HIGHLIGHT ADVISORS

ANTON BERNS

NETHERLANDS CANCER INSTITUTE, AMSTERDAM, THE NETHERLANDS

PETER BOYLE

EUROPEAN INSTITUTE OF ONCOLOGY, MILAN, ITALY

PETER CARMELIET

CATHOLIC UNIVERSITY LEUVEN, LEUVEN, BELGIUM

RON DEPINHO

HARVARD MEDICAL SCHOOL, BOSTON, MA, USA
STEPHEN W. FESIK
ABBOTT LABORATORIES, ABBOTT PARK, IL, USA

ELI GILBOA

DUKE UNIVERSITY MEDICAL CENTER, DURHAM, NC, USA

TOMAS LINDAHL

IMPERIAL CANCER RESEARCH FUND, HERTFORDSHIRE, UK

LANCE LIOTTA

NATIONAL CANCER INSTITUTE, BETHESDA, MD, USA

JANET D. ROWLEY

UNIVERSITY OF CHICAGO MEDICAL CENTER, CHICAGO, IL, USA

DAVID SIDRANSKY

JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE, BALTIMORE, MD, USA

JÜRG TSCHOPP

UNIVERSITY OF LAUSANNE, EPALINGES, SWITZERLAND

bert vogelstein

JOHNS HOPKINS ONCOLOGY CENTER, BALTIMORE, MD, USA

ROBERT A. WEINBERG

WHITEHEAD INSTITUTE FOR BIOMEDICAL RESEARCH, CAMBRIDGE, MA, USA

SAVIO WOO

MOUNT SINAI SCHOOL OF MEDICINE, NEW YORK, NY, USA

CANCER GENETICS

It doesn't always take two

It takes two, so the song goes, and this is often so for genes. Recessive disorders, for example, require both copies of a gene to be lost. However, some diseases and traits can occur when one wild-type allele is still present. Now, two papers report that a BLM gene mutation - which, when homozygous, causes the recessive, cancer-predisposition disease Bloom syndrome (BS) - surprisingly predisposes mice and humans to intestinal cancer when haploinsufficient. Because BLM is a helicase that maintains genome stability, these papers highlight the crucial role of genome instability in both cancer pathogenesis and predisposition.

Heppner Goss et al. generated a new BS mouse model by targeting the mouse Blm gene with a mutation $\left(B l m^{\text {Cin }}\right)$ that causes a premature truncation. This mutation acts as a null allele and simulates a founder mutation $\left(B L M^{A s h}\right)$ that is present in 1\% of Ashkenazi Jews.

The authors used two approaches to investigate the effect of Blm haploinsufficiency on tumorigenesis in these mice. First, they injected them with murine leukaemia virus (MLV). Both wild-type and $\mathrm{Blm}{ }^{\mathrm{Cin} /+}$ mice developed metastatic T-cell lymphoma on exposure to this virus, but mutant mice died earlier, despite tumour morphology being the same in both sets of mice. Next, they crossed $B l m^{C i n /+}$ mice to $A p c^{M i n}$ mice - a mouse model of familial adenomatous polyposis coli. (The Min mutant was chosen because the gastrointestinal
(GI) tract is where cancer commonly develops in BS patients.) Double heterozygous mutant mice developed twice as many GI adenomas as did Apc ${ }^{\mathrm{Min}} / \mathrm{Blm}^{+++}$animals, and many $\mathrm{Apc}^{\mathrm{Min}} / \mathrm{Blm}^{+/-}$mice had tumours with high-grade dysplasia. Tumours in both $\mathrm{Apc}^{\mathrm{Min}} / \mathrm{Blm}^{+/+}$and $\mathrm{Apc} c^{\mathrm{Min}} / \mathrm{Blm}^{+/-}$also showed Apc loss of heterozygosity (LOH). In both mutants, Apc LOH seemed to occur predominantly through the loss of chromosome 18, where $A p c$ is located. However, in some $\mathrm{Apc}{ }^{\mathrm{Min}} / \mathrm{Blm}^{+/-}$tumours, Apc loss also occurred through somatic recombination. No neoplasias were seen outside the GI tract, and Blm LOH was not evident in tumour tissue.

The results of Gruber et al. lend further weight to these findings. In a study of 1,244 Ashkenazi Jews with
colorectal cancer (CRC), those with CRC were found to be twice as likely to carry the $B L M^{A s h}$ allele as those Ashkenazi Jews without CRC. These findings, and those of Heppner Goss et al., indicate that BLM haploinsufficiency might compromise the maintenance of genomic integrity, perhaps by causing an increased mutation rate in heterozygous cells, so speeding their progression to tumorigenesis.

Jane Alfred
Editor, Nature Reviews Genetics

(4) References and links original research papers Heppner

 Goss, K. et al. Enhanced tumour formation in mice heterozygous for $\mathrm{Bl} m$ mutation. Science 297, 2051-2053 (2002) | Gruber, S. B. et al. BLM heterozygosity and the risk of colorectal cancer. Science 297, 2013 (2002)web Site
Joanna Groden's lab: http://www.hhmi.org/ research/investigators/groden.html

