis—an immune disease: The Anitschkov Lecture 2007. Atherosclerosis 202, 2–10 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. 110

    Sheikine, Y. A. & Hansson, G. K. Chemokines as potential therapeutic targets in atherosclerosis. Curr. Drug Targets 7, 13–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. 111

    Ni, W. et al. New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation 103, 2096–2101 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. 112

    Inoue, S. et al. Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation 106, 2700–2706 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    Tamura, Y. et al. Inhibition of CCR2 ameliorates insulin resistance and hepatic steatosis in db/db mice. Arterioscler. Thromb. Vasc. Biol. 28, 2195–2201 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. 114

    Braunersreuther, V. et al. A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice. Arterioscler. Thromb. Vasc. Biol. 28, 1090–1096 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. 115

    Combadiere, C. et al. Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 107, 1009–1016 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Joan Perry for excellent editorial assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Libby.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rocha, V., Libby, P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol 6, 399–409 (2009). https://doi.org/10.1038/nrcardio.2009.55

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing