Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular and molecular mechanisms of thoracic aortic aneurysms

Abstract

Thoracic aortic aneurysms (TAA) increase the risk of aortic dissection or rupture and represent an important source of morbidity and mortality. Inherited forms of the disease, including Marfan syndrome, have been recognized for a long time but were considered degenerative diseases characterized by cystic medial necrosis of the aortic wall. Improved definition of the structure and function of the normal aortic wall, coupled with the discovery of genetic mutations in key regulatory molecules, have contributed to a more detailed understanding of the pathophysiology of syndromic, familial and sporadic TAAs. We here review the cellular and molecular mechanisms involved in TAA formation and outline areas for future research.

Key Points

  • Developmental variations between the thoracic and abdominal aorta result in differences in cellular responses to similar biological stimuli

  • In addition to their structural role, the cells and proteins in the aortic wall have important regulatory functions that maintain homeostasis

  • Dysfunction of one or more components of the cytoskeleton–receptor–extracellular matrix complex can lead to structural and functional dysregulation of aortic wall properties

  • The transforming growth factor β1 pathway is important in matrix regulation in health and disease, and increased activity is a key component of various forms of thoracic aortic aneurysms (TAAs)

  • TAAs can be syndromic, familial nonsyndromic or sporadic, and are characterized by apoptosis and disarray of vascular smooth muscle cells, fragmentation of elastin, inflammatory infiltration, and upregulation of matrix metalloproteinases

  • Therapeutic strategies that target specific molecular pathways have shown promising results in mitigating TAA progression, and further understanding of the pathogenic mechanisms offers great potential for developing additional therapies

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The lamellar unit.
Figure 2: The cytoskeleton–receptor–ECM complex.
Figure 3: Illustration of the roles of collagen fibers in the ECM.
Figure 4: The structural and functional effects of normal and mutant fibrillin 1 in the regulation of aortic wall homeostasis.
Figure 5: Developmental origin of cells populating the ascending aorta.
Figure 6: The role of TGF-β1 in TAA formation.
Figure 7: The 'outside-in' theory showing the role of the 5-LO pathway in the formation of aortic aneurysms.
Figure 8: Typical immunohistochemical findings in an explanted aortic wall of a patient who underwent surgery for a nonfamilial TAA, compared with a normal aortic wall obtained from a transplant recipient with a normal aorta.
Figure 9: Computational modeling of structural and fluid mechanics in the aortic wall of a patient with aortic root dilatation.

Similar content being viewed by others

References

  1. Erdheim, J. Medionecrosis aortae idiopathica (cystica). Arch. Pathol. Anat. Physiol. Klin. Med. 273, 454–479 (1929).

    Article  Google Scholar 

  2. Dietz, H. C. et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352, 337–339 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Bellhouse, B. J. & Bellhouse, F. H. Mechanism of closure of the aortic valve. Nature 217, 86–87 (1968).

    Article  CAS  PubMed  Google Scholar 

  4. Davies, J. E., Parker, K. H., Francis, D. P., Hughes, A. D. & Mayet, J. What is the role of the aorta in directing coronary blood flow? Heart 94, 1545–1547 (2008).

    Article  PubMed  Google Scholar 

  5. Grande-Allen, K. J., Cochran, R. P., Reinhall, P. G. & Kunzelman, K. S. Finite-element analysis of aortic valve-sparing: influence of graft shape and stiffness. IEEE Trans. Biomed. Eng. 48, 647–659 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Grande-Allen, K. J., Cochran, R. P., Reinhall, P. G. & Kunzelman, K. S. Re-creation of sinuses is important for sparing the aortic valve: a finite element study. J. Thorac. Cardiovasc. Surg. 119, 753–763 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Ranga, A., Bouchot, O., Mongrain, R., Ugolini, P. & Cartier, R. Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. Interact. Cardiovasc. Thorac. Surg. 5, 373–378 (2006).

    Article  PubMed  Google Scholar 

  8. Cartier, R., Ranga, A. & Mongrain, R. Aortic root reconstruction: from principles to numerical modeling. Can. J. Cardiol. 21, 1071–1076 (2005).

    PubMed  Google Scholar 

  9. Stefanadis, C. et al. Pressure–diameter relation of the human aorta. A new method of determination by the application of a special ultrasonic dimension catheter. Circulation 92, 2210–2219 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Wolinsky, H. & Glagov, S. A lamellar unit of aortic medial structure and function in mammals. Circ. Res. 20, 99–111 (1967).

    Article  CAS  PubMed  Google Scholar 

  11. Wolinsky, H. Comparison of medial growth of human thoracic and abdominal aortas. Circ. Res. 27, 531–538 (1970).

    Article  CAS  PubMed  Google Scholar 

  12. Raines, E. W. & Ross, R. Smooth muscle cells and the pathogenesis of the lesions of atherosclerosis. Br. Heart J. 69, S30–S37 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karnik, S. K. et al. A critical role for elastin signaling in vascular morphogenesis and disease. Development 130, 411–423 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Lagna, G. et al. Control of phenotypic plasticity of smooth muscle cells by bone morphogenetic protein signaling through the myocardin-related transcription factors. J. Biol. Chem. 282, 37244–37255 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Owens, G. K., Kumar, M. S. & Wamhoff, B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84, 767–801 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, B.-S., Nikolovski, J., Bonadio, J. & Mooney, D. J. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat. Biotech. 17, 979–983 (1999).

    Article  CAS  Google Scholar 

  17. Berrier, A. L. & Yamada, K. M. Cell–matrix adhesion. J. Cell Physiol. 213, 565–573 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, N., Butler, J. P. & Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Alenghat, F. J. & Ingber, D. E. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci. STKE PE6 (2002).

  20. Luo, B. H., Carman, C. V. & Springer, T. A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol 25, 619–647 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Parker, K. K. & Ingber, D. E. Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362, 1267–1279 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maniotis, A. J., Chen, C. S. & Ingber, D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94, 849–854 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Della Corte, A. et al. Spatiotemporal patterns of smooth muscle cell changes in ascending aortic dilatation with bicuspid and tricuspid aortic valve stenosis: focus on cell–matrix signaling. J. Thorac. Cardiovasc. Surg. 135, 8–18 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. He, R. et al. Characterization of the inflammatory and apoptotic cells in the aortas of patients with ascending thoracic aortic aneurysms and dissections. J. Thorac. Cardiovasc. Surg. 131, 671–678 (2006).

    Article  PubMed  Google Scholar 

  25. Guo, D. C. et al. Mutations in smooth muscle α-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat. Genet. 39, 1488–1493 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Zhu, L. et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat. Genet. 38, 343–349 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Van Kien, P. K. et al. Mapping of familial thoracic aortic aneurysm/dissection with patent ductus arteriosus to 16p12.2–p13.13. Circulation 112, 200–206 (2005).

    Article  Google Scholar 

  28. Sheen, V. L. et al. Filamin A mutations cause periventricular heterotopia with Ehlers–Danlos syndrome. Neurology 64, 254–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. van der Rest, M. & Garrone, R. Collagen family of proteins. FASEB J. 5, 2814–2823 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Pozzi, A., Wary, K. K., Giancotti, F. G. & Gardner, H. A. Integrin α1β1 mediates a unique collagen-dependent proliferation pathway in vivo. J. Cell Biol. 142, 587–594 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Somasundaram, R. et al. Collagens serve as an extracellular store of bioactive interleukin 2. J. Biol. Chem. 275, 38170–38175 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Parks, W., Pierce, R., Lee, K. & Mecham, R. Elastin. in Advances in Molecular and Cell Biology vol. 6 (ed. Kleinman, H.) 133–182 (JAI Press, Greenwich, 1993).

    Google Scholar 

  33. Rodgers, U. R. & Weiss, A. S. Integrin αvβ3 binds a unique non-RGD site near the C-terminus of human tropoelastin. Biochimie 86, 173–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Mochizuki, S., Brassart, B. & Hinek, A. Signaling pathways transduced through the elastin receptor facilitate proliferation of arterial smooth muscle cells. J. Biol. Chem. 277, 44854–44863 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Li, D. Y. et al. Elastin is an essential determinant of arterial morphogenesis. Nature 393, 276–280 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Li, D. Y. et al. Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. Hum. Mol. Genet. 6, 1021–1028 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Curran, M. E. et al. The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis. Cell 73, 159–168 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Ramirez, F. & Dietz, H. C. Fibrillin-rich microfibrils: structural determinants of morphogenetic and homeostatic events. J. Cell Physiol. 213, 326–330 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Corson, G. M., Charbonneau, N. L., Keene, D. R. & Sakai, L. Y. Differential expression of fibrillin-3 adds to microfibril variety in human and avian, but not rodent, connective tissues. Genomics 83, 461–472 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Sherratt, M. J. et al. Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. J. Mol. Biol. 332, 183–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Chaudhry, S. S. et al. Fibrillin-1 regulates the bioavailability of TGFβ1. J. Cell Biol. 176, 355–367 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Isogai, Z. et al. Latent transforming growth factor β-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J. Biol. Chem. 278, 2750–2757 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Kielty, C. M., Whittaker, S. P., Grant, M. E. & Shuttleworth, C. A. Attachment of human vascular smooth muscles cells to intact microfibrillar assemblies of collagen VI and fibrillin. J. Cell Sci. 103 (Pt 2), 445–451 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Pfaff, M., Reinhardt, D. P., Sakai, L. Y. & Timpl, R. Cell adhesion and integrin binding to recombinant human fibrillin-1. FEBS Lett. 384, 247–250 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, S. S. et al. Structure of the integrin binding fragment from fibrillin-1 gives new insights into microfibril organization. Structure 12, 717–729 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bax, D. V. et al. Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by α5β1 and αvβ3 integrins. J. Biol. Chem. 278, 34605–34616 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Bax, D. V. et al. Cell adhesion to fibrillin-1: identification of an Arg–Gly–Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation. J. Cell Sci. 120, 1383–1392 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Carta, L. et al. Fibrillins 1 and 2 perform partially overlapping functions during aortic development. J. Biol. Chem. 281, 8016–8023 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Robinson, P. N. & Godfrey, M. The molecular genetics of Marfan syndrome and related microfibrillopathies. J. Med. Genet. 37, 9–25 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nakamura, T. et al. Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature 415, 171–175 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Yanagisawa, H. et al. Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature 415, 168–171 (2002).

    Article  PubMed  Google Scholar 

  52. Loeys, B. et al. Homozygosity for a missense mutation in fibulin-5 (FBLN5) results in a severe form of cutis laxa. Hum. Mol. Genet. 11, 2113–2118 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Hanada, K. et al. Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4-deficient mice. Circ. Res. 100, 738–746 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Hucthagowder, V. et al. Fibulin-4: a novel gene for an autosomal recessive cutis laxa syndrome. Am. J. Hum. Genet. 78, 1075–1080 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jiang, X., Rowitch, D. H., Soriano, P., McMahon, A. P. & Sucov, H. M. Fate of the mammalian cardiac neural crest. Development 127, 1607–1616 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. de Groot, A. C. G., DeRuiter, M. C., Bergwerff, M. & Poelmann, R. E. Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arterioscler. Thromb. Vasc. Biol. 19, 1589–1594 (1999).

    Article  Google Scholar 

  57. High, F. A. & Epstein, J. A. The multifaceted role of Notch in cardiac development and disease. Nat. Rev. Genet. 9, 49–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Topouzis, S. & Majesky, M. W. Smooth muscle lineage diversity in the chick embryo. Two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor β. Dev. Biol. 178, 430–445 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Wrenn, R. W., Raeuber, C. L., Herman, L. E., Walton, W. J. & Rosenquist, T. H. Transforming growth factor-beta: signal transduction via protein kinase C in cultured embryonic vascular smooth muscle cells. In Vitro Cell Dev. Biol. 29 (Pt A), 73–78 (1993).

    Article  Google Scholar 

  60. Thieszen, S. L., Dalton, M., Gadson, P. F., Patterson, E. & Rosenquist, T. H. Embryonic lineage of vascular smooth muscle cells determines responses to collagen matrices and integrin receptor expression. Exp. Cell Res. 227, 135–145 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Gadson, P. F. Jr et al. Differential response of mesoderm- and neural crest-derived smooth muscle to TGF-β1: regulation of c-myb and α1 (I) procollagen genes. Exp. Cell Res. 230, 169–180 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Haimovici, H. & Maier, N. Experimental canine atherosclerosis in autogenous abdominal aortic grafts implanted into the jugular vein. Atherosclerosis 13, 375–384 (1971).

    Article  CAS  PubMed  Google Scholar 

  63. Haimovici, H. & Maier, N. Fate of aortic homografts in canine atherosclerosis: III. study of fresh abdominal and thoracic aortic implants into thoracic aorta: role of tissue susceptibility in atherogenesis. AMA Arch. Surg. 89, 961–969 (1964).

    Article  CAS  PubMed  Google Scholar 

  64. Woyda, W. C., Berkas, E. M. & Ferguson, D. J. The atherosclerosis of aortic and pulmonary artery exchange autografts. Surg. Forum 11, 174–176 (1960).

    CAS  PubMed  Google Scholar 

  65. Shyu, K.-G. Cellular and molecular effects of mechanical stretch on vascular cells and cardiac myocytes. Clin. Sci. 116, 377–389 (2009).

    Article  CAS  Google Scholar 

  66. Cotrufo, M. et al. Different patterns of extracellular matrix protein expression in the convexity and the concavity of the dilated aorta with bicuspid aortic valve: preliminary results. J. Thorac. Cardiovasc. Surg. 130, 504–511 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Goumans, M. J., Liu, Z. & ten Dijke, P. TGF-β signaling in vascular biology and dysfunction. Cell Res. 19, 116–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Laiho, M., Saksela, O. & Keski-Oja, J. Transforming growth factor β alters plasminogen activator activity in human skin fibroblasts. Exp. Cell Res. 164, 399–407 (1986).

    Article  CAS  PubMed  Google Scholar 

  69. Kim, E. S., Kim, M. S. & Moon, A. TGF-β-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. Int. J. Oncol. 25, 1375–1382 (2004).

    CAS  PubMed  Google Scholar 

  70. Annes, J. P., Munger, J. S. & Rifkin, D. B. Making sense of latent TGFβ activation. J. Cell Sci. 116, 217–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Carta, L. et al. p38 MAPK is an early determinant of promiscuous Smad2/3 signaling in the aortas of fibrillin-1 (Fbn1)-null mice. J. Biol. Chem. 284, 5630–5636 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Crawford, S. E. et al. Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 93, 1159–1170 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Ge, G. & Greenspan, D. S. BMP1 controls TGFβ1 activation via cleavage of latent TGFβ-binding protein. J. Cell Biol. 175, 111–120 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. ten Dijke, P. & Arthur, H. M. Extracellular control of TGFβ signalling in vascular development and disease. Nat. Rev. Mol. Cell Biol. 8, 857–869 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Jenkins, G. The role of proteases in transforming growth factor-β activation. Int. J. Biochem. Cell Biol. 40, 1068–1078.

    Article  CAS  Google Scholar 

  76. Zacchigna, L. et al. Emilin1 links TGF-β maturation to blood pressure homeostasis. Cell 124, 929–942 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Zanetti, M. et al. EMILIN-1 deficiency induces elastogenesis and vascular cell defects. Mol. Cell Biol. 24, 638–650 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Moustakas, A. & Heldin, C.-H. Non-Smad TGF-β signals. J. Cell Sci. 118, 3573–3584 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Jones, J. A., Spinale, F. G. & Ikonomidis, J. S. Transforming growth factor-β signaling in thoracic aortic aneurysm development: a paradox in pathogenesis. J. Vasc. Res. 46, 119–137 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Loeys, B. L. et al. Aneurysm syndromes caused by mutations in the TGF-β receptor. N. Engl. J. Med. 355, 788–798 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Loeys, B. L. et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat. Genet. 37, 275–281 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Disabella, E. et al. Two novel and one known mutation of the TGFBR2 gene in Marfan syndrome not associated with FBN1 gene defects. Eur. J. Hum. Genet. 14, 34–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Pannu, H. et al. Mutations in transforming growth factor-β receptor type II cause familial thoracic aortic aneurysms and dissections. Circulation 112, 513–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Raffetto, J. D. & Khalil, R. A. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem. Pharmacol. 75, 346–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Barbour, J. R., Spinale, F. G. & Ikonomidis, J. S. Proteinase systems and thoracic aortic aneurysm progression. J. Surg. Res. 139, 292–307 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Booms, P. et al. A fibrillin-1-fragment containing the elastin-binding-protein GxxPG consensus sequence upregulates matrix metalloproteinase-1: biochemical and computational analysis. J. Mol. Cell Cardiol. 40, 234–246 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Karagiannis, E. D. & Popel, A. S. A theoretical model of type I collagen proteolysis by matrix metalloproteinase (MMP) 2 and membrane type 1 MMP in the presence of tissue inhibitor of metalloproteinase 2. J. Biol. Chem. 279, 39105–39114 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Jones, J. A. et al. Spatiotemporal expression and localization of matrix metalloproteinas-9 in a murine model of thoracic aortic aneurysm. J. Vasc. Surg. 44, 1314–1321 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ikonomidis, J. S. et al. Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with Marfan syndrome. Circulation 114, I365–I370 (2006).

    Article  PubMed  CAS  Google Scholar 

  90. LeMaire, S. A. et al. Matrix metalloproteinases in ascending aortic aneurysms: bicuspid versus trileaflet aortic valves. J. Surg. Res. 123, 40–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Koullias, G. J. et al. Tissue microarray detection of matrix metalloproteinases, in diseased tricuspid and bicuspid aortic valves with or without pathology of the ascending aorta. Eur. J. Cardiothorac. Surg. 26, 1098–1103 (2004).

    Article  PubMed  Google Scholar 

  92. Fedak, P. W. et al. Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation. J. Thorac. Cardiovasc. Surg. 126, 797–806 (2003).

    Article  PubMed  Google Scholar 

  93. Ikonomidis, J. S. et al. Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with bicuspid or tricuspid aortic valves. J. Thorac. Cardiovasc. Surg. 133, 1028–1036 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Boyum, J. et al. Matrix metalloproteinase activity in thoracic aortic aneurysms associated with bicuspid and tricuspid aortic valves. J. Thorac. Cardiovasc. Surg. 127, 686–691 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Phillippi, J. A. et al. Basal and oxidative stress-induced expression of metallothionein is decreased in ascending aortic aneurysms of bicuspid aortic valve patients. Circulation 119, 2498–2506 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chung, A. W. et al. Loss of elastic fiber integrity and reduction of vascular smooth muscle contraction resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in the thoracic aortic aneurysm in Marfan syndrome. Circ. Res. 101, 512–522 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Zhao, L. et al. The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nat. Med. 10, 966–973 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. He, R. et al. Characterization of the inflammatory cells in ascending thoracic aortic aneurysms in patients with Marfan syndrome, familial thoracic aortic aneurysms, and sporadic aneurysms. J. Thorac. Cardiovasc. Surg. 136, 922–929 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Pereira, L. et al. Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc. Natl Acad. Sci. USA 96, 3819–3823 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Satoh, K. et al. Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms. Nat. Med. 15, 649–656 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yoshimura, K. et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat. Med. 11, 1330–1338 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. De Paepe, A., Devereux, R. B., Dietz, H. C., Hennekam, R. C. & Pyeritz, R. E. Revised diagnostic criteria for the Marfan syndrome. Am. J. Med. Genet. 62, 417–426 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Faivre, L. et al. Effect of mutation type and location on clinical outcome in 1,013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: an international study. Am. J. Hum. Genet. 81, 454–466 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Neptune, E. R. et al. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33, 407–411 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Ng, C. M. et al. TGF-β-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J. Clin. Invest. 114, 1586–1592 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Guo, G. et al. Induction of macrophage chemotaxis by aortic extracts of the mgR Marfan mouse model and a GxxPG-containing fibrillin-1 fragment. Circulation 114, 1855–1862 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Collod, G. et al. A second locus for Marfan syndrome maps to chromosome 3p24.2–p25. Nat. Genet. 8, 264–268 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mizuguchi, T. et al. Heterozygous TGFBR2 mutations in Marfan syndrome. Nat. Genet. 36, 855–860 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pepin, M., Schwarze, U., Superti-Furga, A. & Byers, P. H. Clinical and genetic features of Ehlers–Danlos syndrome type IV, the vascular type. N. Engl. J. Med. 342, 673–680 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Silverman, D. I. et al. Life expectancy in the Marfan syndrome. Am. J. Cardiol. 75, 157–160 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Germain, D. Ehlers–Danlos syndrome type IV. Orphanet. J. Rare Dis. 2, 32 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Garg, V. et al. Mutations in NOTCH1 cause aortic valve disease. Nature 437, 270–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. El-Hamamsy, I. & Yacoub, M. H. A measured approach to managing the aortic root in patients with bicuspid aortic valve disease. Curr. Cardiol. Rep. 11, 94–100 (2009).

    Article  PubMed  Google Scholar 

  114. Biner, S. et al. Aortopathy is prevalent in relatives of bicuspid aortic valve patients. J. Am. Coll. Cardiol. 53, 2288–2295 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Loscalzo, M. L. et al. Familial thoracic aortic dilation and bicommissural aortic valve: a prospective analysis of natural history and inheritance. Am. J. Med. Genet. 143 (Pt A), 1960–1967 (2007).

    Article  CAS  Google Scholar 

  116. McKellar, S. H. et al. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J. Thorac. Cardiovasc. Surg. 134, 290–296 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Gomez, D. et al. Syndromic and non-syndromic aneurysms of the human ascending aorta share activation of the Smad2 pathway. J. Pathol. 218, 131–142 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Elsheikh, M., Casadei, B., Conway, G. S. & Wass, J. A. Hypertension is a major risk factor for aortic root dilatation in women with Turner's syndrome. Clin. Endocrinol. 54, 69–73 (2001).

    Article  CAS  Google Scholar 

  119. Tsang, V. T., Kilner, P. J., Hsia, T. Y., Hughes, S. & Yacoub, M. Interruption of the aorta with multilobulated arch aneurysms: a new clinicopathologic entity. J. Thorac. Cardiovasc. Surg. 133, 1092–1093 (2007).

    Article  PubMed  Google Scholar 

  120. Coucke, P. J. et al. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat. Genet. 38, 452–457 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Callewaert, B. L. et al. Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Hum. Mutat. 29, 150–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Morgan, J. M., Coupe, M. O., Honey, M. & Miller, G. A. H. Aneurysms of the sinuses of Valsalva in Noonan's syndrome. Eur. Heart J. 10, 190–193 (1989).

    Article  CAS  PubMed  Google Scholar 

  123. Biagini, A. et al. Familiar clustering of aortic dissection in polycystic kidney disease. Am. J. Cardiol. 72, 741–742 (1993).

    Article  CAS  PubMed  Google Scholar 

  124. Nicod, P. et al. Familial aortic dissecting aneurysm. J. Am. Coll. Cardiol. 13, 811–819 (1989).

    Article  CAS  PubMed  Google Scholar 

  125. Milewicz, D. M. et al. Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu. Rev. Genomics Hum. Genet. 9, 283–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Milewicz, D. M. et al. Reduced penetrance and variable expressivity of familial thoracic aortic aneurysms/dissections. Am. J. Cardiol. 82, 474–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Pannu, H., Tran-Fadulu, V. & Milewicz, D. M. Genetic basis of thoracic aortic aneurysms and aortic dissections. Am. J. Med. Genet. Semin. Med. Genet. 139 (Pt C), 10–16 (2005).

    Article  CAS  Google Scholar 

  128. Biddinger, A., Rocklin, M., Coselli, J. & Milewicz, D. M. Familial thoracic aortic dilatations and dissections: a case–control study. J. Vasc. Surg. 25, 506–511 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Coady, M. A. et al. Familial patterns of thoracic aortic aneurysms. Arch. Surg. 134, 361–367 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Guo, D. et al. Familial thoracic aortic aneurysms and dissections: genetic heterogeneity with a major locus mapping to 5q13–14. Circulation 103, 2461–2468 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Vaughan, C. J. et al. Identification of a chromosome 11q23.2–q24 locus for familial aortic aneurysm disease, a genetically heterogeneous disorder. Circulation 103, 2469–2475 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Avidan, N. et al. Mapping a third locus for familial TAAD (TAAD3) using samples from a single family with multiple affected individuals and determining the contribution of this locus to familial disease. Am. Soc. Hum. Genet. Annu. Mtg abstract 1515 (2005).

  133. Eagle, K. A. Rationale and design of the national registry of genetically triggered thoracic aortic aneurysms and cardiovascular conditions (GenTAC). Am. Heart J. 157, 319–326 (2009).

    Article  PubMed  Google Scholar 

  134. Guo, D. C. et al. Mutations in smooth muscle α-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am. J. Hum. Genet. 84, 617–627 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Glancy, D. L., Wegmann, M. & Dhurandhar, R. W. Aortic dissection and patent ductus arteriosus in three generations. Am. J. Cardiol. 87, 813–815, A819 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Khau Van Kien, P. et al. Familial thoracic aortic aneurysm/dissection with patent ductus arteriosus: genetic arguments for a particular pathophysiological entity. Eur. J. Hum. Genet. 12, 173–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Pannu, H. et al. MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor I and angiotensin II. Hum. Mol. Genet. 16, 2453–2462 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Slomp, J. et al. Differentiation, dedifferentiation, and apoptosis of smooth muscle cells during the development of the human ductus arteriosus. Arterioscler. Thromb. Vasc. Biol. 17, 1003–1009 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Smith, G. C. The pharmacology of the ductus arteriosus. Pharmacol. Rev. 50, 35–58 (1998).

    CAS  PubMed  Google Scholar 

  140. Hasham, S. N. et al. Mapping a locus for familial thoracic aortic aneurysms and dissections (TAAD2) to 3p24–25. Circulation 107, 3184–3190 (2003).

    Article  PubMed  Google Scholar 

  141. Law, C. et al. Clinical features in a family with an R460H mutation in transforming growth factor β receptor 2 gene. J. Med. Genet. 43, 908–916 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Denton, C. P. et al. Fibroblast-specific expression of a kinase-deficient type II transforming growth factor beta (TGFβ) receptor leads to paradoxical activation of TGFβ signaling pathways with fibrosis in transgenic mice. J. Biol. Chem. 278, 25109–25119 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Gula, G., Pomerance, A., Bennet, M. & Yacoub, M. H. Homograft replacement of aortic valve and ascending aorta in a patient with non-specific giant cell aortitis. Br. Heart J. 39, 581–585 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Habashi, J. P. et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312, 117–121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cohn, R. D. et al. Angiotensin II type 1 receptor blockade attenuates TGF-β-induced failure of muscle regeneration in multiple myopathic states. Nat. Med. 13, 204–210 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhou, Y., Poczatek, M. H., Berecek, K. H. & Murphy-Ullrich, J. E. Thrombospondin 1 mediates angiotensin II induction of TGF-β activation by cardiac and renal cells under both high and low glucose conditions. Biochem. Biophys. Res. Commun. 339, 633–641 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Rodriguez-Vita, J. et al. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-β-independent mechanism. Circulation 111, 2509–2517 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Brooke, B. S. et al. Angiotensin II blockade and aortic-root dilation in Marfan's syndrome. N. Engl. J. Med. 358, 2787–2795 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lacro, R. V. et al. Rationale and design of a randomized clinical trial of β-blocker therapy (atenolol) versus angiotensin II receptor blocker therapy (losartan) in individuals with Marfan syndrome. Am. Heart J. 154, 624–631 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Xiong, W., Knispel, R. A., Dietz, H. C., Ramirez, F. & Baxter, B. T. Doxycycline delays aneurysm rupture in a mouse model of Marfan syndrome. J. Vasc. Surg. 47, 166–172 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Chung, A. W. Y., Yang, H. H. C., Radomski, M. W. & van Breemen, C. Long-term doxycycline is more effective than atenolol to prevent thoracic aortic aneurysm in marfan syndrome through the inhibition of matrix metalloproteinase-2 and -9. Circ. Res. 102, e73–e85 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Frutkin, A. D. et al. TGF-β1 limits plaque growth, stabilizes plaque structure, and prevents aortic dilation in apolipoprotein E-null mice. Arterioscler. Thromb. Vasc. Biol. 29, 1251–1257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Aikawa, E. et al. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115, 377–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Matt, P. et al. Circulating transforming growth factor-β in Marfan syndrome. Circulation 120, 526–532 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Pepe, G., Giusti, B., Porciani, M. C. & Yacoub, M. H. Biomarkers in acute aortic syndromes, in Thoracic Aortic Diseases (ed. Rousseau, H.) 55–70 (Springer, Berlin, 2006).

    Book  Google Scholar 

  156. Eagleton, M. J. Molecular diagnoses and treatments--past, present, or future? Semin. Vasc. Surg. 20, 128–134 (2007).

    Article  PubMed  Google Scholar 

  157. Wang, Y. et al. Gene expression signature in peripheral blood detects thoracic aortic aneurysm. PLoS ONE 2, e1050 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Frydrychowicz, A. et al. Time-resolved magnetic resonance angiography and flow-sensitive 4-dimensional magnetic resonance imaging at 3 Tesla for blood flow and wall shear stress analysis. J. Thorac. Cardiovasc. Surg. 136, 400–407 (2008).

    Article  PubMed  Google Scholar 

  159. Booms, P. et al. RGD-containing fibrillin-1 fragments upregulate matrix metalloproteinase expression in cell culture: a potential factor in the pathogenesis of the Marfan syndrome. Hum. Genet. 116, 51–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Robinson, P. N. et al. The molecular genetics of Marfan syndrome and related disorders. J. Med. Genet. 43, 769–787 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ramirez, F. & Dietz, H. C. Marfan syndrome: from molecular pathogenesis to clinical treatment. Curr. Opin. Genet. Dev. 17, 252–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Mizuguchi, T. & Matsumoto, N. Recent progress in genetics of Marfan syndrome and Marfan-associated disorders. J. Hum. Genet. 52, 1–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Arrington, C. B. et al. Absence of TGFBR1 and TGFBR2 mutations in patients with bicuspid aortic valve and aortic dilation. Am. J. Cardiol. 102, 629–631 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. El-Hamamsy is supported by a fellowship grant from the Canadian Institute for Health Research (CIHR) and by the Magdi Yacoub Institute. The authors would like to acknowledge Dr. Padmini Sarathchandra for the electron micrograph and immunohistochemical staining, and Dr. Ryo Torii for for his help with functional imaging of aortic biomechanics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdi H. Yacoub.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Hamamsy, I., Yacoub, M. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol 6, 771–786 (2009). https://doi.org/10.1038/nrcardio.2009.191

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.191

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing