Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA and its associated processes as targets for cancer therapy

Key Points

  • DNA is the molecular target for many anticancer drugs.

  • Alkylating agents generally interact non-specifically with DNA: the more effective ones tend to crosslink DNA.

  • Antitumour antibiotics tend to be more specific in their interactions with DNA and are most often associated with modest sequence selectivity and targeting protein–DNA complexes.

  • Code-reading molecules target either the major or minor groove of DNA and can read 1–2 turns of the helix. Polyamides target the minor groove, and triplex-forming molecules target the major groove.

  • The efficacy of the small molecules that react with DNA is more dependent on their effect on DNA structure than on their sequence selectivity.

  • Secondary DNA structures, such as G-quadruplex structures, represent a new class of molecular targets for DNA-interactive compounds that might be useful for targeting telomeres and transcriptional control.

  • There is good reason to expect DNA to be a clinically important target for many years to come. More selective and less toxic compounds are in preparation and strategies to use the newer agents that target molecular receptors, in combination with DNA-reactive drugs, will maintain interest in DNA as a molecular target.

Abstract

DNA is the molecular target for many of the drugs that are used in cancer therapeutics, and is viewed as a non-specific target of cytotoxic agents. Although this is true for traditional chemotherapeutics, other agents that were discovered more recently have shown enhanced efficacy. Furthermore, a new generation of agents that target DNA-associated processes are anticipated to be far more specific and effective. How have these agents evolved, and what are their molecular targets?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classes of DNA-interactive agents and their molecular interactions with DNA.
Figure 2: Transcription can be targeted by DNA-interactive drugs.
Figure 3: Direct versus indirect readout for sequence-specific recognition of DNA.
Figure 4: Arg–Pro–Arg (RPR) polyamides target the minor groove.
Figure 5: Mechanisms of triplex-mediated interference with DNA information processing.
Figure 6: G-quadruplex structures.

Similar content being viewed by others

References

  1. Slapak, C. A. & Kufe, D. W. in Harrison's Principles of Internal Medicine 14th edn (eds Isselbacher, K. J. et al.) 523–537 (McGraw–Hill, Inc. (Health Professions Div., New York, 1998).

    Google Scholar 

  2. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344, 1031–1037 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Kohn, K. Beyond DNA cross-linking: history and prospects of DNA–targeted cancer treatment. Fifteenth Bruce F. Cain Memorial Award Lecture. Cancer Res. 56, 5533–5546 (1996).

    CAS  PubMed  Google Scholar 

  4. Infield, G. B. Disaster at Bari (Macmillan, New York, 1971).

    Google Scholar 

  5. Ward, K. Jr. The chlorinated ethylamines: a new type of vesicant. J. Am. Chem. Soc. 57, 914–916 (1935).

    Article  CAS  Google Scholar 

  6. Gilman, A. & Philips, F. S. The biological actions and therapeutic applications of β-chloroethyl amines and sulfides. Science 103, 409–415 (1946).

    Article  CAS  PubMed  Google Scholar 

  7. Goodman, L. S., Wintrobe, M. M., Dameshek, W., Goodman, J. J. & Gilman, A. Nitrogen mustard therapy. Use of methyl-bis(β-chloroethylamine hydrocholoride) and tris(β–chloroethyl)amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. JAMA 132, 126–132 (1946).The first report of clinical results from 67 patients treated with nitrogen mustards for Hodgkin's disease, lymphosarcoma and leukaemia. Some marked improvements were found, but the margin of safety was narrow.

    Article  CAS  Google Scholar 

  8. Clark, A. S. et al. Antitumor imidazotetrazines. 32. Synthesis of novel imidazotetrazinones and related bicyclic heterocycles to probe the mode of action of the antitumor drug temozolomide. J. Med. Chem. 38, 1493–1504 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Goldacre, R. J., Loveless, A. & Ross, W. C. The mode of production of chromosome abnormalities by nitrogen mustard: possible role of crosslinking. Nature 163, 667–669 (1949).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, K., Ramji, S., Bhathena, A., Lee, C. & Riddick, D. S. Glutathione S-transferases in wild-type and doxorubicin-resistant MCF-7 human breast cancer cell lines. Xenobiotica 29, 155–170 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Smith, S. Technology evaluation: SGN–15, Seattle Genetics Inc. Curr. Opin. Mol. Ther. 3, 295–302 (2001).

    CAS  PubMed  Google Scholar 

  12. Syrigos, K. N. & Epenetos, A. A. Antibody directed enzyme prodrug therapy (ADEPT): a review of the experimental and clinical considerations. Anticancer Res. 19, 605–613 (1999).

    CAS  PubMed  Google Scholar 

  13. Dorr, R. T. & Von Hoff, D. D. Cancer Chemotherapy Handbook (Appleton & Lange, Norwalk, Connecticut, 1994).

    Google Scholar 

  14. Gottesfeld, J. M., Turner, J. M. & Dervan, P. B. Chemical approaches to control gene expression. Gene Expr. 9, 77–91 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Giovannangeli, C. & Hélène, C. Triplex-forming molecules for modulation of DNA information processing. Curr. Opin. Mol. Ther. 2, 288–297 (2000).

    CAS  PubMed  Google Scholar 

  16. Neidle, S. The molecular basis for the action of some DNA-binding drugs. Prog. Med. Chem. 16, 151–221 (1979).

    Article  CAS  PubMed  Google Scholar 

  17. Minford, J. et al. Isolation of intercalator-dependent protein-linked DNA strand cleavage activity from cell nuclei and identification as topoisomerase II. Biochemistry 25, 9–16 (1986).The protein linked to the intercalator DNA strand-cleaved product was shown to be topoisomerase II.

    Article  CAS  PubMed  Google Scholar 

  18. Tewey, K. M., Rowe, T. C., Yang, L., Halligan, B. D. & Liu, L. F. Adriamycin-induced DNA damage mediate by mammalian DNA topoisomerase II. Science 226, 466–468 (1984).In a cell-free system, doxorubicin is shown to produce topoisomerase-II-mediated cleavage of DNA, inferring that this drug affects the breakage–reunion reaction by stabilizing the cleavable complex.

    Article  CAS  PubMed  Google Scholar 

  19. Henderson, D. & Hurley, L. H. Molecular struggle for transcriptional control. Nature Med. 1, 525–527 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Zhong, D., Pal, S. K., Wan, C. & Zewail, A. H. Femtosecond dynamics of a drug–protein complex: daunomycin with Apo riboflavin-binding protein. Proc. Natl Acad. Sci. USA 98, 11873–11878 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reich, E. & Goldberg, I. H. Actinomycin and nucleic acid function. Prog. Nucleic Acid Res. Mol. Biol. 3, 183–234 (1964).

    Article  CAS  PubMed  Google Scholar 

  22. Muller, W. & Crothers, D. M. Studies of the binding of actinomycin and related compounds to DNA. J. Mol. Biol. 35, 251–290 (1968).

    Article  CAS  PubMed  Google Scholar 

  23. Sobell, H. M., Jain, S. C., Sakore, T. D. & Nordman, C. E. Stereochemistry of actinomycin–DNA binding. Nature New Biol. 231, 200–205 (1971).

    Article  CAS  PubMed  Google Scholar 

  24. Zimmer, C. & Wahnert, U. Nonintercalating DNA-binding ligands: specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Prog. Biophys. Mol. Biol. 47, 31–112 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Thuong, N. & Hélène, C. Sequence specific recognition and modification of double helical DNA by oligonucleotides. Angew. Chem. Int. Ed. Engl. 32, 666–690 (1993).

    Article  Google Scholar 

  26. Strobel, S. A., Doucette–Stamm, L. A., Riba, L., Houseman, D. E. & Dervan, P. B. Site specific cleavage of human chromosome 4 mediated by triple helix formation. Science 254, 1639–1642 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Gellert, M., Lipsett, M. N. & Davies, D. R. Helix formation by guanylic acid. Proc. Natl Acad. Sci. USA 48, 2013–2018 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Han, H. & Hurley, L. H. G-quadruplex DNA: a potential target for anti-cancer drug design. Trends Pharmacol. Sci. 21, 136–142 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Kerwin, S. M. G-quadruplex DNA as a target for drug design. Curr. Pharm. Des. 6, 441–471 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Sun, D. et al. Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem. 40, 2113–2116 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Broggini, M. & D'Incalci, M. Modulation of transcription factor–DNA interactions by anticancer drugs. Anticancer Drug Des 9, 373–387 (1994).

    CAS  PubMed  Google Scholar 

  32. Gniazdowski, M. & Czyz, M. Transcription factors as targets of anticancer drugs. Acta Biochim. Pol. 46, 255–262 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, J. C. DNA topoisomerases. Annu. Rev. Biochem. 65, 635–692 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Pourquier, P. & Pommier, Y. Topoisomerase I-mediated DNA damage. Adv. Cancer Res. 80, 189–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Nitiss, J. L. Investigating the biological functions of DNA topoisomerase in eukaryotic cells. Biochim. Biophys. Acta 1400, 63–81 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Vladu, B. et al. 7- and 10-substituted camptothecins: dependence of topoisomerase I–DNA cleavable complex formation and stability on the 7- and 10-substituents. Mol. Pharmacol. 57, 243–251 (2000).

    CAS  PubMed  Google Scholar 

  37. Pommier, Y. in Cancer Therapeutics: Experimental and Clinical Agents (ed. Teicher, B. A.) 153–173 (Humana, Totowa, New Jersey, 1997).

    Book  Google Scholar 

  38. Rosenberg, B. & Camp, L. V. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205, 698–699 (1965).

    Article  CAS  PubMed  Google Scholar 

  39. Bellon, S. F., Coleman, J. H. & Lippard, S. J. DNA unwinding produced by site-specific intrastrand cross-links of the antitumor drug cis-diamminedichloroplatinum(II). Biochemistry 30, 8026–8035 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Brown, S. J., Kellett, P. J. & Lippard, S. J. Ixr1, a yeast protein that binds to platinated DNA and confers sensitivity to cisplatin. Science 261, 603–605 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Treiber, D. K., Zhai, X., Jantzen, H.-M. & Essigmann, J. M. Cisplatin–DNA adducts are molecular decoys for the ribosomal RNA transcription factor hUBF (human upstream binding factor). Proc. Natl Acad. Sci. USA 91, 5672–5676 (1994).The authors introduce the idea that drugs that distort DNA, such as cisplatin, might result in high-affinity binding sites for transcriptional factors and so act as molecular decoys for them.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jamieson, E. R. & Lippard, S. J. Structure, recognition, and processing of cisplatin–DNA adducts. Chem. Rev. 99, 2467–2498 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Thompson, A. S., Sun, D. & Hurley, L. H. Monoalkylation and cross-linking of DNA by cyclopropapyrroloindoles entraps bent and straight forms of A-tract. J. Am. Chem. Soc. 117, 2371–2372 (1995).

    Article  CAS  Google Scholar 

  44. Sun, D. & Hurley, L. H. Cooperative bending of the 21-base-pair repeats of the SV40 viral early promoter by human Sp1. Biochemistry 33, 9578–9587 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Rinehart, K. L. et al. Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinate. J. Org. Chem. 55, 4512–4515 (1990).

    Article  CAS  Google Scholar 

  46. Zewail-Foote, M. et al. The inefficiency of incisions of Ecteinascidin 743–DNA adducts by the UvrABC nuclease and the unique structural feature of the DNA adducts can be used to explain the repair-dependent toxicities of this antitumor agent. Chem. Biol. 8, 1033–1049 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Garcia-Nieto, R., Manzanares, I., Cuevas, C. & Gago, F. Increased DNA binding specificity for antitumor ecteinascidin 743 through protein–DNA interactions? J. Med. Chem. 43, 4367–4369 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Zewail-Foote, M. & Hurley, L. H. Ecteinascidin 743: a minor groove alkylator that bends DNA toward the major groove. J. Med. Chem. 42, 2943–2947 (1999). | PubMed |

    Article  CAS  Google Scholar 

  49. Takebayashi, Y. et al. Antiproliferative activity of Ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair. Nature Med. 7, 961–966 (2001).The unique mechanism of action of Et-743 is shown to involve TC-NER: the drug-trapped complex results in single-stranded breaks in DNA.

    Article  CAS  PubMed  Google Scholar 

  50. Erba, E. et al. Ecteinascidin-743 (ET–743), a natural marine compound, with a unique mechanism of action. Eur. J. Cancer 37, 97–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Reed, E. Platinum–DNA adduct, nucleotide excision repair, and platinum-based anti-cancer chemotherapy. Cancer Treat. Rev. 24, 331–344 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Jin, S. Gorfajn, B., Faircloth, G. & Scotto, K. W. Ecteinascidin 743, a transcription-targeted chemotherapeutic that inhibits MDR1 activation. Proc. Natl Acad. Sci. USA 97, 6775–6779 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Synold, T. W., Dussault, I. & Forman, B. M. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nature Med. 7, 584–590 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Minuzzo, M. et al. Interference of transcriptional activation by the antineoplastic drug Ecteinascidin-743. Proc. Natl Acad. Sci. USA 97, 6780–6784 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hansen, M. & Hurley, L. H. Pluramycins. Old drugs having modern friends in structural biology. Acc. Chem. Res. 29, 249–258 (1996).

    Article  CAS  Google Scholar 

  56. Hélène, C. Sequence-selective recognition and cleavage of double-helical DNA. Curr. Opin. Biotechnol. 4, 29–36 (1993).

    Article  PubMed  Google Scholar 

  57. Pelton, J. G. & Wemmer, D. E. Structural characterization of a 2-1 distamycin Ad(CGCAAATTTGGC)2 complex by two-dimensional NMR. Proc. Natl Acad. Sci. USA 86, 5723–5727 (1989). The first report of the side-by-side or 2:1 ligand:DNA complex that was determined by nuclear magnetic resonance. This was the clue that the Dervan lab needed to explain the unexpected footprinting pattern observed in gels in which the same 2:1 antiparallel side-by-side dimer was present (see reference 90).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dervan, P. B. & Bürli, R. W. Sequence-specific DNA recognition by polyamides. Curr Opin Chem Biol 3, 688–693 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Trauger, J. W., Baird, E. E., Mrksich, M. & Dervan, P. B. Extension of sequence-specific recognition in the minor groove of DNA by pyrrole–imidazole polyamides to 9–13 base pairs. J. Am. Chem. Soc. 118, 6160–6166 (1996).

    Article  CAS  Google Scholar 

  60. Swalley, S. E., Baird, E. E. & Dervan, P. B. A pyrrole–imidazole polyamide motif for recognition of eleven base pair sequences in the minor groove of DNA. Chem. Eur. J. 3, 1600–1607 (1997).

    Article  CAS  Google Scholar 

  61. Wurtz, N. R. & Dervan, P. B. Sequence specific alkylation of DNA by hairpin pyrrole–imidazole polyamide conjugates. Chem. Biol. 7, 153–161 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Zhi-Fu, T., Fujiwara, T., Saito, I. & Sugiyama, H. Rational design of sequence-specific DNA alkylating agents based on duocarmycin A and pyrrole–imidazole hairpin polyamides. J. Am. Chem. Soc. 121, 4961–4967 (1999).

    Article  Google Scholar 

  63. Kohn, K. W., Hartley, J. A. & Mattes, W. B. Mechanisms of DNA sequence selective alkylation of guanine–N7 positions by nitrogen mustards. Nucleic Acids Res. 15, 10531–10549 (1987).The first critical insight based on experimental data for the origin of the sequence specificity of nitrogen mustards.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Seaman, F. & Hurley, L. H. Molecular basis for the DNA sequence selectivity of ecteinascidin 736 and 743: evidence for the dominant role of direct readout via hydrogen bonding. J. Am. Chem. Soc. 120, 13028–13041 (1998).

    Article  CAS  Google Scholar 

  65. Tomasz, M. et al. Isolation and structure of a covalent cross-link adduct between mitomycin C and DNA. Science 235, 1204–1208 (1987).The long-sought-after structure of crosslinked DNA with mitomycin C.

    Article  CAS  PubMed  Google Scholar 

  66. Nielsen, P. E. Peptide nucleic acids as therapeutic agents. Curr. Opin. Struct. Biol. 9, 353–357 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Lohse, J. Dahl, O. & Nielsen, P. E. Double duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double stranded DNA. Proc. Natl Acad. Sci. USA 96, 11804–11808 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Majumdar, A. et al. Targeted gene knockout mediated by triple helix forming oligonucleotides. Nature Genet. 20, 212–214 (1998). A proof of principle that triple-helix technology can deliver the oligomer to the anticipated site in genomic DNA.

    Article  CAS  PubMed  Google Scholar 

  69. Giovannangeli, C. & Hélène, C. Triplex technology takes off. Nature Biotechnol. 18, 1245–1256 (2000).

    Article  CAS  Google Scholar 

  70. Arimondo, P. B. et al. Design and optimization of camptothecin conjugates of triple helix-forming oligonucleotides for sequence-specfic DNA cleavage by topoisomerase I. J. Biol. Chem. 277, 3132–3140 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Keniry, M. A. Quadruplex structures in nucleic acids. Biopolymers (Nucleic Acid Sci.) 56, 123–146 (2001).

    Article  CAS  Google Scholar 

  72. Gehring, K., Leroy, J. L. & Gueron, M. A tetrameric DNA structure with protonated cytosine·cytosine base pairs. Nature 363, 561–565 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Fang, G. & Cech, T. R. The β-subunit of Oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. Cell 74, 875–885 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Sun, H., Bennett, R. J. & Maizels, N. The Saccharomyces cerevisiae Sgs1 helicase efficiently unwinds G–G paired DNAs. Nucleic Acids Res. 27, 1978–1984 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Damm, D. et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J. 20, 6958–6968 (2001).The first small-molecule catalytic inhibitor of telomerase to be described in which telomere shortening and senescence characteristics were shown. The long time period that is required to produce these effects will be a challenge for clinical use.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Duan, W. et al. Design and synthesis of fluoroquinophenoxazines that interact with G-quadruplexes and their biological effects. Mol. Cancer Ther. 1, 103–120 (2001).

    CAS  PubMed  Google Scholar 

  77. Hemann, M. T., Strong, M. A., Hao, L.-Y. & Greider, C. W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Simonsson, T., Pecinka, P. & Kubista, M. DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res. 26, 1167–1172 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bazarov, A. V. et al. A modest reduction in c-myc expression has minimal effects on cell growth and apoptosis but dramatically reduces susceptibility to ras and raf transformation. Cancer Res. 61, 1178–1186 (2001).

    CAS  PubMed  Google Scholar 

  80. Waters, J. S. et al. Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin's lymphoma. J. Clin. Oncol. 18, 1812–1823 (2000).The first demonstration of the clinical use of antisense therapy in treating cancer through downregulation of an oncogene.

    Article  CAS  PubMed  Google Scholar 

  81. Woynarowski, J. M., Trevino, A. V., Rodriguez, K. A., Hardies, S. C. & Benham, C. J. AT-rich islands in genomic DNA as a novel target for AT-specific DNA-reactive antitumor drugs. J. Biol. Chem. 276, 40555–40566 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Janssen, S., Cuvier, O., Müller, M. & Laemmli, U. K. Specific gain- and loss-of-function phenotypes induced by satellite-specific DNA-binding drugs fed to Drosophila melanogaster. Mol. Cell 6, 1013–1024 (2000).Proof of principle that polyamides can target AT regions in a whole organism after oral administration.

    Article  CAS  PubMed  Google Scholar 

  83. Kohn, K. W., Shao, R. G. & Pommier, Y. How do drug-induced topoisomerase I–DNA lesions signal to the molecular interaction network that regulates cell cycle checkpoints, DNA replication, and DNA repair? Cell Biochem. Biophys. 33, 175–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Westin, L., Blomquist, P., Milligan, J. F. & Wrange, O. Triple helix DNA alters nucleosomal histone–DNA interactions and acts as a nucleosome barrier. Nucleic Acids Res. 23, 2184–2191 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gottesfeld, J. M. et al. Sequence-specific recognition of DNA in the nucleosome by pyrrole–imidazole polyamides. J. Mol. Biol. 309, 615–629 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Portugal, J. Drug interactions with nucleosomes and chromatin. Methods Enzymol. 340, 503–518 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Han, H., Langley, D. R., Rangan, A. & Hurley, L. H. Selective interactions of cationic porphyrins with G-quadruplex structures. J. Am. Chem. Soc. 123, 8902–8913 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Rangan, A., Fedoroff, O. Y. & Hurley, L. H. Induction of duplex to G-quadruplex transition in the c-myc promoter region by a small molecule. J. Biol. Chem. 276, 4640–4646 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Bremer, R. E., Baird, E. E. & Dervan, P. B. Inhibition of major-groove-binding proteins by pyrrole–imidazole polyamides with an Arg–Pro–Arg positive patch. Chem. Biol. 5, 119–133 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Dervan, P. B. Molecular recognition of DNA by small molecules. Bioorg. Med. Chem. 9, 2215–2236 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank D. M. Bishop for preparing, proofreading and editing the text and for helping to create the figures. L. H. H. is supported by grants from the National Cancer Institute, the National Foundation for Cancer Research and the Arizona Disease Control Research Commission.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

CancerNet:

chronic myelogenous leukaemia

non-Hodgkin's lymphoma

testicular cancer

 LocusLink:

ABL

BCL2

CNBP

c-FOS

hnRNP

HPRT

MDR1

c-MYB

c-MYC

NF-Y

RAF

RAP1

RAS

topoisomerase I

topoisomerase II

tubulin

 Medscape DrugInfo:

Bleomycin

chlorambucil

cisplatin

doxorubicin

etoposide

Gleevec

mitoxantrone

temozolomide

topotecan

 Saccharomyces Genome Database:

Sgs1

Glossary

ALKYLATION

The replacement of hydrogen on an atom by an alkyl group. The alkylation of nucleic acids involves a substitution reaction in which a nucleophilic atom (nu) of the nucleic acid displaces a leaving group from the alkylating agent: nu-H + alkyl-Y → alkyl-nu + H+ + Y.

MYELOSUPPRESSION

A decrease in the ability of the bone-marrow cells to produce blood cells, including red blood cells, white blood cells and platelets.

INTERCALATION

Insertion of a flat aromatic molecule between adjacent base pairs of the double helix.

NUCLEOTIDE EXCISION REPAIR

(NER). A process carried out by mammalian cells that involves the recognition, removal and resynthesis of the restored DNA following DNA damage by bulky lesions.

TC-NER

Preferential removal of lesions from the DNA strands in genes that are actively transcribed by RNA polymerase II.

XPG

XPG encodes an endonuclease that is involved in nucleotide excision repair (NER) and transcription-coupled NER. It cuts the damaged DNA strand 3′ to sites of damage.

I-MOTIF

A tetrameric DNA structure with protonated cytosine–cytosine base pairs.

PHARMACODYNAMICS

The study of the biochemical and physiological effects of drugs and their mechanisms of action.

PHARMACOKINETICS

The study of the time course of a drug and its metabolites in the body after administration by any route.

MATRIX-ATTACHMENT REGION

AT-rich sequence of DNA that binds to a proteinaceous nuclear scaffold called the nuclear matrix.

AT-RICH SATELLITES

AT-rich satellite DNA is simple sequence DNA that is made up largely of AT base pairs in short repetitive sequences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurley, L. DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2, 188–200 (2002). https://doi.org/10.1038/nrc749

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc749

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing