Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Molecular and Genetic Basis of Neurological Tumours

Key Points

  • Tumours of neuroectodermal origin (neurological tumours) include all neoplasms of the central nervous system (CNS) and peripheral nervous system (PNS). The classification of neurological tumours is based on their predominant cell type(s) as they relate to normal cell types that are present in the CNS and PNS.

  • Glial cells retain proliferative properties throughout life. So, most neurological tumours are of glial-lineage origin. In the CNS, gliomas include astrocytomas, oligodendrogliomas and oligoastrocytomas. In the PNS, neurofibromas and schwannomas are common tumours.

  • Genetic pathways that are involved in the initiation and progression of astrocytomas have been identified. In secondary glioblastoma multiforme (GBM), loss of p53 and activation of the growth-factor–receptor-tyrosine-kinase signalling pathway initiates tumour formation, whereas disruption of the retinoblastoma (RB) pathway contributes to the progression of tumour development.

  • Similar genetic pathways are disrupted in primary GBM, although through different mechanisms. The rapid growth nature of the primary GBM indicates that this type of malignancy might arise from the transformation of adult neural stem cells, which either are present in the brain or can be de-differentiated from astrocytes in response to oncogenic mutations.

  • Dermal neurofibromas are thought to be derived from a component of mature Schwann cells, whereas plexiform neurofibromas are believed to arise from an embryonic Schwann-cell lineage. Most malignant peripheral-nerve-sheath tumours are derived from neurofibromas — particularly plexiform neurofibromas.

  • Disruption of neurofibromatosis type 1 (NF1) in the Schwann-cell lineage initiates neurofibroma formation. In the setting of plexiform neurofibroma, the heterozygous state of tumour environment is important for tumour formation. The disruption of the p53 pathway is involved in the malignant progression of neurofibroma.

Abstract

There are no effective therapies for many tumours of the nervous system. This is, in part, a consequence of their location within relatively inaccessible tissues. It is also likely, however, that the unique characteristics of the cells that give rise to these tumours create a set of conditions that facilitate tumour development. Here, we consider recent advances in molecular genetics, the development of mouse models and developmental neurobiology as they relate to tumours of neuroectodermal origin. It is likely that these advances will provide insight into underlying mechanisms and provide a rational framework for the development of effective interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Developmental scheme of neuroectodermal (neurons and glia) cells and the classification of neurological tumours.
Figure 2: Genetic pathways involved in the development of primary and secondary astrocytoma.
Figure 3: Signalling pathway mediated by growth-factor–RTK.
Figure 4: A model for the development of primary GBM.
Figure 5: Development of Schwann cells and neurofibromas.

Similar content being viewed by others

References

  1. Kleihues, P. & Cavenee, W. K. Pathology and Genetics of Tumors of the Nervous System (IARC Press, Lyon, 2000).An outstanding and comprehensive textbook on the pathology and genetics of tumours of the nervous system.

    Google Scholar 

  2. Maher, E. A. et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 15, 1311–1333 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Holland, E. C. Gliomagenesis: genetic alterations and mouse models. Nature Rev. Genet. 2, 120–129 (2001).References 2 and 3 are recent comprehensive reviews on the genetics of gliomas.

    Article  CAS  PubMed  Google Scholar 

  4. Woodruff, J. M. Pathology of tumors of the peripheral nerve sheath in type 1 neurofibromatosis. Am. J. Med. Genet. 89, 23–30 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Riccardi, V. M. Neurofibromatosis: Phenotype, Natural History, and Pathogenesis (Johns Hopkins University Press, Baltimore and London, 1992).

    Google Scholar 

  6. Cichowski, K. & Jacks, T. NF1 tumor suppressor gene function: narrowing the GAP. Cell 104, 593–604 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Zhu, Y. & Parada, L. F. Neurofibromin, a tumor suppressor in the nervous system. Exp. Cell Res. 264, 19–28 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Srivastava, S., Zou, Z. Q., Pirollo, K., Blattner, W. & Chang, E. H. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li–Fraumeni syndrome. Nature 348, 747–749 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. van Meyel, D. J. et al. p53 mutation, expression, and DNA ploidy in evolving gliomas: evidence for two pathways of progression. J. Natl Cancer Inst. 86, 1011–1017 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Ohgaki, H. et al. A case history of glioma progression. Acta Neuropathol. 97, 525–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Louis, D. N. et al. Comparative study of p53 gene and protein alterations in human astrocytic tumors. J. Neuropathol. Exp. Neurol. 52, 31–38 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Rasheed, B. K. et al. Alterations of the TP53 gene in human gliomas. Cancer Res. 54, 1324–1330 (1994).

    CAS  PubMed  Google Scholar 

  15. Sidransky, D. et al. Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature 355, 846–847 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. von Deimling, A. et al. p53 mutations are associated with 17p allelic loss in grade II and grade III astrocytoma. Cancer Res. 52, 2987–2990 (1992).

    CAS  PubMed  Google Scholar 

  17. Watanabe, K. et al. Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin. Cancer Res. 3, 523–530 (1997).

    CAS  PubMed  Google Scholar 

  18. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Yahanda, A. M., Bruner, J. M., Donehower, L. A. & Morrison, R. S. Astrocytes derived from p53-deficient mice provide a multistep in vitro model for development of malignant gliomas. Mol. Cell. Biol. 15, 4249–4259 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bogler, O., Huang, H. J. & Cavenee, W. K. Loss of wild-type p53 bestows a growth advantage on primary cortical astrocytes and facilitates their in vitro transformation. Cancer Res. 55, 2746–2751 (1995).References 21 and 22 show that Trp53 -deficient astrocytes have a growth advantage and are susceptible to transformation.

    CAS  PubMed  Google Scholar 

  23. Hunter, T. Signaling: 2000 and beyond. Cell 100, 113–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Takahashi, J. A. et al. Correlation of basic fibroblast growth factor expression levels with the degree of malignancy and vascularity in human gliomas. J. Neurosurg. 76, 792–798 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Weis, J. et al. CNTF and its receptor subunits in human gliomas. J. Neurooncol. 44, 243–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Yamaguchi, F., Saya, H., Bruner, J. M. & Morrison, R. S. Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas. Proc. Natl Acad. Sci. USA 91, 484–488 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guha, A., Dashner, K., Black, P. M., Wagner, J. A. & Stiles, C. D. Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. Int. J. Cancer 60, 168–173 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Hermanson, M. et al. Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res. 52, 3213–3219 (1992).

    CAS  PubMed  Google Scholar 

  29. Hermanson, M. et al. Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas. Cancer Res. 56, 164–171 (1996).

    CAS  PubMed  Google Scholar 

  30. Nister, M. et al. Expression of messenger RNAs for platelet-derived growth factor and transforming growth factor-α and their receptors in human malignant glioma cell lines. Cancer Res. 48, 3910–3918 (1988).References 28 and 30 are the first to report that astrocytoma cells might establish an autocrine loop of PDGF signalling.

    CAS  PubMed  Google Scholar 

  31. Uhrbom, L., Hesselager, G., Nister, M. & Westermark, B. Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res. 58, 5275–5279 (1998).

    CAS  PubMed  Google Scholar 

  32. Dai, C. et al. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 15, 1913–1925 (2001).References 31 and 32 describe the effort to model astrocytomas in mice by overexpression of Pdgf.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oumesmar, B. N., Vignais, L. & Baron-Van Evercooren, A. Developmental expression of platelet-derived growth factor-α receptor in neurons and glial cells of the mouse CNS. J. Neurosci. 17, 125–139 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  34. Fruttiger, M. et al. Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development 126, 457–467 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Duchek, P., Somogyi, K., Jekely, G., Beccari, S. & Rorth, P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107, 17–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Bos, J. L. Ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989).

    CAS  PubMed  Google Scholar 

  37. Guha, A., Feldkamp, M. M., Lau, N., Boss, G. & Pawson, A. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 15, 2755–2765 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Kluwe, L. et al. Loss of NF1 alleles distinguish sporadic from NF1-associated pilocytic astrocytomas. J. Neuropathol. Exp. Neurol. 60, 917–920 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Lau, N. et al. Loss of neurofibromin is associated with activation of RAS/MAPK and PI3-K/AKT signaling in a neurofibromatosis 1 astrocytoma. J. Neuropathol. Exp. Neurol. 59, 759–767 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Ding, H. et al. Astrocyte-specific expression of activated p21-Ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res. 61, 3826–3836 (2001).

    CAS  PubMed  Google Scholar 

  41. Malumbres, M. & Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nature Rev. Cancer 1, 222–231 (2001).

    Article  CAS  Google Scholar 

  42. Ueki, K. et al. CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res. 56, 150–153 (1996).

    CAS  PubMed  Google Scholar 

  43. Burns, K. L., Ueki, K., Jhung, S. L., Koh, J. & Louis, D. N. Molecular genetic correlates of p16, cdk4, and pRb immunohistochemistry in glioblastomas. J. Neuropathol. Exp. Neurol. 57, 122–130 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Schmidt, E. E., Ichimura, K., Reifenberger, G. & Collins, V. P. CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res. 54, 6321–6324 (1994).

    CAS  PubMed  Google Scholar 

  45. He, J., Olson, J. J. & James, C. D. Lack of p16INK4 or retinoblastoma protein (pRb), or amplification-associated overexpression of cdk4 is observed in distinct subsets of malignant glial tumors and cell lines. Cancer Res. 55, 4833–4836 (1995).

    CAS  PubMed  Google Scholar 

  46. Ichimura, K., Schmidt, E. E., Goike, H. M. & Collins, V. P. Human glioblastomas with no alterations of the CDKN2A (p16INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene 13, 1065–1072 (1996).

    CAS  PubMed  Google Scholar 

  47. Costello, J. F. et al. Cyclin-dependent kinase 6 (CDK6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. Cancer Res. 57, 1250–1254 (1997).

    CAS  PubMed  Google Scholar 

  48. Buschges, R. et al. Amplification and expression of cyclin D genes (CCND1, CCND2 and CCND3) in human malignant gliomas. Brain Pathol. 9, 435–442; discussion 432–433 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Chakravarti, A. et al. Prognostic and pathologic significance of quantitative protein expression profiling in human gliomas. Clin. Cancer Res. 7, 2387–2395 (2001).

    CAS  PubMed  Google Scholar 

  50. Krimpenfort, P., Quon, K. C., Mooi, W. J., Loonstra, A. & Berns, A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413, 83–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Sharpless, N. E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413, 86–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J. & Berns, A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 14, 994–1004 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Holland, E. C., Hively, W. P., DePinho, R. A. & Varmus, H. E. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev. 12, 3675–3685 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiao, A., Wu, H., Pandolfi, P. P., Louis, D. N. & Van Dyke, T. Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1, 157–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Biernat, W., Tohma, Y., Yonekawa, Y., Kleihues, P. & Ohgaki, H. Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas. Acta Neuropathol. 94, 303–309 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Lang, F. F., Miller, D. C., Koslow, M. & Newcomb, E. W. Pathways leading to glioblastoma multiforme: a molecular analysis of genetic alterations in 65 astrocytic tumors. J. Neurosurg. 81, 427–436 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Fulci, G. et al. p53 gene mutation and INK4A–ARF deletion appear to be two mutually exclusive events in human glioblastoma. Oncogene 19, 3816–3822 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Sherr, C. J. The INK4A/ARF network in tumour suppression. Nature Rev. Mol. Cell Biol. 2, 731–737 (2001).

    Article  CAS  Google Scholar 

  60. Biernat, W., Kleihues, P., Yonekawa, Y. & Ohgaki, H. Amplification and overexpression of MDM2 in primary (de novo) glioblastomas. J. Neuropathol. Exp. Neurol. 56, 180–185 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Reilly, K. M., Loisel, D. A., Bronson, R. T., McLaughlin, M. E. & Jacks, T. Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nature Genet. 26, 109–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Schlegel, J. et al. Amplification of the epidermal-growth-factor-receptor gene correlates with different growth behaviour in human glioblastoma. Int. J. Cancer 56, 72–77 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Hayashi, Y. et al. Association of EGFR gene amplification and CDKN2 (p16/MTS1) gene deletion in glioblastoma multiforme. Brain Pathol. 7, 871–875 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Simmons, M. L. et al. Analysis of complex relationships between age, p53, epidermal growth factor receptor, and survival in glioblastoma patients. Cancer Res. 61, 1122–1128 (2001).

    CAS  PubMed  Google Scholar 

  65. Frederick, L., Wang, X. Y., Eley, G. & James, C. D. Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res. 60, 1383–1387 (2000).

    CAS  PubMed  Google Scholar 

  66. Nishikawa, R. et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc. Natl Acad. Sci. USA 91, 7727–7731 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fults, D. & Pedone, C. Deletion mapping of the long arm of chromosome 10 in glioblastoma multiforme. Genes Chromosom. Cancer 7, 173–177 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. von Deimling, A. et al. Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol. 3, 19–26 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet. 15, 356–362 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Li, D. M. & Sun, H. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor-β. Cancer Res. 57, 2124–2129 (1997).References 69–71 identify the tumour-suppressor gene PTEN.

    CAS  PubMed  Google Scholar 

  72. Tohma, Y. et al. PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas. J. Neuropathol. Exp. Neurol. 57, 684–689 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Myers, M. P. et al. PTEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc. Natl Acad. Sci. USA 94, 9052–9057 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tamura, M. et al. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280, 1614–1617 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Myers, M. P. et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc. Natl Acad. Sci. USA 95, 13513–13518 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Leevers, S. J., Vanhaesebroeck, B. & Waterfield, M. D. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr. Opin. Cell Biol. 11, 219–225 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Wu, X., Senechal, K., Neshat, M. S., Whang, Y. E. & Sawyers, C. L. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc. Natl Acad. Sci. USA 95, 15587–15591 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Holland, E. C. et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genet. 25, 55–57 (2000).A mouse model that recapitulates cardinal features of human GBM, including microvascular proliferation and necrosis. The study also indicates that the PI3K–AKT pathway has a crucial role in the development of GBM and that neural stem cells are more susceptible to transformation.

    Article  CAS  PubMed  Google Scholar 

  81. Reynolds, B. A., Tetzlaff, W. & Weiss, S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565–4574 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294, 2186–2189 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Temple, S. & Alvarez-Buylla, A. Stem cells in the adult mammalian central nervous system. Curr. Opin. Neurobiol. 9, 135–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Rakic, P. Adult neurogenesis in mammals: an identity crisis. J. Neurosci. 22, 614–618 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Seri, B., Garcia-Verdugo, J. M., McEwen, B. S. & Alvarez-Buylla, A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21, 7153–7160 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Hartfuss, E., Galli, R., Heins, N. & Gotz, M. Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229, 15–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Alvarez-Buylla, A., Garcia-Verdugo, J. M. & Tramontin, A. D. A unified hypothesis on the lineage of neural stem cells. Nature Rev. Neurosci. 2, 287–293 (2001).

    Article  CAS  Google Scholar 

  94. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Bachoo, R. M. et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1, 269–277 (2002).A provocative study showing that astrocytes can de-differentiate into neural stem cells in response to oncogenic mutations. This provides the first evidence that neural stem cells can result from oncogenic mutations.

    Article  CAS  PubMed  Google Scholar 

  96. Jessen, K. R. & Mirsky, R. Origin and early development of Schwann cells. Microsc. Res. Tech. 41, 393–402 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Morrison, S. J., White, P. M., Zock, C. & Anderson, D. J. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96, 737–749 (1999).The study is the first to prospectively identify and isolate stem cells from the peripheral nervous system.

    Article  CAS  PubMed  Google Scholar 

  98. Legius, E., Marchuk, D. A., Collins, F. S. & Glover, T. W. Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumour suppressor gene hypothesis. Nature Genet. 3, 122–126 (1993).

    Article  CAS  PubMed  Google Scholar 

  99. Side, L. et al. Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N. Engl. J. Med. 336, 1713–1720 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Xu, W. et al. Loss of NF1 alleles in phaeochromocytomas from patients with type I neurofibromatosis. Genes Chromosom. Cancer 4, 337–342 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Colman, S. D., Williams, C. A. & Wallace, M. R. Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions of the NF1 gene. Nature Genet. 11, 90–92 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Serra, E. et al. Confirmation of a double-hit model for the NF1 gene in benign neurofibromas. Am. J. Hum. Genet. 61, 512–519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rasmussen, S. A. et al. Chromosome 17 loss-of-heterozygosity studies in benign and malignant tumors in neurofibromatosis type 1. Genes Chromosom. Cancer 28, 425–431 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. DeClue, J. E. et al. Epidermal growth factor receptor expression in neurofibromatosis type 1-related tumors and NF1 animal models. J. Clin. Invest. 105, 1233–1241 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Brannan, C. I. et al. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 8, 1019–1029 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. Jacks, T. et al. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nature Genet. 7, 353–361 (1994).

    Article  CAS  PubMed  Google Scholar 

  107. Cichowski, K. et al. Mouse models of tumor development in neurofibromatosis type 1. Science 286, 2172–2176 (1999).This study provides the first evidence that loss of both alleles of Nf1 is a rate-limiting step in neurofibroma formation.

    Article  CAS  PubMed  Google Scholar 

  108. Muir, D., Neubauer, D., Lim, I. T., Yachnis, A. T. & Wallace, M. R. Tumorigenic properties of neurofibromin-deficient neurofibroma Schwann cells. Am. J. Pathol. 158, 501–513 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Serra, E. et al. Schwann cells harbor the somatic NF1 mutation in neurofibromas: evidence of two different Schwann cell subpopulations. Hum. Mol. Genet. 9, 3055–3064 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Rutkowski, J. L., Wu, K., Gutmann, D. H., Boyer, P. J. & Legius, E. Genetic and cellular defects contributing to benign tumor formation in neurofibromatosis type 1. Hum. Mol. Genet. 9, 1059–1066 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Sherman, L. S., Atit, R., Rosenbaum, T., Cox, A. D. & Ratner, N. Single cell Ras-GTP analysis reveals altered ras activity in a subpopulation of neurofibroma schwann cells but not fibroblasts. J. Biol. Chem. 275, 30740–30745 (2000).References 112–114 show that Schwann cells, not fibroblasts, are NF1 -deficient cells within neurofibromas.

    Article  CAS  PubMed  Google Scholar 

  112. Vogel, K. S., Brannan, C. I., Jenkins, N. A., Copeland, N. G. & Parada, L. F. Loss of neurofibromin results in neurotrophin-independent survival of embryonic sensory and sympathetic neurons. Cell 82, 733–742 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Kim, H. A., Rosenbaum, T., Marchionni, M. A., Ratner, N. & DeClue, J. E. Schwann cells from neurofibromin deficient mice exhibit activation of p21ras, inhibition of cell proliferation and morphological changes. Oncogene 11, 325–335 (1995).

    CAS  PubMed  Google Scholar 

  114. Kim, H. A., Ling, B. & Ratner, N. Nf1-deficient mouse Schwann cells are angiogenic and invasive and can be induced to hyperproliferate: reversion of some phenotypes by an inhibitor of farnesyl protein transferase. Mol. Cell. Biol. 17, 862–872 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ingram, D. A. et al. Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo. J. Exp. Med. 191, 181–188 (2000).References 112–115 describe abnormal properties of cells that are present in neurofibromas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ingram, D. A. et al. Hyperactivation of p21(ras) and the hematopoietic-specific Rho GTPase, Rac2, cooperate to alter the proliferation of neurofibromin-deficient mast cells in vivo and in vitro. J. Exp. Med. 194, 57–69 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhu, Y., Ghosh, P., Charnay, P., Burns, D. K. & Parada, L. F. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296, 920–922 (2002).Identifies that disruption of NF1 in Schwann-cell lineage initiates neurofibroma formation, and that the heterozygous state of the tumour's environment is crucial in its development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Menon, A. G. et al. Chromosome 17p deletions and p53 gene mutations associated with the formation of malignant neurofibrosarcomas in von Recklinghausen neurofibromatosis. Proc. Natl Acad. Sci. USA 87, 5435–5439 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Legius, E. et al. TP53 mutations are frequent in malignant NF1 tumors. Genes Chromosom. Cancer 10, 250–255 (1994).References 118 and 119 show that disruption in TP53 is involved in malignant progression of MPNSTs.

    Article  CAS  PubMed  Google Scholar 

  120. Vogel, K. S. et al. Mouse tumor model for neurofibromatosis type 1. Science 286, 2176–2179 (1999).Along with reference 107 , these studies show that p53 cooperates with Nf1 to promote the development of MPNSTs in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kourea, H. P., Orlow, I., Scheithauer, B. W., Cordon-Cardo, C. & Woodruff, J. M. Deletions of the INK4A gene occur in malignant peripheral nerve sheath tumors but not in neurofibromas. Am. J. Pathol. 155, 1855–1860 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nielsen, G. P. et al. Malignant transformation of neurofibromas in neurofibromatosis 1 is associated with CDKN2A/p16 inactivation. Am. J. Pathol. 155, 1879–1884 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Berner, J. M. et al. Chromosome band 9p21 is frequently altered in malignant peripheral nerve sheath tumors: studies of CDKN2A and other genes of the pRB pathway. Genes Chromosom. Cancer 26, 151–160 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Kourea, H. P., Cordon-Cardo, C., Dudas, M., Leung, D. & Woodruff, J. M. Expression of p27(kip) and other cell cycle regulators in malignant peripheral nerve sheath tumors and neurofibromas: the emerging role of p27(kip) in malignant transformation of neurofibromas. Am. J. Pathol. 155, 1885–1891 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. MacDonald, T. J. et al. Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nature Genet. 29, 143–152 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Pomeroy, S. L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Bischoff, J. R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. McCormick, F. Cancer gene therapy: fringe or cutting edge? Nature Rev. Cancer 1, 130–141 (2001).

    Article  CAS  Google Scholar 

  129. Traxler, P. et al. Tyrosine kinase inhibitors: from rational design to clinical trials. Med. Res. Rev. 21, 499–512 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Gibbs, J. B. Mechanism-based target identification and drug discovery in cancer research. Science 287, 1969–1973 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Parr, M. J. et al. Tumor-selective transgene expression in vivo mediated by an E2F-responsive adenoviral vector. Nature Med. 3, 1145–1149 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Shapiro, G. I. & Harper, J. W. Anticancer drug targets: cell cycle and checkpoint control. J. Clin. Invest. 104, 1645–1653 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Raff, M. C. Glial cell diversification in the rat optic nerve. Science 243, 1450–1455 (1989).

    Article  CAS  PubMed  Google Scholar 

  134. Fulton, B. P., Burne, J. F. & Raff, M. C. Visualization of O-2A progenitor cells in developing and adult rat optic nerve by quisqualate-stimulated cobalt uptake. J. Neurosci. 12, 4816–4833 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Calver, A. R. et al. Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron 20, 869–882 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Zhou, Q. & Anderson, D. J. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Lu, Q. R. et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank D. Burns, S. Kernie and L. Klesse for critically reading the manuscript. They also thank the members of the Parada lab for helpful discussions. L.F.P. is supported by NINDS (National Institute of Neurological Disorders and Stroke) and DOD (Department of Defence) grants. Y.Z. is a recipient of a Young Investigator Award from the NNFF (National Neurofibromatosis Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis F. Parada.

Related links

Related links

DATABASES

Cancer.gov

astrocytoma

brain tumours

ependymoma

GenBank

SV40 T antigen

LocusLink

Akt

AKT

CDC42

CDK2

Cdk4

CDK4

CDK6

CDKN2A

D-type cyclins

cyclin D1

E-type cyclins

E2F1

Egf

Egfr

EGFR

FGF2

Gfap

GFAP

GRB2

Ink4a

INK4B

INK4C

INK4D

KIP1

KIP2

MAPK

MDM2

MEK

nestin

Nf1

NF1

NRG1

p107

p120GAP

p130

p53

Pdgfa

PDGFA

Pdgfb

PDGFB

Pdgfr

PDGFR

PI3K

Pten

PTEN

RAC

RAF

Ras

RAS

RB

SHC

SOS

Trp53

WAF1

OMIM

Li–Fraumeni syndrome

neurofibromatosis type 1

Glossary

NEURAL-CREST CELLS

Cells that originate in the dorsal lip of the neural tube that undergo epithelial-to-mesenchymal transition and migrate outwards to give rise to all cells of the peripheral, autonomic and enteric nervous systems. These cells also give rise to melanocytes and neuroendocrine cells.

SCHWANNOMA

A neural-crest-derived tumour that has morphological and molecular features of Schwann cells. These tumours are clonal in origin.

PERIPHERAL-NERVE SHEATH

A strong flexible cable that is composed of collagen fibres and a cellular tube (perineurum) that ensheaths, insulates and protects peripheral-nerve bundles.

SCHWANN CELL

A glial-cell component of the peripheral nervous system that is derived from the neural crest and composed of myelinating and non-myelinating cells.

PERINEURAL CELL

A mesenchyme-derived cell that is recruited by forming peripheral nerves to undergo mesenchymal-to-epithelial transformation. These cells form the perineurum and secrete matrix that forms the perineural sheath.

PHEOCHROMOCYTOMA

A neuroendocrine tumour that is formed in neural-crest-derived adrenal chromaffin cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Parada, L. The Molecular and Genetic Basis of Neurological Tumours. Nat Rev Cancer 2, 616–626 (2002). https://doi.org/10.1038/nrc866

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc866

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing