Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of novel therapeutic approaches for multiple myeloma

Key Points

  • Multiple myeloma (MM) is a B-cell malignancy that is characterized by an excess of monotypic plasma cells in the bone marrow (BM) that is in association with monoclonal protein in serum and/or urine, decreased normal immunoglobulin levels and lytic bone disease.

  • Although conventional therapies can extend patient survival to an average of 3–4 years and high-dose therapy that is followed by autologous stem-cell transplantation can modestly prolong the survival to 4–5 years, MM remains largely incurable.

  • MM cells home to the host bone marrow by binding to adhesion molecules on extracellular matrix proteins and bone-marrow stromal cells. This localizes tumour cells in the BM microenvironment and confers cell-adhesion-mediated drug resistance. Cytokines (such as interleukin-6 (IL-6), insulin-like growth factor 1 (IGF1), tumour necrosis factor-α (TNF-α) and stromal-cell-derived factor-1α (SDF-1α)) mediate MM cell growth, survival and migration and, following treatment, the development of drug resistance in the bone-marrow microenvironment.

  • MM cell proliferation, survival and, following treatment, drug resistance by anti-apoptotic mechanisms are mediated through the RAF/mitogen-activated protein kinase (MAPK) kinase (MEK)/p42/p44 MAPK, Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and phosphatidylinositol (PI3K)/AKT signalling cascades, respectively.

  • Novel biologically based treatments (such as thalidomide/immunomodulatory derivatives (IMiDs) and PS-341) target not only the MM cell, but also the interaction between MM cells and the host or the BM microenvironment, and can overcome conventional drug resistance in vitro and in vivo in preclinical models.

  • Thalidomide/IMiDs and PS-341 have already shown remarkable activity against MM in Phase I/II clinical trials of patients with relapsed and refractory disease, with manageable toxicity profiles. These drugs, when used with conventional and/or other novel therapies, represent a new treatment model to improve patient outcome in MM.

  • Ongoing gene microarray and proteomic studies of these new agents are identifying molecular targets that confer drug sensitivity versus resistance, to derive more selective targeted therapies for validation in animal models and the translation to the clinic in clinical trials.

Abstract

Multiple myeloma remains largely incurable despite conventional and high-dose therapies, and so novel biologically based treatment approaches are urgently required. Recent studies have characterized the molecular mechanisms by which multiple myeloma cell–host bone-marrow interactions regulate tumour cell growth, survival and migration in the bone-marrow microenvironment. These studies have not only enhanced our understanding of disease pathogenesis, but have also provided the framework for a new treatment model that targets the multiple myeloma cell in its bone-marrow microenvironment to overcome drug resistance and improve patient outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The development of plasma or multiple myeloma cells.
Figure 2: The interaction of multiple myeloma cells and their bone-marrow microenvironment.
Figure 3: Signalling cascades mediating growth, survival and migration in multiple myeloma cells.
Figure 4: Apoptotic signalling pathways triggered by conventional and novel therapies in multiple myeloma.
Figure 5: Novel biologically based therapies targeting multiple myeloma cells and the bone-marrow microenvironment.

Similar content being viewed by others

References

  1. Kuehl, W. M. & Bergsagel, P. L. Multiple myeloma: evolving genetic events and host interactions. Nature Rev. Cancer 2, 175–187 (2002). A comprehensive current review of the molecular pathogenesis of myeloma.

    CAS  Google Scholar 

  2. Anderson, K. C. Targeted therapy for multiple myeloma. Semin. Hematol. 38, 286–297 (2001).

    CAS  PubMed  Google Scholar 

  3. Gregory, W. M., Richards, M. A. & Malpas, J. S. Combination chemotherapy versus melphalan and prednisolone in the treatment of multiple myeloma: an overview of published trials. J. Clin. Oncol. 10, 334–342 (1992).

    CAS  PubMed  Google Scholar 

  4. Myeloma Trialists' Collaborative Group. Combination chemotherapy versus melphalan plus prednisone as treatment for multiple myeloma: an overview of 6,633 patients from 27 randomized trials. J. Clin. Oncol. 16, 3832–3842 (1998).

  5. Attal, M. & Harousseau, J. L. Randomized trial experience of the Intergroupe Francophone du Myelome. Semin. Hematol. 38, 226–230 (2001). Reviews the evidence that high-dose therapy and stem-cell transplant achieves an improved patient outcome when compared with conventional therapy.

    CAS  PubMed  Google Scholar 

  6. Fermand, J. P. et al. High-dose therapy and autologous peripheral blood stem cell transplantation in multiple myeloma: up-front or rescue treatment? Results of a multicenter sequential randomized clinical trial. Blood 92, 3131–3136 (1998).

    CAS  PubMed  Google Scholar 

  7. Lenhoff, S. et al. Impact on survival of high-dose therapy with autologous stem cell support in patients younger than 60 years with newly diagnosed multiple myeloma: a population-based study. Blood 95, 7–11 (2000).

    CAS  PubMed  Google Scholar 

  8. Desikan, R. et al. Results of high-dose therapy for 1,000 patients with multiple myeloma: durable complete remissions and superior survival in the absence of chromosome 13 abnormalities. Blood 95, 4008–4010 (2000).

    CAS  PubMed  Google Scholar 

  9. Fermand, J. P. et al. Single versus tandem high-dose therapy supported with autologous stem cell transplantation using unseleted of CD 34 enriched ABSC: preliminary results of a two by two designed randomized trial. Blood 98, 815a (2001).

    Google Scholar 

  10. Attal, M. et al. Single versus double transplant in myeloma: A randomized trial of the Inter Groupe Francais du Myelome (IFM). Blood (in the press).

  11. Massaia, M. et al. Idiotype vaccination in human myeloma: generation of tumor-specific immune responses after high-dose chemotherapy. Blood 94, 673–683 (1999).

    CAS  PubMed  Google Scholar 

  12. Gahrton, G. et al. Allogeneic bone marrow transplantation in multiple myeloma. N. Engl. J. Med. 325, 1267–1273 (1991).

    CAS  PubMed  Google Scholar 

  13. Gahrton, G. et al. Progress in allogeneic bone marrow and peripheral blood stem cell transplantation for multiple myeloma: a comparison between transplants performed 1983-93 and 1994-8 at European Group for Blood and Marrow centers. Br. J. Haematol. 113, 209–216 (2001).

    CAS  PubMed  Google Scholar 

  14. Alyea, E. et al. T-cell-depleted allogeneic bone marrow transplantation followed by donor lymphocyte infusion in patients with multiple myeloma: induction of graft-versus-myeloma effect. Blood 98, 934–939 (2001).

    CAS  PubMed  Google Scholar 

  15. Badros, A. et al. High response rate in refractory and poor-risk multiple myeloma after allotransplantation using a nonmyeloablative conditioning regimen and donor lymphocyte infusions. Blood 97, 2574–2579 (2001).

    CAS  PubMed  Google Scholar 

  16. Kroger, N. et al. Autologous stem cell transplantation followed by a dose-reduced allograft induces high complete remission rate in multiple myeloma. Blood 100, 755–760 (2002).

    CAS  PubMed  Google Scholar 

  17. Rajkumar, S. V., Gertz, M. A., Kyle, R. A. & Greipp, P. R. Current therapy for multiple myeloma. Mayo. Clin. Proc. 77, 813–822 (2002).

    CAS  PubMed  Google Scholar 

  18. Berenson, J. R. et al. American society of clinical oncology clinical practice guidelines: the role of bisphosphonates in multiple myeloma. J. Clin. Oncol. 20, 3719–3736 (2002).

    PubMed  Google Scholar 

  19. Salmon, S. E., et al. Multidrug-resistant myeloma: laboratory and clinical effects of verapamil as a chemosensitizer. Blood 78, 44–50 (1991).

    CAS  PubMed  Google Scholar 

  20. Sonneveld, P., Schoester, M. & de Leeuw, K. Clinical modulation of multidrug resistance in multiple myeloma: effects of cyclosporine on resistant tumor cells. J. Clin. Oncol. 12, 1584–1591 (1994).

    CAS  PubMed  Google Scholar 

  21. Grogan, T. et al. P-glycoprotein expression in human plasma cell myeloma: correlation with prior chemotherapy. Blood 81, 490–495 (1993).

    CAS  PubMed  Google Scholar 

  22. Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nature Rev. Cancer 2, 727–739 (2002).

    CAS  Google Scholar 

  23. Singhal, S. et al. Antitumor activity of thalidomide in refractory multiple myeloma. N. Engl. J. Med. 341, 1565–1571 (1999). The first report showing that thalidomide can achieve clinical benefit in patients with myeloma that is refractory to conventional therapy.

    CAS  PubMed  Google Scholar 

  24. Barlogie, B. et al. Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase II study of 169 patients. Blood 98, 492–494 (2001).

    CAS  PubMed  Google Scholar 

  25. D'Amato, R. J., Loughnan, M. S., Flynn, E. & Folkman, J. Thalidomide is an inhibitor of angiogenesis. Proc. Natl Acad. Sci. USA 91, 4082–4085 (1994). The first report demonstrating the anti-angiogenic activity of thalidomide.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bakkus, M. H. C. et al. Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 80, 2326–2335 (1992).

    CAS  PubMed  Google Scholar 

  27. Vescio, R. A. et al. Myeloma Ig heavy chain V region sequences reveal prior antigenic selection and marked somatic mutation but no intraclonal diversity. J. Immunol. 155, 2487–2497 (1995).

    CAS  PubMed  Google Scholar 

  28. Facon, T. et al. Chromosome 13 abnormalities identified by FISH analysis and serum β2-microglobulin produce a powerful myeloma staging system for patients receiving high-dose therapy. Blood 97, 1566–1571 (2001).

    CAS  PubMed  Google Scholar 

  29. Sawyer, J. R. et al. Multicolour spectral karyotyping identifies new translocations and a recurring pathway for chromosome loss in multiple myeloma. Br. J. Haematol. 112, 167–174 (2001).

    CAS  PubMed  Google Scholar 

  30. Bergsagel, P. L. et al. Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc. Natl Acad. Sci. USA 93, 13931–13936 (1996). The first demonstration of a common site of translocations in myeloma.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fonseca, R. et al. Myeloma and the t(11;14)(q13;q32); evidence for a biologically defined unique subset of patients. Blood 99, 3735–3741 (2002).

    CAS  PubMed  Google Scholar 

  32. Tricot, G. et al. Predicting long-term (> or = 5 years) event-free survival in multiple myeloma patients following planned tandem autotransplants. Br. J. Haematol. 116, 211–217 (2002).

    PubMed  Google Scholar 

  33. Teoh, G. & Anderson, K. C. Interaction of tumor and host cells with adhesion and extracellular matrix molecules in the development of multiple myeloma. Hematol. Oncol. Clin. North Am. 11, 27–42 (1997).

    CAS  PubMed  Google Scholar 

  34. Lichtenstein, A., Tu, Y., Fady, C., Vescio, R. & Berenson, J. Interleukin-6 inhibits apoptosis of malignant plasma cells. Cell. Immunol. 162, 248–255 (1995).

    CAS  PubMed  Google Scholar 

  35. Chauhan, D. et al. Interleukin-6 inhibits Fas-induced apoptosis and stress-activated protein kinase activation in multiple myeloma cells. Blood 89, 227–234 (1997).

    CAS  PubMed  Google Scholar 

  36. Ogata, A. et al. Interleukin-6 triggers cell growth via the ras-dependent mitogen-activated protein kinase cascade. J. Immunol. 159, 2212–2221 (1997).

    CAS  PubMed  Google Scholar 

  37. Tu, Y., Gardner, A. & Lichtenstein, A. The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: roles in cytokine-dependent survival and proliferative responses. Cancer Res. 60, 6763–6770 (2000).

    CAS  PubMed  Google Scholar 

  38. Hideshima, T., Nakamura, N., Chauhan, D. & Anderson, K. C. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 20, 5991–6000 (2001).

    CAS  PubMed  Google Scholar 

  39. Freund, G. G., Kulas, D. T. & Mooney, R. A. Insulin and IGF-1 increase mitogenesis and glucose metabolism in the multiple myeloma cell line, RPMI 8226. J. Immunol. 151, 1811–1820 (1993).

    CAS  PubMed  Google Scholar 

  40. Ogawa, M. et al. Cytokines prevent dexamethasone-induced apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways in a new multiple myeloma cell line. Cancer Res. 60, 4262–4269 (2000).

    CAS  PubMed  Google Scholar 

  41. Mitsiades, C. S. et al. Activation of NF-κB and upregulation of intracellular anti- apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 21, 5673–5683 (2002).

    CAS  PubMed  Google Scholar 

  42. Brenne, A. T. et al. Interleukin-21 is a growth and survival factor for human myeloma cells. Blood 99, 3756–3762 (2002).

    CAS  PubMed  Google Scholar 

  43. Podar, K. et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 98, 428–435 (2001). The first report showing that VEGF can induce the migration of human MM cells.

    CAS  PubMed  Google Scholar 

  44. Podar, K. et al. Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with β1 integrin- and phosphatidylinositol 3-kinase-dependent PKCα activation. J. Biol. Chem. 277, 7875–7881 (2002).

    CAS  PubMed  Google Scholar 

  45. Hideshima, T. et al. The biologic sequelae of stromal cell-derived factor-1α in multiple myeloma. Mol. Cancer Ther. 1, 539–544 (2002).

    CAS  PubMed  Google Scholar 

  46. Uchiyama, H., Barut, B. A., Mohrbacher, A. F., Chauhan, D. & Anderson, K. C. Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion. Blood 82, 3712–3720 (1993).

    CAS  PubMed  Google Scholar 

  47. Chauhan, D. et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-κB. Blood 87, 1104–1112 (1996). This study showed that paracrine cytokine production in MM BM is NF-κB dependent.

    CAS  PubMed  Google Scholar 

  48. Dankbar, B. et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor- stromal cell interactions in multiple myeloma. Blood 95, 2630–2636 (2000).

    CAS  PubMed  Google Scholar 

  49. Gupta, D. et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 15, 1950–1961 (2001).

    CAS  PubMed  Google Scholar 

  50. Hideshima, T., Chauhan, D., Schlossman, R., Richardson, P. & Anderson, K. C. The role of tumor necrosis factor α in the pathogenesis of human multiple myeloma: therapeutic applications. Oncogene 20, 4519–4527 (2001).

    CAS  PubMed  Google Scholar 

  51. Ge, N. L. & Rudikoff, S. Insulin-like growth factor I is a dual effector of multiple myeloma cell growth. Blood 96, 2856–2861 (2000).

    CAS  PubMed  Google Scholar 

  52. Ferlin, M. et al. Insulin-like growth factor induces the survival and proliferation of myeloma cells through an interleukin-6-independent transduction pathway. Br. J. Haematol. 111, 626–634 (2000).

    CAS  PubMed  Google Scholar 

  53. Qiang, Y. W., Kopantzev, E. & Rudikoff, S. Insulin-like growth factor-I signaling in multiple myeloma: downstream elements, functional correlates, and pathway cross-talk. Blood 99, 4138–4146 (2002).

    CAS  PubMed  Google Scholar 

  54. Sonneveld, P. in VI International Workshop on Multiple Myeloma (Boston, 1997).

    Google Scholar 

  55. Covelli, A. Modulation of multidrug resistance (MDR) in hematological malignancies. Ann. Oncol. 10, 53–59 (1999).

    PubMed  Google Scholar 

  56. Schwarzenbach, H. Expression of MDR1/P-glycoprotein, the multidrug resistance protein MRP, and the lung-resistance protein LRP in multiple myeloma. Med. Oncol. 19, 87–104 (2002).

    CAS  PubMed  Google Scholar 

  57. Damiano, J. S., Cress, A. E., Hazlehurst, L. A., Shtil, A. A. & Dalton, W. S. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93, 1658–1667 (1999). Shows that adherence of MM cells to fibronectin confers resistance to conventional chemotherapy.

    CAS  PubMed  Google Scholar 

  58. Hazlehurst, L. A., Damiano, J. S., Buyuksal, I., Pledger, W. J. & Dalton, W. S. Adhesion to fibronectin via β1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene 19, 4319–4327 (2000).

    CAS  PubMed  Google Scholar 

  59. Mitsiades, C. S. et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 98, 795–804 (2001).

    CAS  PubMed  Google Scholar 

  60. Mitsiades, N. et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 99, 4525–4530 (2002).

    CAS  PubMed  Google Scholar 

  61. Chauhan, D. et al. SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells. J. Biol. Chem. 275, 27845–27850 (2000).

    CAS  PubMed  Google Scholar 

  62. Hayashi, T. et al. Arsenic trioxide inhibits growth of human multiple myeloma cells in the bone marrow microenvironment. Mol. Cancer Ther. 1, 851–860 (2002).

    CAS  PubMed  Google Scholar 

  63. Mitsiades, N. et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc. Natl Acad. Sci. USA 99, 14374–14379 (2002). Demonstrates the transcriptional changes induced in MM cells after PS-341 treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chauhan, D. et al. RAFTK/PYK2-dependent and-independent apoptosis in multiple myeloma cells. Oncogene 18, 6733–6740 (1999).

    CAS  PubMed  Google Scholar 

  65. Chauhan, D. et al. Apaf-1/cytochrome c-independent and Smac-dependent induction of apoptosis in multiple myeloma (MM) cells. J. Biol. Chem. 276, 24453–24456 (2001).

    CAS  PubMed  Google Scholar 

  66. Catlett-Falcone, R. et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10, 105–115 (1999).

    CAS  PubMed  Google Scholar 

  67. Dalton, W. S. & Jove, R. Drug resistance in multiple myeloma: approaches to circumvention. Semin. Oncol. 26, 23–27 (1999).

    CAS  PubMed  Google Scholar 

  68. Puthier, D., Bataille, R. & Amiot, M. IL-6 up-regulates mcl-1 in human myeloma cells through JAK / STAT rather than ras / MAP kinase pathway. Eur. J. Immunol. 29, 3945–3950 (1999).

    CAS  PubMed  Google Scholar 

  69. Wei, L. H. et al. The anti-apoptotic role of interleukin-6 in human cervical cancer is mediated by up-regulation of Mcl-1 through a PI 3-K/Akt pathway. Oncogene 20, 5799–5809 (2001).

    CAS  PubMed  Google Scholar 

  70. Epling-Burnette, P. K. et al. Cooperative regulation of Mcl-1 by Janus kinase/stat and phosphatidylinositol 3-kinase contribute to granulocyte-macrophage colony-stimulating factor-delayed apoptosis in human neutrophils. J. Immunol. 166, 7486–7495 (2001).

    CAS  PubMed  Google Scholar 

  71. Mitsiades, N. et al. Biologic sequelae of nuclear factor-κB blockade in multiple myeloma: therapeutic applications. Blood 99, 4079–4086 (2002).

    CAS  PubMed  Google Scholar 

  72. Hideshima, T. et al. NF-κB as a therapeutic target in multiple myeloma. J. Biol. Chem. 277, 16639–16647 (2002). Defines the selective impact of inhibiting activation of NF-κB in myeloma.

    CAS  PubMed  Google Scholar 

  73. Sampaio, E. P., Sarno, E. N., Galilly, R., Cohn, Z. A. & Kaplan, G. Thalidomide selectively inhibits tumor necrosis factor-α production by stimulated human monocytes. J. Exp. Med. 173, 699–703 (1991).

    CAS  PubMed  Google Scholar 

  74. Moreira, A. L. et al. Thalidomide exerts its inhibitory action on tumor necrosis factor α by enhancing mRNA degradation. J. Exp. Med. 177, 1675–1680 (1993).

    CAS  PubMed  Google Scholar 

  75. Sampaio, E. P. et al. The influence of thalidomide on the clinical and immunologic manifestation of erythema nodosum leprosum. J. Infect. Dis. 168, 408–414 (1993).

    CAS  PubMed  Google Scholar 

  76. Kenyon, B. M., Browne, F. & D'Amato, R. J. Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp. Eye. Res. 64, 971–978 (1997).

    CAS  PubMed  Google Scholar 

  77. Kotoh, T. et al. Anti-angiogenic therapy of human esophageal cancers with thalidomide in nude mice. Surgery 125, 536–544 (1999).

    CAS  PubMed  Google Scholar 

  78. Ribatti, D. et al. Angiogenesis, angiogenic factor expression and hematological malignancies. Anticancer Res. 21, 4333–4339 (2001).

    CAS  PubMed  Google Scholar 

  79. Vacca, A. et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93, 3064–3073 (1999).

    CAS  PubMed  Google Scholar 

  80. Stirling, D. Thalidomide: a novel template for anticancer drugs. Semin. Oncol. 28, 602–606 (2001).

    CAS  PubMed  Google Scholar 

  81. Hideshima, T. et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 96, 2943–2950 (2000). The first study to define molecular mechanisms by which these drugs mediate anti-MM activity.

    CAS  PubMed  Google Scholar 

  82. Davies, F. E. et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 98, 210–216 (2001).

    CAS  PubMed  Google Scholar 

  83. Lentzsch, S. et al. S-3-amino-phthalimido-glutarimide inhibits angiogenesis and growth of B-cell neoplasias in mice. Cancer Res. 62, 2300–2305 (2002).

    CAS  PubMed  Google Scholar 

  84. Richardson, P. et al. Immunomodulatory derivative of thalidomide CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 100, 3063–3067 (2002). The first report to show that IMiDs achieve responses in patients whose myeloma is refractory to conventional therapies.

    CAS  PubMed  Google Scholar 

  85. King, R. W., Deshaies, R. J., Peters, J. M. & Kirschner, M. W. How proteolysis drives the cell cycle. Science 274, 1652–1959 (1996).

    CAS  PubMed  Google Scholar 

  86. Kisselv, A. F. & Goldberg, A. L. Proteasome inhibitors: from research tools to drug candidates. Chem. Biol. 21, 1–20 (2001).

    Google Scholar 

  87. Adams, J. et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59, 2615–2622 (1999).

    CAS  PubMed  Google Scholar 

  88. Orkowski, R. Z. et al. Tumor growth inhibition induced in a murine model of human Burkitt's lymphoma by a proteasome inhibitor. Cancer Res. 58, 4342–4348 (1998).

    Google Scholar 

  89. Tan, C. & Waldmann, T. A. Proteasome inhibitor PS-341, a potential therapeutic agent for adult T-cell leukemia. Cancer Res. 62, 1083–1086 (2002).

    CAS  PubMed  Google Scholar 

  90. Teicher, B. A., Ara, G., Herbst, R., Palombella, V. J. & Adams, J. The proteasome inhibitor PS-341 in cancer therapy. Clin. Cancer Res. 5, 2638–2645 (1999).

    CAS  PubMed  Google Scholar 

  91. Harbison, M. T. et al. Proteasome inhibitor PS-341 is effective as an anti-angiogenic agent in the treatment of human pancreatic carcinoma via the inhibition of NF–κB and subsequent inhibition of vascular endothelial growth factor production. Proc. Am. Assoc. Cancer Res. 41, 71a (2000).

    Google Scholar 

  92. Hideshima, T. et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma. Cancer Res. 61, 3071–3076 (2001). The first report to define the molecular mechanisms by which the proteasome inhibitor PS-341 mediates anti-MM activity.

    CAS  PubMed  Google Scholar 

  93. Hideshima, T. et al. Molecular mechanisms mediating anti-myeloma activity of proteasome inhibitor PS–341. Blood (in the press).

  94. Mitsiades, N. et al. The proteasome inhibitor PS–341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood (in the press).

  95. LeBlanc, R. et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res. 62, 4996–5000 (2002).

    CAS  PubMed  Google Scholar 

  96. Richardson, P. G. et al. Phase II trial of PS-341, a novel proteasome inhibitor, alone or in combination with dexamethasone, in patients with multiple myeloma who have relapsed following front-line therapy and are refractory to their most recent therapy. Blood 98, 774a (2001). This is the first phase II study to show that PS-341 can achieve responses in patients whose MM is refractory to conventional therapies.

    Google Scholar 

  97. Shao, W. et al. Arsenic trioxide as an inducer of apoptosis and loss of PML/RAR α protein in acute promyelocytic leukemia cells. J. Natl Cancer Inst. 90, 124–133 (1998).

    CAS  PubMed  Google Scholar 

  98. Rousselot, P. et al. Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients. Cancer Res. 59, 1041–1048 (1999).

    CAS  PubMed  Google Scholar 

  99. Park, W. H. et al. Arsenic trioxide-mediated growth inhibition in MC/CAR myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis. Cancer Res. 60, 3065–3071 (2000).

    CAS  PubMed  Google Scholar 

  100. Deaglio, S. et al. Evidence of an immunologic mechanism behind the therapeutical effects of arsenic trioxide (As2O3) on myeloma cells. Leuk. Res. 25, 227–325 (2001).

    CAS  PubMed  Google Scholar 

  101. Hussein, M. A. Arsenic trioxide: a new immunomodulatory agent in the management of multiple myeloma. Med. Oncol. 18, 239–242 (2001).

    CAS  PubMed  Google Scholar 

  102. Grad, J. M. et al. Ascorbic acid enhances arsenic trioxide-induced cytotoxicity in multiple myeloma cells. Blood 98, 805–813 (2001).

    CAS  PubMed  Google Scholar 

  103. Bellamy, W. T., Richter, L., Frutiger, Y. & Grogan, T. M. Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res. 59, 728–733 (1999).

    CAS  PubMed  Google Scholar 

  104. Lin, B. et al. The vascular endothelial growth factor receptor kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 62, 5019–5026 (2002).

    CAS  PubMed  Google Scholar 

  105. Mitsiades, N., Mitsiades, C. S., Poulaki, V., Anderson, K. C. & Treon, S. P. Intracellular regulation of tumor necrosis factor-related apoptosis – inducing ligand-induced apoptosis in human multiple myeloma cells. Blood 99, 2162–2171 (2002).

    CAS  PubMed  Google Scholar 

  106. Keifer, J. A., Guttridge, D. C., Ashburner, B. P. & Baldwin, A. S., Jr. Inhibition of NF-κB activity by thalidomide through suppression of IκB kinase activity. J. Biol. Chem. 276, 22382–22387 (2001).

    CAS  PubMed  Google Scholar 

  107. Kapahi, P. et al. Inhibition of NF-κB activation by arsenite through reaction with a critical cysteine in the activation loop of IκB kinase. J. Biol. Chem. 275, 36062–36066 (2000).

    CAS  PubMed  Google Scholar 

  108. D'Amato, R. J., Lin, C. M., Flynn, E., Folkman, J. & Hamel, E. 2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc. Natl Acad. Sci. USA 91, 3964–3968 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Klauber, N., Parangi, S., Flynn, E., Hamel, E. & D'Amato, R. J. Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res. 57, 81–86 (1997).

    CAS  PubMed  Google Scholar 

  110. Chauhan, D. et al. Identification of genes regulated by 2–methoxyestradiol (2ME2) in multiple myeloma (MM) cells using oligonucleotide array. Blood (in the press).

  111. Chauhan, D. et al. 2-Methoxyestradiol (2ME2) acts directly on tumor cells and in the bone marrow microenvironment to overcome drug resistance in multiple myeloma. Blood 100, 2187–2194 (2002).

    CAS  PubMed  Google Scholar 

  112. Falardeau, P., Champagne, P., Poyet, P., Hariton, C. & Dupont, E. Neovastat, a naturally occurring multifunctional antiangiogenic drug, in phase III clinical trials. Semin. Oncol. 28, 620–625 (2001).

    CAS  PubMed  Google Scholar 

  113. Beliveau, R. et al. The antiangiogenic agent neovastat (AE-941) inhibits vascular endothelial growth factor-mediated biological effects. Clin. Cancer Res. 8, 1242–1250 (2002).

    CAS  PubMed  Google Scholar 

  114. Kato, K. et al. Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc. Natl Acad. Sci. USA 89, 6403–6407 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Karp, J. E. et al. Current status of clinical trials of farnesyltransferase inhibitors. Curr. Opin. Oncol. 13, 470–476 (2001).

    CAS  PubMed  Google Scholar 

  116. Adjei, A. A., Davis, J. N., Bruzek, L. M., Erlichman, C. & Kaufmann, S. H. Synergy of the protein farnesyltransferase inhibitor SCH66336 and cisplatin in human cancer cell lines. Clin. Cancer Res. 7, 1438–1445 (2001).

    CAS  PubMed  Google Scholar 

  117. Karp, J. E. et al. Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical-laboratory correlative trial. Blood 97, 3361–3369 (2001).

    CAS  PubMed  Google Scholar 

  118. Mitsiades, N., Mitsiades, C. S., Poulaki, V., Anderson, K. C. & Treon, S. P. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) induces growth arrest and apoptosis in multiple myeloma (MM) and Waldenstrom's macroglobulinemia (WM) cell lines and patient tumor cells. Blood 98, 376a (2001).

    Google Scholar 

  119. Mitsiades, C. S. et al. The HSP90 molecular cheperone as a novel therapeutic target in hematologic malignancies. Blood 98, 377a (2001).

    Google Scholar 

  120. Kyle, R. A. Multiple myeloma: review of 869 cases. Mayo. Clin. Proc. 50, 29–40 (1975).

    CAS  PubMed  Google Scholar 

  121. Garrett, I. R., et al. Production of lymphotoxin, a bone resorbing cytokine, by cultured human myeloma cells. N. Engl. J. Med. 317, 526–532 (1987).

    CAS  PubMed  Google Scholar 

  122. Cozzolino, F., et al. Production of interleukin-1 by bone marrow myeloma cells: its role in the pathogenesis of lytic bone lesions. Blood 74, 380–387 (1989).

    CAS  PubMed  Google Scholar 

  123. Barille, S., Bataille, R., Rapp, M. J., Harousseau, J. L. & Amiot, M. Production of metalloproteinase-7 (matrilysin) by human myeloma cells and its potential involvement in metalloproteinase-2 activation. J. Immunol. 163, 5723–5728 (1999).

    CAS  PubMed  Google Scholar 

  124. Hjertner, O. et al. Hepatocyte growth factor (HGF) induces interleukin-11 secretion from osteoblasts: a possible role for HGF in myeloma-associated osteolytic bone disease. Blood 94, 3883–3888 (1999).

    CAS  PubMed  Google Scholar 

  125. Lacy, M. Q. et al. Comparison of interleukin-1β expression by in situ hybridization in monoclonal gammopathy of undetermined significance and multiple myeloma. Blood 93, 300–305 (1999).

    CAS  PubMed  Google Scholar 

  126. Zeimer, H. et al. Assessment of cellular expression of parathyroid hormone-related protein mRNA and protein in multiple myeloma. J. Pathol. 192, 336–341 (2000).

    CAS  PubMed  Google Scholar 

  127. Han, J. H. et al. Macrophage inflammatory protein-1α is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor κB ligand. Blood 97, 3349–3353 (2001).

    CAS  PubMed  Google Scholar 

  128. Choi, S. J. et al. Macrophage inflammatory protein 1-α is a potential osteoclast stimulatory factor in multiple myeloma. Blood 96, 671–675 (2000).

    CAS  PubMed  Google Scholar 

  129. Seidel, C. et al. Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood 95, 388–392 (2000).

    CAS  PubMed  Google Scholar 

  130. Giuliani, N., Bataille, R., Mancini, C., Lazzaretti, M. & Barille, S. Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98, 3527–3533 (2001).

    CAS  PubMed  Google Scholar 

  131. Pearse, R. N. et al. Multiple myeloma disrupts the TRANCE/ osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc. Natl Acad. Sci. USA 98, 11581–11586 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Standal, T. et al. Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells. Blood 100, 3002–3007 (2002).

    CAS  PubMed  Google Scholar 

  133. Lahtinen, R et al. Randomised, placebo-controlled multicentre trial of clodronate in multiple myeloma. Lancet 340, 1049–1052 (1992).

    CAS  PubMed  Google Scholar 

  134. Berenson, J. R. et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. N. Engl. J. Med. 334, 488–493 (1996).

    CAS  PubMed  Google Scholar 

  135. Major, P. et al. Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, controlled clinical trials. J. Clin. Oncol. 19, 558–567 (2001).

    CAS  PubMed  Google Scholar 

  136. Derenne, S. et al. Zoledronate is a potent inhibitor of myeloma cell growth and secretion of IL-6 and MMP-1 by the tumoral environment. J. Bone Miner. Res. 14, 2048–2056 (1999).

    CAS  PubMed  Google Scholar 

  137. Yaccoby, S., Barlogie, B. & Epstein, J. Primary myeloma cells growting in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood 92, 2908–2913 (1998).

    CAS  PubMed  Google Scholar 

  138. Oyajobi, B. O. et al. Therapeutic efficacy of a soluble receptor activator of nuclear factor κB-IgG Fc fusion protein in suppressing bone resorption and hypercalcemia in a model of humoral hypercalcemia of malignancy. Cancer Res. 61, 2572–2578 (2001).

    CAS  PubMed  Google Scholar 

  139. Mauro, M. J., O'Dwyer, M., Heinrich, M. C. & Druker, B. J. STI571: a paradigm of new agents for cancer therapeutics. J. Clin. Oncol. 20, 325–334 (2002).

    CAS  PubMed  Google Scholar 

  140. Jing, Y., Xia, L. & Waxman, S. Targeted removal of PML-RARalpha protein is required prior to inhibition of histone deacetylase for overcoming all-trans retinoic acid differentiation resistance in acute promyelocytic leukemia. Blood 100, 1008–1013 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by a National Institutes of Health Grant, the Doris Duke Distingished Clinical Research Award, the Multiple Myeloma Research Foundation, the Myeloma Research Fund and the Cure Myeloma Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth C. Anderson.

Related links

Related links

DATABASES

Cancer.gov

lung carcinoma

multiple myeloma

prostate cancer

T-cell leukaemia

LocusLink

AKT

BCL-XL

bFGF

BFL1

caspase-3

caspase-8

caspase-9

CD11a

CD31

CD38

CD54

CD138

CDKI

DR4

DR5

FLIP

FPTA

histone acetyltransferases

HSP90

hTERT

ICAM1

IGF1

IL-21

IL-6

JAK

LFA1

MAPK

MCL1

MEK

MMP1

MMP2

MMP9

NF-κB

PARP

PI3K

PKC-α

PKC

PTHrP

SDF-1α

SHP2

SMAC

STAT3

survivin

TNF-α

TRAIL

VCAM1

VEGF

XIAP

OMIM

severe combined immunodeficiency

FURTHER INFORMATION

Multiple Myeloma Research Foundation

Glossary

PARAPROTEIN

The monoclonal immunoglobulin (Ig) secreted by tumour cells of most multiple myeloma patients, which can be used as a parameter of disease activity or response to treatment.

AUTOGRAFTING

High-dose therapy followed by autologous stem-cell transplantation.

ALLOGRAFTING

Transplantation of allogenetic donor stem cells after high-dose non-myeloablative therapy.

GRAFT-VERSUS-HOST DISEASE

A reaction that occurs against patient tissues after transplantation of donor stem cells. It might occur early (acute) or persist (chronic), and manifests most commonly as skin, liver and gut abnormalities.

Ig REARRANGEMENT AND CLASS SWITCHING

Normal and malignant B-cell differentiation is characterized by immunoglobulin (Ig) gene rearrangements followed by Ig class switching.

CYTOPLASMIC μ

Heavy chain of Ig expressed in cytoplasm of pre-B cells.

FLUORESCENCE IN SITU HYBRIDIZATION

(FISH). Uses one or more probes that are differentially labelled with fluors and then hybridized to metaphase chromosomes or interphase nuclei so that the numbers and locations of different sequences can be assessed in individual cells.

SPECTRAL KARYOTYPING

(SKY). Simultaneous visualization of an organism's chromosomes, each labelled with a different colour. This method is used for identifying chromosomal abnormalities.

PLASMA-CELL LEUKAEMIA

(PCL). Circulating plasma cells >2 × 109/l or >20% peripheral blood white blood cells (PB WBC); might be primary PCL in newly diagnosed patients, or reflect progressive disease (secondary PCL) in patients with multiple myeloma.

MULTIDRUG RESISTANCE (MDR) GENE

A gene whose product — P-glycoprotein — is resistant to several antineoplastic agents.

P-GLYCOPROTEIN

A 170 kDa plasma membrane protein that is encoded by the human multidrug resistance gene (MDR1), which is associated with resistance to chemotherapy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hideshima, T., Anderson, K. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2, 927–937 (2002). https://doi.org/10.1038/nrc952

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc952

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing