Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

p73: Friend or foe in tumorigenesis

Key Points

  • The TP73 gene maps to a region (1p36.33) that is frequently deleted in neuroblastoma, indicating that loss of p73 function might have a role in the development of this tumour. However, mutations of TP73 are rare in human cancer.

  • p73 protein levels increase after DNA damage due to protein stabilization via a c-ABL-dependent pathway.

  • p53 seems to require p63 and p73 to induce apoptosis, indicating a very tight relationship between the three members of the same family.

  • The TP73 gene encodes two different proteins that are expressed under the control of two independent promoters, and that have opposite activities: the transcriptionally active full-length TAp73, and the amino-terminally truncated dominant-negative ΔNp73.

  • TAp73 induces cell-cycle arrest and apoptosis. Antithetically, ΔNp73 inhibits both TAp73- and p53-induced apoptosis. Furthermore, ΔNp73 is induced by TAp73 and p53, creating a dominant-negative feedback loop that regulates p53 and p73 function.

  • In keeping with its anti-apoptotic and potentially oncogenic role, ΔNp73 is an adverse prognostic marker for neuroblastoma patients. It would, therefore, seem that fine-tuning of TAp73 and ΔNp73 ratios within the individual cellular context dictates the functional outcome, and it comes as no surprise that enhanced expression of the ΔNp73 forms, rather than inactivating mutations within p73, is associated with cancer development.

Abstract

As p53 and its homologue p73 have significant sequence and functional similarities, p73 might also be expected to act as a tumour suppressor. However, p73 is activated after DNA damage in a way that is distinct from that of p53. The existence of ΔNp73 — an isoform of p73 that is encoded by a distinct promoter and that lacks the transactivation domain — further complicates matters. It seems to function as an oncogene by inhibiting both p73- and p53-induced apoptosis. So how can these opposing functions be reconciled in human tumours?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The p53 family.
Figure 2: Isoforms of p73.
Figure 3: Regulation of ΔNp73 by p53 and TAp73.
Figure 4: Pathway involving p73 in DNA damage.
Figure 5: Molecular interactions of p73.

Similar content being viewed by others

References

  1. Yang, A. & McKeon, F. p63 and p73: p53 mimics, menace and more. Nature Rev. Mol. Cell. Biol. 1, 199–207 (2000).

    CAS  Google Scholar 

  2. Yang, A., Kaghad, M., Caput, D. & McKeon, F. On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet. 18, 90–95 (2002).

    PubMed  Google Scholar 

  3. Irwin, M. S. & Kaelin, W. G. p53 family update: p73 and p63 develop their own identities. Cell Growth Differ. 12, 337–349 (2001).

    CAS  PubMed  Google Scholar 

  4. Levrero, M. et al. The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J. Cell Sci. 113, 1661–1670 (2000).

    CAS  PubMed  Google Scholar 

  5. Derry, W. B., Putzke, A. P. & Rothman, J. H. Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science 294, 591–595 (2001).Cloning of the p53 orthologue in Caenorhabditis elegans , providing evidence for its involvement in apoptosis following ionizing irradiation, as well as in meiosis.

    CAS  Google Scholar 

  6. Brodsky, M. H. et al. Drosophila p53 binds a damage response element at the reaper locus. Cell 101, 103–113 (2000).

    CAS  PubMed  Google Scholar 

  7. Ollmann, M. et al. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101, 91–101 (2000).References 6 and 7 describe the cloning of the p53 orthologue in Drosophila melanogaster.

    CAS  PubMed  Google Scholar 

  8. Kaghad, M. et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90, 809–819 (1997).First description and cloning of p73.

    CAS  PubMed  Google Scholar 

  9. De Laurenzi, V. et al. Two new p73 splice variants, γ and δ, with different transcriptional activity. J. Exp. Med. 188, 1763–1768 (1998).Description of the p73 splicing isoforms and their function.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. De Laurenzi, V. et al. Additional complexity in p73: induction by mitogens in lymphoid cells and identification of two new splicing variants ɛ and ζ. Cell Death Differ. 6, 389–390 (1999).

    CAS  PubMed  Google Scholar 

  11. Kong, X. T. et al. Lack of homozygously inactivated p73 in single-copy MYCN primary neuroblastomas and neuroblastoma cell lines. Neoplasia 1, 80–89 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ueda, Y., Hijikata, M., Takagi, S., Chiba, T. & Shimotohno, K. New p73 variants with altered C-terminal structures have varied transcriptional activities. Oncogene 18, 4993–4998 (1999).

    CAS  PubMed  Google Scholar 

  13. Ueda, Y., Hijikata, M., Takagi, S., Chiba, T. & Shimotohno, K. Transcriptional activities of p73 splicing variants are regulated by inter-variant association. Biochem. J. 356, 859–866 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ishimoto, O. et al. Possible oncogenic potential of ΔNp73: a newly identified isoform of human p73. Cancer Res. 62, 636–664 (2002).

    CAS  PubMed  Google Scholar 

  15. Thanos, C. D. & Bowie, J. U. p53 family members, p63 and p73, are SAM domain-containing proteins. Protein Sci. 8, 1708–1710 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chi, S.-W., Ayed, A. & Arrowsmith, C. H. Solution structure of a conserved C-terminal domain of p73 with structural homology to the SAM domain. EMBO J. 18, 4438–4445 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Arrowsmith, C. H. Structure and function in the p53 family. Cell Death Differ. 6, 1169–1173 (1999).

    CAS  PubMed  Google Scholar 

  18. Jousset, C. et al. A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL–PDGFRβ oncoprotein. EMBO J. 16, 69–82 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kyba, M. & Brock, H. W. The SAM domain of polyhomeotic, RAE28, and scm mediates specific interactions through conserved residues. Dev. Genet. 22, 74–84 (1998).

    CAS  PubMed  Google Scholar 

  20. Schultz, J., Ponting, C. P., Hofmann, K. & Bork, P. SAM as a protein interaction domain involved in developmental regulation. Protein Sci. 6, 249–253 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Thanos, C. D., Goodwill, K. E. & Bowie, J. U. Oligomeric structure of the human EphB2 receptor SAM domain. Science 283, 833–836 (1999).

    CAS  PubMed  Google Scholar 

  22. Jost, C. A., Marin, M. C. & Kaelin, W. G. p73 is a simian p53-related protein that can indu–ce apoptosis. Nature 389, 191 194 (1997).

    CAS  PubMed  Google Scholar 

  23. Yang, A. et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404, 99–103 (2000).Report of the knockout mouse for p73, describing neural and infective abnormalities.|PubMed|

    CAS  PubMed  Google Scholar 

  24. Pozniak, C. D. et al. An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science 289, 304–306 (2000).Reports the ability of ΔNp73 to protect from NGF-withdrawal-induced apoptosis in embryonic neurons.

    CAS  PubMed  Google Scholar 

  25. Grob, T. J. et al. Human ΔNp73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ. 8, 1213–1223 (2001).Cloning of the human ΔNp73 isoforms and the ΔNp73 promoters and description of the ΔNp73 dominant-negative loop on TAp73 and p53.

    CAS  PubMed  Google Scholar 

  26. Stiewe, T., Theseling, C. C. & Putzer, B. M. Transactivation-deficient ΔTA-p73 inhibits p53 by direct competition for DNA-binding: implications for tumorigenesis. J. Biol. Chem. 13 Feb 2002 [epub ahead of print].

  27. Fillippovich, I. et al. Transactivation-deficient p73α (p73Δ exon 2) inhibits apoptosis and competes with p53. Oncogene 20, 514–522 (2001).Description and characterization of the Δ2p73 splicing isoform in cancer.

    CAS  PubMed  Google Scholar 

  28. Nakagawa, T. et al. Autoinhibitory regulation of p73 by ΔNp73 to modulate cell survival and death through a p73-specific target element within the ΔNp73 promoter. Mol. Cell. Biol. 22, 2575–2585 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Vossio, S. et al. DN-p73 is activated after DNA damage in a p53-dependent manner to regulate p53-induced cell cycle arrest. Oncogene 21, 3796–3803 (2002).

    CAS  PubMed  Google Scholar 

  30. Kartasheva, N. N., Contente, A., Lenz–Stöppler, C., Roth, J. & Dobbelstein, M. p53 induces the expression of its antagonist p73ΔN, establishing an autoregulatory feedback loop. Oncogene (in the press).

  31. Stiewe, T., Zimmermann, S., Frilling, A., Esche, H. & Puetzer, B. M. Transactivation-deficient DTA–p73 acts as an oncogene. Cancer Res. (in the press).

  32. Allart, S. et al. Human cytomegalovirus induces drug resistance and alteration of programmed cell death by accumulation of ΔN p73α. J. Biol. Chem. 28 May 2002 [epub ahead of print].

  33. Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206–208 (1995).

    CAS  PubMed  Google Scholar 

  34. Parant, J. et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nature Genet. 29, 92–95 (2001).

    CAS  PubMed  Google Scholar 

  35. Gong, J. C. et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399, 806–809 (1999).

    CAS  Google Scholar 

  36. Agami, R., Blandino, G., Oren, M. & Shaul, Y. Interaction of c-Abl and p73α and their collaboration to induce apoptosis. Nature 399, 809–813 (1999).

    CAS  Google Scholar 

  37. Yuan, Z. M. et al. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 399, 814–817 (1999).References 35–37 describe the MLH1–c-Abl–p73 pathway in DNA damage.

    CAS  PubMed  Google Scholar 

  38. Catani, M. V. et al. Ascorbate up-regulates MLH1 (Mut L homologue-1) and p73: implications for the cellular response to DNA damage. Biochem. J. 364, 441–447 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sanchez-Prieto, R., Sanchez-Arevalo, V. J., Servitja, J.-M. & Gutkind, S. Regulation of p73 by c-Abl through the p38 MAP kinase pathway. Oncogene 21, 974–979 (2002).

    CAS  PubMed  Google Scholar 

  40. Kim, E. J., Park, J. S. & Um, S. J. Identification and characterization of HIPK2 interacting with p73 and modulating functions of the p53 family in vivo. J. Biol. Chem. 29 Mar 2002 [epub ahead of print].

  41. Costanzo, A. et al. DNA damage-dependent acetylation dictates the selective activation of apoptotic target genes. Mol. Cell 9, 175–186 (2002).Acetylation determines whether p73 binds to apoptotic or cell-cycle promoters.

    CAS  PubMed  Google Scholar 

  42. Prives, C. & Manley, J. L. Why is p53 acetylated? Cell 107, 815–818 (2001).

    CAS  PubMed  Google Scholar 

  43. Stiewe, T. & Putzer, B. M. Role of the p53 homologue p73 in E2F1-induced apoptosis. Nature Genet. 26, 464–469 (2000).

    CAS  PubMed  Google Scholar 

  44. Lissy, N. A., Davis, P. K., Irwin, M., Kaelin, W. G. & Dowdy, S. F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 407, 642–645 (2000).

    CAS  PubMed  Google Scholar 

  45. Irwin, M. et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407, 645–648 (2000).

    CAS  PubMed  Google Scholar 

  46. Leone, G. et al. Myc requires distinct E2F activities to induce S phase and apoptosis. Mol. Cell. 8, 105–113 (2001).

    CAS  PubMed  Google Scholar 

  47. Zaika, A., Irwin, M., Sansome, C. & Moll, U. M. Oncogenes induce and activate endogenous p73 protein. J. Biol. Chem. 276, 11310–11316 (2001).

    CAS  PubMed  Google Scholar 

  48. Watanabe, K. K. et al. Physical interaction of p73 with c-Myc and MM1, a c-Myc-binding protein, and modulation of the p73. J. Biol. Chem. 13 Feb 2002 [epub ahead of print].

  49. Balint, E., Bates, S. & Vousden, K. H. Mdm2 binds p73α without targeting degradation. Oncogene 18, 3923–3929 (1999).

    CAS  PubMed  Google Scholar 

  50. Lee, C. W. & La Thangue, N. B. Promoter specificity and stability control of the p53-related protein p73. Oncogene 18, 4171–4181 (1999).

    CAS  PubMed  Google Scholar 

  51. Dobbelstein, M., Wienzek, S., Konig, C. & Roth, J. Inactivation of the p53 homologue p73 by the Mdm2 oncoprotein. Oncogene 18, 2101–2106 (1999).

    CAS  PubMed  Google Scholar 

  52. Ongkeko, W. et al. MDM2 and MDMX bind and stabilize the p53-related protein p73. Curr. Biol. 9, 829–832 (1999).

    CAS  PubMed  Google Scholar 

  53. Zeng, X. et al. MDM2 suppresses p73 function without promoting p73 degradation. Mol. Cell. Biol. 19, 3257–3266 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, X. Q. et al. Mdm2 and MdmX can interact differently with ARF and members of the p53 family. FEBS Lett. 490, 202–208 (2001).

    CAS  PubMed  Google Scholar 

  55. Wang, X. Q., Ongkeko, W. M., Lau, A. W. S., Leung, K. M. & Poon, R. Y. C. A possible role of p73 on the modulation of p53 level through Mdm2. Cancer Res. 61, 1598–1603 (2001).

    CAS  PubMed  Google Scholar 

  56. Zeng, X. et al. The N-terminal domain of p73 interacts with the CH1 domain of p300/CREB binding protein and mediates transcriptional activation and apoptosis. Mol. Cell. Biol. 20, 1299–1310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lohrum, M. A., Woods, D. B., Ludwig, R. L., Balint, E. & Vousden, K. H. C-terminal ubiquitination of p53 contributes to nuclear export. Mol. Cell. Biol. 21, 8521–8532 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gu, J., Nie, L., Kawai, H. & Yuan, Z. M. Subcellular distribution of p53 and p73 are differentially regulated by MDM2. Cancer Res. 61, 6703–6707 (2001).

    CAS  PubMed  Google Scholar 

  59. Minty, A., Dumont, X., Kaghad, M. & Caput, D. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J. Biol. Chem. 275, 36316–36323 (2000).

    CAS  PubMed  Google Scholar 

  60. Scharnhorst, V., Dekker, P., van Der Eb, A. J. & Jochemsen, A. G. Physical interaction between Wilms' tumour 1 and p73 proteins modulates their functions. J. Biol. Chem. 275, 10202–10211 (2000).

    CAS  PubMed  Google Scholar 

  61. Flores, E. R. et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416, 560–564 (2002).Evidence that p53 requires the presence of either p63 or p73 to induce apoptosis; p73/p63 drive p53 towards apoptotic promoters such as NOXA, PERP and BAX.

    CAS  PubMed  Google Scholar 

  62. Steengenga, W. T., Shvarts, A., Riteco, N., Bos, J. L. & Jochemsen, A. G. Distinct regulation of p53 and p73 activity by adenovirus E1A, E1B, and E4orf6 proteins. Mol. Cell. Biol. 19, 3885–3894 (1999).

    Google Scholar 

  63. Kaida, A. et al. Functional impariment of p73 and p51, the p53-related proteins, by the human T-cell leukaemia virus type 1 Tax oncoprotein. Oncogene 19, 827–830 (2000).

    CAS  PubMed  Google Scholar 

  64. Marin, M. C. et al. Viral oncoproteins discriminate between p53 and the p53 homolog p73. Mol. Cell. Biol. 18, 6316–6324 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Prabhu, N., Somasundaram, K., Satyamoorthy, K., Herlyn, M. & El-Deiry, W. p73β, unlike p53, suppresses growth and induces apoptosis of human papillomavirus E6-expressing cancer cells. Int. J. Oncol. 13, 5–9 (1998).

    CAS  PubMed  Google Scholar 

  66. Dobbelstein, M. & Roth, J. The large T antigen of simian virus 40 binds and inactivates p53 but not p73. J. Gen. Virol. 79, 3079–3083 (1998).

    CAS  PubMed  Google Scholar 

  67. Roth, J. et al. Inactivation of p53 but not p73 by adenovirus type 5 E1B 55-kilodalton and E4 34-kilodalton oncoproteins. J. Virol. 72, 8510–8516 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Higashino, F., Pipas, J. M. & Shenk, T. Adenovirus E4orf6 oncoprotein modulates the function of the p53-related protein, p73. Proc. Natl Acad. Sci. USA 95, 15683–15687 (1998).

    CAS  PubMed  Google Scholar 

  69. De Laurenzi, V. et al. Induction of neuronal differentiation by p73 in a neuroblastoma cell line. J. Biol. Chem. 275, 15226–15231 (2000).First report of the involvement of p73 in neural differentiation.

    CAS  PubMed  Google Scholar 

  70. De Laurenzi, V. et al. p63 and p73 transactivate differentiation gene promoters in human keratinocytes. Biochem. Biophys. Res. Commun. 273, 342–346 (2000).

    CAS  PubMed  Google Scholar 

  71. Yu, J. et al. Identification and classification of p53-regulated genes. Proc. Natl Acad. Sci. USA 96, 14517–14522 (1999).

    CAS  PubMed  Google Scholar 

  72. Zhu, J., Jiang, J., Zhou, W. & Chen, X. The potential tumor suppressor p73 differentially regulates cellular p53 target genes. Cancer Res. 58, 5061–5065 (1998).

    CAS  PubMed  Google Scholar 

  73. Ueda, Y. et al. p73β, a variant of p73, enhances Wnt/β-catenin signaling in Saos-2 cells. Biochem. Biophys. Res. Commun. 283, 327–333 (2001).

    CAS  PubMed  Google Scholar 

  74. Takagi, S., Ueda, Y., Hijikata, M. & Shimotohno, K. Overproduced p73α activates a minimal promoter through a mechanism independent of its transcriptional activity. FEBS Lett. 509, 47–52 (2001).

    CAS  PubMed  Google Scholar 

  75. Balint, E., Phillips, A. C., Kozlov, S., Stewart, C. L. & Vousden, K. H. Induction of p57KIP2 expression by p73β. Proc. Natl Acad. Sci. USA 99, 3529–3534 (2002).

    CAS  PubMed  Google Scholar 

  76. Ikawa, S., Nakagawara, A. & Ikawa, Y. p53 family genes: structural comparison, expression and mutation. Cell Death Differ. 6, 1154–1161 (1999).

    CAS  PubMed  Google Scholar 

  77. Ng, S. W. et al. Analysis of p73 in human borderline and invasive ovarian tumour. Oncogene 19, 1885–1890 (2000).

    CAS  PubMed  Google Scholar 

  78. O'Nions, J. et al. p73 is over-expressed in vulval cancer principally as the Δ2 isoform. Br. J. Cancer 85, 1551–1556 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Douc-Rasy, S. et al. DNp73a accumulates in human neuroblastic tumours. Am. J. Pathol. 160, 631–636 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Casciano, I. et al. Expression of ΔNp73 is a molecular marker for adverse outcome in neuroblastoma patients. Cell Death Differ. 9, 246–251 (2002).Correlation of ΔNp73 with adverse prognosis in neuroblastoma patients, with ten years of follow-up.

    CAS  PubMed  Google Scholar 

  81. Casciano, I. et al. Role of methylation in the control of ΔNp73 expression in neuroblastoma. Cell Death Differ. 9, 343–345 (2002).

    CAS  PubMed  Google Scholar 

  82. DiComo, C. J., Gaiddon, C. & Prives, C. p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol. Cell. Biol. 19, 1438–1449 (1999).

    CAS  Google Scholar 

  83. Gaiddon, C., Lokshin, M., Ahn, J., Zhang, T. & Prives, C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell. Biol. 21, 1874–1887 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Strano, S. et al. Physical and functional interaction between p53 mutants and different isoforms of p73. J. Biol. Chem. 275, 29503–29512 (2000).

    CAS  PubMed  Google Scholar 

  85. Marin, M. C. et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nature Genet. 25, 47–54 (2000).

    CAS  PubMed  Google Scholar 

  86. Ryan, B. M. et al. A common p73 polymorphism is associated with a reduced incidence of oesophageal carcinoma. Br. J. Cancer 85, 1499–1503 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kawano, S. et al. Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 94, 1113–1120 (1999).

    CAS  PubMed  Google Scholar 

  88. Corn, P. G. et al. Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5′CpG island methylation. Cancer Res. 59, 3352–3356 (1999).

    CAS  PubMed  Google Scholar 

  89. Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714–718 (1999).

    CAS  PubMed  Google Scholar 

  90. Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708–713 (1999).

    CAS  PubMed  Google Scholar 

  91. Brodeur, G. M. Molecular basis for heterogeneity in human neuroblastoma. Eur. J. Cancer 31A, 505–510 (1995).

    CAS  PubMed  Google Scholar 

  92. Lasorella, A., Noseda, M., Beyna, M. & Iavarone, A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407, 592–598 (2000).

    CAS  PubMed  Google Scholar 

  93. Kitanaka, C. et al. Increased Ras expression and caspase-independent neuroblastoma cell death: possible mechanism of spontaneous neuroblastoma regression. J. Natl Cancer Inst. 94, 358–368 (2002).

    CAS  PubMed  Google Scholar 

  94. Kovalev, S., Marchenko, N., Swendeman, S., LaQuaglia, M. & Moll, U. M. Expression level, allelic origin, and mutation analysis of the p73 gene in neuroblastoma tumors and cell lines. Cell Growth Differ. 9, 897–903 (1998).

    CAS  PubMed  Google Scholar 

  95. Ichimiya, S. et al. p73 at chromosome 1p36.3 is lost in advanced stage neuroblastoma but its mutation is infrequent. Oncogene 18, 1061–1066 (1999).

    CAS  PubMed  Google Scholar 

  96. Ejeskar, K., Sjoberg, R. M., Kogner, P. & Martinsson, T. Variable expression and absence of mutations in p73 in primary neuroblastoma tumors argues against a role in neuroblastoma development. Int. J. Mol. Med. 3, 585–589 (1999).

    CAS  PubMed  Google Scholar 

  97. Han, S. et al. Infrequent somatic mutations of the p73 gene in various human cancers. Eur. J. Surg. Oncol. 25, 194–198 (1999).

    CAS  PubMed  Google Scholar 

  98. Liu, W. et al. Differential expression and allelotyping of the p73 gene in neuroblastoma. Int. J. Oncol. 16, 181–185 (2000).

    CAS  PubMed  Google Scholar 

  99. Yang, H. W. et al. The p73 gene is less involved in the development but involved in the progression of neuroblastoma. Int. J. Mol. Med. 5, 379–384 (2000).

    CAS  PubMed  Google Scholar 

  100. Kong, X. T. et al. Lack of homozygously inactivated p73 in single-copy MYCN primary neuroblastomas and neuroblastoma cell lines. Neoplasia 1, 80–89 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Chi, S.-G. et al. Elevated and biallelic expression of p73 is associated with progression of human bladder cancer. Cancer Res. 59, 2791–2793 (1999).

    CAS  PubMed  Google Scholar 

  102. Lomas, J. et al. Analysis of p73 gene in meningiomas with deletion at 1p. Cancer Genet. Cytogenet. 129, 88–91 (2001).

    CAS  PubMed  Google Scholar 

  103. Nozaki, M. et al. p73 is not mutated in meningiomas as determined with a functional yeast assay but p73 expression increases with tumor grade. Brain Pathol. 11, 296–305 (2001).

    CAS  PubMed  Google Scholar 

  104. Alonso, M. E. et al. Mutation analysis of the p73 gene in nonastrocytic brain tumours. Br. J. Cancer 85, 204–208 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kroiss, M. M. et al. Loss of expression or mutations in the p73 tumour suppressor gene are not involved in the pathogenesis of malignant melanomas. Melanoma Res. 8, 504–509 (1998).

    CAS  PubMed  Google Scholar 

  106. Herbst, R. A. et al. Allelic loss at the p73 locus (1p36. 33) is infrequent in malignant melanoma. Arch. Dermatol. Res. 291, 362–364 (1999).

    CAS  PubMed  Google Scholar 

  107. Schittek, B., Sauer, B. & Garbe, C. Lack of p73 mutations and late occurrence of p73 allelic deletions in melanoma tissues and cell lines. Int. J. Cancer 82, 583–586 (1999).

    CAS  PubMed  Google Scholar 

  108. Shan, L. et al. Frequent loss of heterozygosity at 1p36.3 and p73 abnormality in parathyroid adenomas. Mod. Pathol. 14, 273–278 (2001).

    CAS  PubMed  Google Scholar 

  109. Nomoto, S. et al. Search for mutations and examination of allelic expression imbalance of the p73 gene at 1p36.33 in human lung cancers. Cancer Res. 58, 1380–1383 (1998).

    CAS  PubMed  Google Scholar 

  110. Nicholson, S. A. et al. Alterations of p14ARF, p53, and p73 genes involved in the E2F-1-mediated apoptotic pathways in non-small cell lung carcinoma. Cancer Res. 61, 5636–5643 (2001).

    CAS  PubMed  Google Scholar 

  111. Mai, M. et al. Activation of p73 silent allele in lung cancer. Cancer Res. 58, 2347–2349 (1998).

    CAS  PubMed  Google Scholar 

  112. Tokuchi, Y. et al. The expression of p73 is increased in lung cancer, independent of p53 gene alteration. Br. J. Cancer 80, 1623–1629 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Faridoni–Laurens, L. et al. p73 expression in basal layers of head and neck squamous epithelium: a role in differentiation and carcinogenesis in concert with p53 and p63? Oncogene 20, 5302–5312 (2001).

    PubMed  Google Scholar 

  114. Nimura, Y. et al. p73, a gene related to p53, is not mutated in esophageal carcinomas. Int. J. Cancer 78, 437–440 (1998).

    CAS  PubMed  Google Scholar 

  115. Cai, Y. C. et al. Molecular alterations of p73 in human esophageal squamous cell carcinomas: loss of heterozygosity occurs frequently; loss of imprinting and elevation of p73 expression may be related to defective p53. Carcinogenesis 21, 683–689 (2000).

    CAS  PubMed  Google Scholar 

  116. Kang, M. J. et al. Loss of imprinting and elevated expression of wild-type p73 in human gastric adenocarcinoma. Clin. Cancer Res. 6, 1767–1771 (2000).

    CAS  PubMed  Google Scholar 

  117. Yokozaki, H. et al. Alterations of p73 preferentially occur in gastric adenocarcinomas with foveolar epithelial phenotype. Int. J. Cancer 83, 192–196 (1999).

    CAS  PubMed  Google Scholar 

  118. Sunahara, M. et al. Mutational analysis of the p73 gene localized at chromosome 1p36.3 in colorectal carcinomas. Int. J. Oncol. 13, 319–323 (1998).

    CAS  PubMed  Google Scholar 

  119. Yokomizo, A. et al. Mutation and expression analysis of the p73 gene in prostate cancer. Prostate 39, 94–100 (1999).

    CAS  PubMed  Google Scholar 

  120. Takahashi, H. et al. Mutation, allelotyping, and transcription analyses of the p73 gene in prostatic carcinoma. Cancer Res. 58, 2076–2077 (1998).

    CAS  PubMed  Google Scholar 

  121. Mai, M. et al. Loss of imprinting and allele switching of p73 in renal cell carcinoma. Oncogene 17, 1739–1741 (1998).

    CAS  PubMed  Google Scholar 

  122. Momoi, H. et al. Comprehensive allelotyping of human intrahepatic cholangiocarcinoma. Clin. Cancer Res. 7, 2648–2655 (2001).

    CAS  PubMed  Google Scholar 

  123. Mihara, M. et al. Absence of mutation of the p73 gene localized at chromosome 1p36.3 in hepatocellular carcinoma. Br. J. Cancer 79, 164–167 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Peng, C. Y. et al. Genetic alternations of p73 are infrequent but may occur in early stage hepatocellular carcinoma. Anticancer Res. 20, 1487–1492 (2000).

    CAS  PubMed  Google Scholar 

  125. Herath, N. I. et al. p73 is up-regulated in a subset of hepatocellular carcinomas. Hepatology 31, 601–605 (2000).

    CAS  PubMed  Google Scholar 

  126. Stirewalt, D. L., Clurman, B., Appelbaum, F. R., Willman, C. L. & Radich, J. P. p73 mutations and expression in adult de novo acute myelogenous leukemia. Leukemia 13, 985–990 (1999).

    CAS  PubMed  Google Scholar 

  127. Zaika, A. I., Kovalev, S., Marchenko, N. D. & Moll, U. M. Overexpression of the wild type p73 gene in breast cancer tissues and cell lines. Cancer Res. 59, 3257–3263 (1999).

    CAS  PubMed  Google Scholar 

  128. Shishikura, T. et al. Mutational analysis of the p73 gene in human breast cancers. Int. J. Cancer 84, 321–325 (1999).

    CAS  PubMed  Google Scholar 

  129. Schwartz, D. I. et al. p73 mutations are not detected in sporadic and hereditary breast cancer. Breast Cancer Res. Treat. 58, 25–29 (1999).

    CAS  PubMed  Google Scholar 

  130. Dominguez, G. et al. Clinicopathological characteristics of breast carcinomas with allelic loss in the p73 region. Breast Cancer Res. Treat. 63, 17–22 (2000).

    CAS  PubMed  Google Scholar 

  131. Dominguez, G. et al. Wild type p73 overexpression and high-grade malignancy in breast cancer. Breast Cancer Res. Treat. 66, 183–190 (2001).

    CAS  PubMed  Google Scholar 

  132. Ahomadegbe, J. C. et al. Loss of heterozygosity, allele silencing and decreased expression of p73 gene in breast cancers: prevalence of alterations in inflammatory breast cancers. Oncogene 19, 5413–5418 (2000).

    CAS  PubMed  Google Scholar 

  133. Chen, C. L., Ip, S. M., Cheng, D., Wong, L. C. & Ngan, H. Y. p73 gene expression in ovarian cancer tissues and cell lines. Clin. Cancer Res. 6, 3910–3915 (2000).

    CAS  PubMed  Google Scholar 

  134. Codegoni, A. M., Bertoni, F., Patregnani, C., Marinetti, E., D'Incalci, M. & Broggini, M. Allelic expression of p73 in human ovarian cancers. Ann. Oncol. 10, 949–953 (1999).

    CAS  PubMed  Google Scholar 

  135. Imyanitov, E. N. et al. Frequent loss of heterozygosity at 1p36 in ovarian adenocarcinomas but the gene encoding p73 is unlikely to be the target. Oncogene 18, 4640–4642 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank R. A. Knight for stimulating discussion, critical suggestions and useful comments, and A. Oberst for discussions. The basic research discussed in the present report has been carried out thanks to the generous support of grants from Telethon, Aire, Mior, the EU and Min-Salute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerry Melino.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

neuroblastic tumours

ovarian cancer

skin cancer

vulval cancer

GenBank

E1A

E4

E6

HTLV1 Tax protein

SV40 T antigen

InterPro

SH3 domain

SAM

LocusLink

ATM

BAX

β-catenin

c-ABL

CBP

CDKN1A

CDKN2A

CDKN1C

cyclin D

E2F

E2F1

HIPK2

HRAS

MAPK

MDM2

MLH1

MYCN

NOXA

p300

p53

p53AIP1

p53R2

p63

p73

PERP

RB

WNT

WT1

Medscape DrugInfo

cisplatin

FURTHER INFORMATION

The role of the p53 gene

The IARC TP53 Mutation Database

Glossary

p53

A protein that is expressed after DNA damage, and that mediates cell-cycle arrest and the induction of apoptosis. For its crucial role, it has been defined as the 'Guardian of the Genome'.

PROMOTER

A portion of the genome that controls the expression of a specific gene.

SPLICING

Mechanisms that control the maturation of RNA by excluding or including specific exons, thereby generating proteins that have different structures, and possibly different functions.

WAF1

A cyclin-dependent kinase inhibitor that arrests cells at the G1/S transition. It is induced by p53 after DNA damage to prevent the proliferation of cells that have genetic damage, and to allow the cell's DNA-repair machinery to repair the genome.

PUMA

A protein that belongs to the BCL2 family, and, in particular, to the BH3-only family of proteins. It is induced by p53 and p73 to trigger cell death.

DNA DAMAGE

Structural modification of the DNA nucleotides that results in aberrant function. It is induced by physical and chemical agents.

MISMATCH REPAIR

Base–base mismatches and insertion/deletion loops arise as a consequence of DNA-polymerase slippage during DNA synthesis. The mismatch-repair system corrects these, and is highly conserved between species and in humans. It requires at least six different proteins, and germ-line mutations of any of these genes give rise to hereditary non-polyposis colon cancer.

c-ABL

A non-receptor tyrosine kinase that inhibits entry into S phase by means of a p53- and retinoblastoma (RB)-dependent pathway. It is activated in response to DNA-damaging agents. Its kinase activity and transformation potential can be activated by: formation of the fusion protein BCR–ABL; deletion of the SH3 domain; hyperexpression; and amino-terminal deletions.

c-MYC

An oncogene that is a member of the helix–loop–helix/leucine-zipper superfamily. It forms heterodimers with MAX and binds specific DNA sequences known as E-box MYC sites. It is implicated in the control of normal proliferation and differentiation. Altered expression is involved in neoplastic transformation.

E1A

A family of adenovirus proteins that is derived by alternative splicing of the E1A gene. E1A proteins mediate transcriptional regulation of both viral and cellular genes to facilitate viral life, induce cell-cycle progression and lead to cellular transformation.

MDMX

MDMX, like MDM2, controls the stability of p53. Both proteins are induced by p53, and are able to bind p53 itself. They are E3 ubiquitin ligases that target p53 for degradation.

BECKWITH–WEIDEMANN SYNDROME

(BWS). A syndrome that is characterized by EXOMPHALOS, macroglossia (enlarged tongue) and gigantism (excessive linear growth) in the neonate. Patients have an increased risk of developing specific tumours. BWS is caused by a mutation in chromosome 11p15.5. The mode of inheritance is complex.

EXOMPHALOS

In an exomphalos, some of the abdominal contents are found outside the abdomen in a thin clear sac to which the baby's umbilical cord is attached. The sac consists of amnion and parietal peritoneum, with some mesenchyme in between.

CD95

The first identified death receptor. This membrane receptor activates apoptosis after binding of its ligand (CD95L).

NEUROBLASTOMA

The most frequent solid paediatric cancer. It is highly aggressive with fewer than 30% of children surviving.

LOSS OF HETEROZYGOSITY

(LOH). Loss of one of the genome's two copies of a given gene or genetic region.

POLYMORPHISM

Alteration of the sequence of DNA that does not affect its function.

CpG ISLAND

A region of DNA with a high density of cytosine–phospho-guanine (CpG) nucleotides, which are usually located in the promoter region or the first exons of a gene. CpG islands are involved in the regulation of transcription, because their methylation can lead to permanent silencing of the associated gene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melino, G., De Laurenzi, V. & Vousden, K. p73: Friend or foe in tumorigenesis. Nat Rev Cancer 2, 605–615 (2002). https://doi.org/10.1038/nrc861

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc861

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing